![]() | |||
МЕДЛАЙН.РУ
|
|||
|
Фундаментальные исследования •
Том: 26 Статья: « 9 » Страницы:. 211-256 Опубликована в журнале: 16 июня 2025 г. English version ![]() Роль цинка в регуляции белком A20 NF-κB-сигнального пути (Обзор литературы)Лалетин В.С.
ФГБОУ ВО «Иркутский государственный медицинский университет» Минздрава России, 664003, Российская Федерация, г. Иркутск, ул. Красного восстания, д.1. ФГБОУ ВО «Санкт-Петербургский государственный педиатрический медицинский университет» Минздрава России, 194100, Российская Федерация, г. Санкт-Петербург, ул. Литовская, д.2
Резюме
Цинк участвует в регуляции воспаления. Противовоспалительные эффекты цинка сопряжены с подавлением активности транскрипционного фактора NF-κB, одного из ключевых регуляторов воспаления. Активация NF-κB-сигнального пути сопровождается индукцией белка A20 (TNFAIP3), который является ключевым отрицательным регулятором NF-κB, действующим по механизму отрицательной обратной связи. Механизмы подавления активности NF-κB белком A20 обусловлены его убиквитин-редактируюшей функцией. Белок A20 является, вероятно, главной мишенью для ионов цинка в регуляции активности NF-κB-сигнального пути. Цинк участвует в функционировании A20 как структурный компонент, так и регулятор его экспрессии. В клинических исследованиях гаплонедостаточности A20 и в экспериментах на животных с направленными инактивирующими мутациями показано, что именно ZnF-домен белка A20, содержащий семь цинковых пальцев, играет ключевую роль в регуляции воспалительных процессов. В настоящее время механизмы индукции A20 цинком неизвестны. Исследования на различных линиях клеток и на животных продемонстрировали, что ионы цинка активируют экспрессию A20, действуя через цинк-чувствительные GPR39 рецепторы и эпигенетические механизмы регуляции. A20 вовлечен в патогенез хронических и острых воспалительных, аутоиммунных, сердечно-сосудистых и онкологических заболеваний. Роль цинка в регуляции и функционировании A20 и значение A20 в качестве терапевтической мишени позволяет определить направление дальнейших исследований терапевтического потенциала цинка в лечении широкого ряда заболеваний. Ключевые слова цинк; воспаление; противовоспалительное действие; провоспалительные цитокины; полиубиквитин; гаплонедостаточность A20; хронические воспалительные заболевания; аутоиммунные заболевания; сердечно-сосудистые заболевания; онкологические заболевания (статья в формате PDF. Для просмотра необходим Adobe Acrobat Reader) ![]() Список литературы 1. Raulin J. Etudes clinique sur la vegetation. Ann Sci Natl Botan Biol Veget. 1869; 11:293-299. 2. Prasad A.S., Halsted J.A., Nadimi M. Syndrome of iron deficiency anemia, hepatosplenomegaly, hypogonadism, dwarfism and geophagia. Am J Med. 1961; 31:532-46. doi: 10.1016/0002-9343(61)90137-1. 3. Kambe T., Tsuji T., Hashimoto A., Itsumura N. The Physiological, Biochemical, and Molecular Roles of Zinc Transporters in Zinc Homeostasis and Metabolism. Physiol Rev. 2015; 95:749-784. doi:10.1152/physrev.00035.2014. 4. Fukada T., Kambe T., eds. Zinc Signaling. Second Edition. Springer Nature Singapore Pte Ltd. 2019. https://doi.org/10.1007/978-981-15-0557-7. 5. Miller J., McLachlan A.D., Klug A. Repetitive zinc-binding domains in the protein transcription factor IIIA from Xenopus oocytes. EMBO J. 1985; 4(6):1609-14. doi: 10.1002/j.1460-2075.1985.tb03825.x. 6. Chen B., Yu P., Chan W.N., Xie F., et al. Cellular zinc metabolism and zinc signaling: from biological functions to diseases and therapeutic targets. Signal Transduct Target Ther. 2024; 9(1):6. doi: 10.1038/s41392-023-01679-y. 7. Maret W. The Arcana of Zinc. J Nutr. 2025; 155(3):669-675. doi:10.1016/j.tjnut.2025.01.004. 8. Prasad A.S., Bao B. Molecular Mechanisms of Zinc as a Pro-Antioxidant Mediator: Clinical Therapeutic Implications. Antioxidants (Basel). 2019; 8(6):164. doi: 10.3390/antiox8060164. 9. Hübner C., Haase H. Interactions of zinc- and redox-signaling pathways. Redox Biol. 2021; 41:101916. doi: 10.1016/j.redox.2021.101916. 10. Hershfinkel M. The Zinc Sensing Receptor, ZnR/GPR39, in Health and Disease. Int J Mol Sci. 2018; 19(2):439. doi: 10.3390/ijms19020439. 11. Wessells K.R., Brown K.H. Estimating the global prevalence of zinc deficiency: results based on zinc availability in national food supplies and the prevalence of stunting. PLoS One. 2012; 7(11):e50568. doi: 10.1371/journal.pone.0050568. 12. Penny M.E. Zinc supplementation in public health. Ann Nutr Metab. 2013; 62 Suppl 1:31-42. doi: 10.1159/000348263. 13. McAlpine G., ed. Focus on signal transduction research. New York: Nova Science Publishers; 2007. 14. Foster M., Samman S. Zinc and regulation of inflammatory cytokines: implications for cardiometabolic disease. Nutrients. 2012; 4(7):676-94. doi: 10.3390/nu4070676. 15. Kanda N., Hoashi T., Saeki H.. Nutrition and Atopic Dermatitis. J Nippon Med Sch. 2021; 88(3):171-177. doi: 16.1272/jnms.JNMS.2021_88-317. 16. Henze L.A., Estepa M., Pieske B., Lang F., et al. Zinc Ameliorates the Osteogenic Effects of High Glucose in Vascular Smooth Muscle Cells. Cells. 2021; 10(11):3083. doi: 10.3390/cells10113083. 17. Briassoulis G., Briassoulis P., Ilia S., Miliaraki M., et al. The Anti-Oxidative, Anti-Inflammatory, Anti-Apoptotic, and Anti-Necroptotic Role of Zinc in COVID-19 and Sepsis. Antioxidants (Basel). 2023; 12(11):1942. doi: 18.3390/antiox12111942. 18. Prasad A.S., Beck F.W., Snell D.C., Kucuk O. Zinc in cancer prevention. Nutr Cancer. 2009; 61(6):879-87. doi: 19.1080/01635580903285122. 19. Schott-Ohly P., Lgssiar A., Partke H.J., Hassan M., et al. Prevention of spontaneous and experimentally induced diabetes in mice with zinc sulfate-enriched drinking water is associated with activation and reduction of NF-kappa B and AP-1 in islets, respectively. Exp Biol Med (Maywood). 2004; 229(11):1177-85. doi: 10.1177/153537020422901113. 20. Choi S., Liu X., Pan Z. Zinc deficiency and cellular oxidative stress: prognostic implications in cardiovascular diseases. Acta Pharmacol Sin. 2018; 39(7):1120-1132. doi: 10.1038/aps.2018.25. 21. Bao B., Prasad A.S., Beck F.W., Fitzgerald J.T., et al. Zinc decreases C-reactive protein, lipid peroxidation, and inflammatory cytokines in elderly subjects: a potential implication of zinc as an atheroprotective agent. Am J Clin Nutr. 2010; 91(6):1634-41. doi: 10.3945/ajcn.2009.28836. 22. Prasad A.S. Zinc is an Antioxidant and Anti-Inflammatory Agent: Its Role in Human Health. Front Nutr. 2014; 1:14. doi: 27.3389/fnut.2014.00014. 23. Jarosz M., Olbert M., Wyszogrodzka G., Młyniec K., et al. Antioxidant and anti-inflammatory effects of zinc. Zinc-dependent NF-κB signaling. Inflammopharmacology. 2017; 25(1):11-24. doi: 10.1007/s10787-017-0309-4. 24. Verstrepen L., Verhelst K., van Loo G., Carpentier I., et al. Expression, biological activities and mechanisms of action of A20 (TNFAIP3). Biochem Pharmacol. 2010; 80(12):2009-20. doi: 10.1016/j.bcp.2010.06.044. 25. Priem D., Devos M., Druwé S., Martens A., et al. A20 protects cells from TNF-induced apoptosis through linear ubiquitin-dependent and -independent mechanisms. Cell Death Dis. 2019; 10(10):692. doi: 10.1038/s41419-019-1937-y. 26. Wu Y., He X., Huang N., Yu J., et al. A20: a master regulator of arthritis. Arthritis Res Ther. 2020; 22(1):220. doi: 10.1186/s13075-020-02281-1. 27. Tang P., Liu B. Overactivation of NF-kB pathway can induce apoptosis by down-regulating glycolysis in human degenerative nucleus pulposus cells. Heliyon. 2024; 10(17):e36905. doi: 10.1016/j.heliyon.2024.e36905. 28. Liu T., Zhang L., Joo D., et al. NF-κB signaling in inflammation. Signal Transduct Target Ther. 2017; 2:17023. doi:10.1038/sigtrans.2017.23. 29. Sun X., Xu S., Liu T., Wu J., et al. Zinc supplementation alleviates oxidative stress to inhibit chronic gastritis via the ROS/NF-κB pathway in a mouse model. Food Funct. 2024; 15(13):7136-7147. doi: 10.1039/d4fo01142b. 30. Bodiga V.L., Inapurapu S.P., Vemuri P.K., Kudle M.R., et al. Intracellular zinc status influences cisplatin-induced endothelial permeability through modulation of PKCα, NF-κB and ICAM-1 expression. Eur J Pharmacol. 2016; 791:355-368. doi: 10.1016/j.ejphar.2016.09.013. 31. Morgan C.I., Ledford J.R., Zhou P., Page K. Zinc supplementation alters airway inflammation and airway hyperresponsiveness to a common allergen. J Inflamm (Lond). 2011; 8:36. doi: 10.1186/1476-9255-8-36. 32. Ajibare A.J., Odetayo A.F., Akintoye O.O., Olayaki L.A. Zinc ameliorates acrylamide-induced oxidative stress and apoptosis in testicular cells via Nrf2/HO-1/NfkB and Bax/Bcl2 signaling pathway. Redox Rep. 2024; 29(1):2341537. doi: 10.1080/13510002.2024.2341537. 33. Igumenova T.I. Dynamics and membrane interactions of protein kinase C. Biochemistry. 2015; 54(32): 4953-4968. doi:10.1021/acs.biochem.5b00565. 34. Gutierrez D.B., Gant-Branum R.L., Romer C.E., et al. An Integrated, High-Throughput Strategy for Multiomic Systems Level Analysis. J Proteome Res. 2018; 17(10):3396-3408. doi:10.1021/acs.jproteome.8b00302. 35. Ma Y., Liao Z., Xu Y., Zhong Z., Wang X., et al. Characteristics of CARMA1-BCL10-MALT1-A20-NF-κB expression in T cell-acute lymphocytic leukemia. Eur J Med Res. 2014; 19(1):62. doi: 10.1186/s40001-014-0062-8. 36. Bagyinszky E., An S.S.A. Genetic Mutations Associated With TNFAIP3 (A20) Haploinsufficiency and Their Impact on Inflammatory Diseases. Int J Mol Sci. 2024; 25(15):8275. doi: 10.3390/ijms25158275. 37. Enesa K., Evans P. The biology of A20-like molecules. Adv Exp Med Biol. 2014; 809:33-48. doi: 10.1007/978-1-4939-0398-6_3. 38. Kim T., Bae S.-C., Kang C. Synergistic activation of NF-κB by TNFAIP3 (A20) reduction and UBE2L3 (UBCH7) augment that synergistically elevate lupus risk. Arthritis Research & Therapy. 2020; 22:93. https://doi.org/10.1186/s13075-020-02181-4. 39. Prasad A.S., Bao B., Beck F.W., Kucuk O., et al. Antioxidant effect of zinc in humans. Free Radic Biol Med. 2004; 37(8):1182-90. doi: 10.1016/j.freeradbiomed.2004.07.007. 40. Verhelst K., Carpentier I., Kreike M., Meloni L., et al. A20 inhibits LUBAC-mediated NF-κB activation by binding linear polyubiquitin chains via its zinc finger 7. EMBO J. 2012; 31(19):3845-55. doi: 10.1038/emboj.2012.240. 41. Wertz I.E., O'Rourke K.M., Zhou H., Eby M., et al. Deubiquitination and ubiquitin ligase domains of A20 downregulate NF-kappaB signalling. Nature. 2004; 430:694-9. doi: 10.1038/nature02794. 42. Lu T.T., Onizawa M., Hammer G.E., Turer E.E., et al. Dimerization and ubiquitin mediated recruitment of A20, a complex deubiquitinating enzyme. Immunity. 2013; 38(5):896-905. doi: 10.1016/j.immuni.2013.03.008. 43. Lapid D., Lahav-Baratz S., Cohen S. A20 inhibits both the degradation and limited processing of the NF-κB p105 precursor: A novel additional layer to its regulator role. Biochem Biophys Res Commun. 2017; 493(1):52-57. doi: 10.1016/j.bbrc.2017.09.075. 44. Yamaguchi N., Yamaguchi N. The seventh zinc finger motif of A20 is required for the suppression of TNF-α-induced apoptosis. FEBS Lett. 2015; 589(12):1369-75. doi: 10.1016/j.febslet.2015.04.022. 45. Yin H., Karayel O., Chao Y.Y., Seeholzer T., et al. A20 and ABIN-1 cooperate in balancing CBM complex-triggered NF-κB signaling in activated T cells. Cell Mol Life Sci. 2022; 79(2):112. doi: 10.1007/s00018-022-04154-z. 46. Chen Y., Ye Z., Chen L., Qin T., et al. Association of Clinical Phenotypes in Haploinsufficiency A20 (HA20) With Disrupted Domains of A20. Front Immunol. 2020; 11:574992. doi: 10.3389/fimmu.2020.574992. 47. Razani B., Whang M.I., Kim F.S., Nakamura M.C., et al. Non-catalytic ubiquitin binding by A20 prevents psoriatic arthritis-like disease and inflammation. Nat Immunol. 2020; 21(4):422-433. doi: 10.1038/s41590-020-0634-4. 48. Martens A., Priem D., Hoste E., Vetters J., et al. Two distinct ubiquitin-binding motifs in A20 mediate its anti-inflammatory and cell-protective activities. Nat Immunol. 2020; 21(4):381-387. doi: 10.1038/s41590-020-0621-9. 49. Wertz I.E., Newton K., Seshasayee D., Kusam S., et al. Phosphorylation and linear ubiquitin direct A20 inhibition of inflammation. Nature. 2015; 528(7582):370-5. doi: 10.1038/nature16165. 50. Yang F.M., Shen L., Fan D.D., Bai Y., et al. YAP9/A20 complex suppresses proinflammatory responses and provides novel anti-inflammatory therapeutic potentials. Front Immunol. 2022; 13:914381. doi: 10.3389/fimmu.2022.914381. 51. Prasad A.S., Bao B., Beck F.W., Sarkar F.H. Zinc-suppressed inflammatory cytokines by induction of A20-mediated inhibition of nuclear factor-κB. Nutrition. 2011; 27(7-8):816-23. doi: 10.1016/j.nut.2010.08.010. 52. Yan Y.W., Fan J., Bai S.L., Hou W.J., et al. Zinc Prevents Abdominal Aortic Aneurysm Formation by Induction of A20-Mediated Suppression of NF-κB Pathway. PLoS One. 2016; 11(2):e0148536. doi: 10.1371/journal.pone.0148536. 53. Hayashi K., Kataoka H., Minami M., Ikedo T., et al. Association of zinc administration with growth suppression of intracranial aneurysms via induction of A20. J Neurosurg. 2020; 134(3):992-998. doi: 10.3171/2020.1.JNS192047. 54. Shen B., Mei M., Ai S., Liao X., et al. TRPC6 inhibits renal tubular epithelial cell pyroptosis through regulating zinc influx and alleviates renal ischemia-reperfusion injury. FASEB J. 2022; 36(10):e22527. doi: 10.1096/fj.202200109RR. 55. Chi Y., Zhang X., Liang D., Wang Y., et al. ZnT8 Exerts Anti-apoptosis of Kidney Tubular Epithelial Cell in Diabetic Kidney Disease Through TNFAIP3-NF-κB Signal Pathways. Biol Trace Elem Res. 2023; 201(5):2442-2457. doi: 10.1007/s12011-022-03361-w. 56. Hongxia L., Yuxiao T., Zhilei S., Yan S., et al. Zinc inhibited LPS-induced inflammatory responses by upregulating A20 expression in microglia BV2 cells. J Affect Disord. 2019; 249:136-142. doi: 10.1016/j.jad.2019.02.041. 57. Hu Y., Zhang W., Yang K., Lin X., et al. Dietary Zn proteinate with moderate chelation strength alleviates heat stress-induced intestinal barrier function damage by promoting expression of tight junction proteins via the A20/NF-κB p65/MMP-2 pathway in the jejunum of broilers. J Anim Sci Biotechnol. 2024; 15(1):115. doi: 10.1186/s40104-024-01075-8. 58. Voelkl J., Tuffaha R., Luong T.T.D., Zickler D., et al. Zinc Inhibits Phosphate-Induced Vascular Calcification through TNFAIP3-Mediated Suppression of NF-κB. J Am Soc Nephrol. 2018; 29(6):1636-1648. doi: 10.1681/ASN.2017050492. 59. Chen W., Chen A., Lian G., Yan Y., et al. Zinc attenuates monocrotaline-induced pulmonary hypertension in rats through upregulation of A20. Journal of Molecular and Cellular Cardiology. 2024; 195:24-35. doi.org/10.1016/j.yjmcc.2024.07.003. 60. Li C., Guo S., Gao J., Guo Y., et al. Maternal high-zinc diet attenuates intestinal inflammation by reducing DNA methylation and elevating H3K9 acetylation in the A20 promoter of offspring chicks. J Nutr Biochem. 2015; 26(2):173-83. doi: 10.1016/j.jnutbio.2014.10.005. 61. Elhani I., Riller Q., Boursier G., Hentgen V., et al. A20 Haploinsufficiency: A Systematic Review of 177 Cases. J Invest Dermatol. 2024; 144(6):1282-1294.e8. doi: 10.1016/j.jid.2023.12.007. 62. Dong X., Liu L., Wang Y., Yang X., et al. Novel Heterogeneous Mutation of TNFAIP3 in a Chinese Patient with Behçet-Like Phenotype and Persistent EBV Viremia. J Clin Immunol. 2019; 39(2):188-194. doi: 10.1007/s10875-019-00604-9. 63. Rossi M.N., Federici S., Uva A., Passarelli C., et al. Identification of a Novel Mutation in TNFAIP3 in a Family With Poly-Autoimmunity. Front Immunol. 2022; 13:804401. doi: 10.3389/fimmu.2022.804401. 64. Fan Y., Tao J.H., Zhang L.P., Li L.H., et al. The association between BANK1 and TNFAIP3 gene polymorphisms and systemic lupus erythematosus: a meta-analysis. Int J Immunogenet. 2011; 38(2):151-9. doi: 10.1111/j.1744-313X.2010.00990.x. 65. Tejasvi T., Stuart P.E., Chandran V., Voorhees J.J., et al. TNFAIP3 gene polymorphisms are associated with response to TNF blockade in psoriasis. J Invest Dermatol. 2012; 132(3 Pt 1):593-600. doi: 10.1038/jid.2011.376. 66. Cui S.B., Wang T.X., Liu Z.W., Yan J.Y., et al. Zinc finger protein A20 regulates the development and progression of osteoarthritis by affecting the activity of NF-κB p65. Immunopharmacol Immunotoxicol. 2021; 43(6):713-723. doi: 10.1080/08923973.2021.1970764. 67. Yun Z., Peng H.Z., Wang W., Ma Q., et al. A20 inhibits the release of inflammatory cytokines by suppressing the activation of the nuclear factor-kappa B pathway in osteoarthritic fibroblast-like synoviocytes. Biochem Biophys Res Commun. 2019; 508(3):877-881. doi: 10.1016/j.bbrc.2018.12.030. 68. Polykratis A., Martens A., Eren R.O., Shirasaki Y., et al. A20 prevents inflammasome-dependent arthritis by inhibiting macrophage necroptosis through its ZnF7 ubiquitin-binding domain. Nat Cell Biol. 2019; 21(6):731-742. doi: 10.1038/s41556-019-0324-3. 69. Zhang L., Yao Y., Tian J., Jiang W., et al. Alterations and abnormal expression of A20 in peripheral monocyte subtypes in patients with rheumatoid arthritis. Clin Rheumatol. 2021; 40(1):341-348. doi: 10.1007/s10067-020-05137-w. 70. Zhai Y., Lin P., Feng Z., Lu H., et al. TNFAIP3-DEPTOR complex regulates inflammasome secretion through autophagy in ankylosing spondylitis monocytes. Autophagy. 2018; 14(9):1629-1643. doi: 10.1080/15548627.2018.1458804. 71. Zhang Y., Yi W., Xia H., Lan H., et al. A20 regulates inflammation through autophagy mediated by NF-κB pathway in human nucleus pulposus cells and ameliorates disc degeneration in vivo. Biochem Biophys Res Commun. 2021; 549:179-186. doi: 10.1016/j.bbrc.2021.02.115. 72. Xie Z., Chen J., Xiao Z., Li Y., et al. TNFAIP3 alleviates pain in lumbar disc herniation rats by inhibiting the NF-κB pathway. Ann Transl Med. 2022; 10(2):80. doi: 10.21037/atm-21-6499. 73. Hong J.Y., Bae W.J., Yi J.K., Kim G.T., et al. Anti-inflammatory and anti-osteoclastogenic effects of zinc finger protein A20 overexpression in human periodontal ligament cells. J Periodontal Res. 2016; 51(4):529-39. doi: 10.1111/jre.12332. 74. Zhang H., Shi Z., Guo Y., Wu D., et al. Tumor Necrosis Factor Alpha-Induced Protein-3 Inhibits the Activation of Hepatic Stellate Cells by Regulating the p65 Molecule in the NF-κB Signaling Pathway. Altern Ther Health Med. 2024; 30(2):171-177. 75. Liu Y., Dan G., Wu L., Chen G., et al. Functional effect of polymorphisms in the promoter of TNFAIP3 (A20) in acute pancreatitis in the Han Chinese population. PLoS One. 2014; 9(7):e103104. doi: 10.1371/journal.pone.0103104. 76. Zou X.L., Pei D.A., Yan J.Z., Xu G., et al. A20 overexpression inhibits lipopolysaccharide-induced NF-κB activation, TRAF6 and CD40 expression in rat peritoneal mesothelial cells. Int J Mol Sci. 2014; 15(4):6592-608. doi: 10.3390/ijms15046592. 77. Wu D.Q., Wu H.B., Zhang M., Wang J.A. Effects of Zinc Finger Protein A20 on Lipopolysaccharide (LPS)-Induced Pulmonary Inflammation/Anti-Inflammatory Mediators in an Acute Lung Injury/Acute Respiratory Distress Syndrome Rat Model. Med Sci Monit. 2017; 23:3536-3545. doi: 10.12659/msm.901700. 78. Fukaya M., Brorsson C.A., Meyerovich K., Catrysse L., et al. A20 Inhibits β-Cell Apoptosis by Multiple Mechanisms and Predicts Residual β-Cell Function in Type 1 Diabetes. Mol Endocrinol. 2016; 30(1):48-61. doi: 10.1210/me.2015-1176. 79. Ratajczak W., Atkinson S.D., Kelly C. A20 controls expression of beta-cell regulatory genes and transcription factors. J Mol Endocrinol. 2021; 67(4):189-201. doi: 10.1530/JME-21-0076. 80. Hou C.L., Zhang W., Wei Y., Mi J.H., et al. Zinc finger protein A20 overexpression inhibits monocyte homing and protects endothelial cells from injury induced by high glucose. Genet Mol Res. 2011; 10(2):1050-9. doi: 10.4238/vol10-2gmr1102. 81. Zhang R., Xu L., Zhang D., Hu B., et al. Cardioprotection of Ginkgolide B on Myocardial Ischemia/Reperfusion-Induced Inflammatory Injury via Regulation of A20-NF-κB Pathway. Front Immunol. 2018; 9:2844. doi: 10.3389/fimmu.2018.02844. 82. Li J., Zhang L., Zhang Y., Liu Y., et al. A20 deficiency leads to angiogenesis of pulmonary artery endothelial cells through stronger NF-κB activation under hypoxia. J Cell Mol Med. 2016; 20(7):1319-28. doi: 10.1111/jcmm.12816. 26991692 83. Chen M., Ding Z., Zhang F., Shen H., et al. A20 attenuates hypoxia-induced pulmonary arterial hypertension by inhibiting NF-κB activation and pulmonary artery smooth muscle cell proliferation. Exp Cell Res. 2020; 390(2):111982. doi: 10.1016/j.yexcr.2020.111982. 84. Han D., Fang W., Zhang R., Wei J., et al. Clematichinenoside protects blood brain barrier against ischemic stroke superimposed on systemic inflammatory challenges through up-regulating A20. Brain Behav Immun. 2016; 51:56-69. doi: 10.1016/j.bbi.2015.07.025. 85. Wei L., Zhang X., Ye Q., Yang Y., et al. The transfection of A20 gene prevents kidney from ischemia reperfusion injury in rats. Mol Med Rep. 2017; 16(2):1486-1492. doi: 10.3892/mmr.2017.6725. 86. Sun J., Sun L., Zhang N., Lu X., et al. A20 is up-regulated in primary mouse hepatocytes subjected to hypoxia and reperfusion. Cell Biochem Funct. 2012; 30(8):683-6. doi: 10.1002/cbf.2850. 87. Tang Y.J., Khalaf A.T., Liu X.M., Xu C.X., et al. Zinc finger A20 and NF-κB correlate with high-risk human papillomavirus of squamous cell carcinoma patients. Tumour Biol. 2014; 35(12):11855-60. doi: 10.1007/s13277-014-2416-9. 88. Schmitz R., Hansmann M.L., Bohle V., Martin-Subero J.I., et al. TNFAIP3 (A20) is a tumor suppressor gene in Hodgkin lymphoma and primary mediastinal B cell lymphoma. J Exp Med. 2009; 206(5):981-9. doi: 10.1084/jem.20090528. 89. Yi P.S., Shu Y., Bi W.X., Zheng X.B., et al. Emerging role of zinc finger protein A20 as a suppressor of hepatocellular carcinoma. J Cell Physiol. 2019; 234(12):21479-21484. doi: 10.1002/jcp.28877. 90. Zhang B., Guan C.C., Chen W.T., Zhang P., et al. A20 inhibits human salivary adenoid cystic carcinoma cells invasion via blocking nuclear factor-kappaB activation. Chin Med J (Engl). 2007; 120(20):1830-5. 91. Paul S., Bhardwaj M., Kang S.C. GSTO1 confers drug resistance in HCT 116 colon cancer cells through an interaction with TNFαIP3/A20. Int J Oncol. 2022; 61(5):136. doi: 10.3892/ijo.2022.5426. 92. Vendrell J.A., Ghayad S., Ben-Larbi S., Dumontet C., et al. A20/TNFAIP3, a new estrogen-regulated gene that confers tamoxifen resistance in breast cancer cells. Oncogene. 2007; 26(32):4656-67. doi: 10.1038/sj.onc.1210269. 93. Bellail A.C., Olson J.J., Yang X., Chen Z.J., et al. A20 ubiquitin ligase-mediated polyubiquitination of RIP1 inhibits caspase-8 cleavage and TRAIL-induced apoptosis in glioblastoma. Cancer Discov. 2012; 2(2):140-55. doi: 10.1158/2159-8290.CD-11-0172. 94. Dürkop H., Hirsch B., Hahn C., Foss H.D., et al. Differential expression and function of A20 and TRAF1 in Hodgkin lymphoma and anaplastic large cell lymphoma and their induction by CD30 stimulation. J Pathol. 2003; 200(2):229-39. doi: 10.1002/path.1351. 95. Yin L., Fang Z., Shen N.J., Qiu Y.H., et al. Downregulation of A20 increases the cytotoxicity of IFN-γ in hepatocellular carcinoma cells. Drug Des Devel Ther. 2017; 11:2841-2850. doi: 10.2147/DDDT.S135993. | ||
![]() |