| |||
МЕДЛАЙН.РУ
|
|||
|
Клиническая медицина » Хирургия • Офтальмология
Том: 25 Статья: « 39 » Страницы:. 741-766 Опубликована в журнале: 16 декабря 2024 г. English version Изменения диаметра сосудов и толщины сетчатки и хориоидеи у пациентов с новой коронавирусной инфекциейТургель В.А.1, Тульцева С.Н.1
Федеральное государственное бюджетное образовательное учреждение высшего образования «Первый Санкт-Петербургский государственный медицинский университет имени академика И.П. Павлова» Министерства здравоохранения Российской Федерации. Россия, 197022, г. Санкт-Петербург, ул. Льва Толстого, д.6-8
Резюме
Обзор литературы посвящен офтальмологическим проявлением новой коронавирусной инфекции. Известно, что главным клиническим проявлением COVID-19 является системный эндотелиит, вызванный как первичным вирусным воздействием, так и вторичным аутоиммунным ответом. Сетчатка и хориоидея занимают лидирующие позиции по плотности сосудов среди всех тканей организма человека. При этом это единственные ткани доступные прижизненной визуализации и неинвазивному исследованию структуры и микроциркуляции. Выявление «глазных маркеров» системного воспаления при COVID-19, динамическая оценка этих изменений позволит расширить представление о патогенезе и особенностях клинического течения инфекционного заболевания. В остром периоде COVID-19 к таким маркерам относят диффузное и локальное снижение плотности сосудов и перфузии в макулярной зоне, увеличение диаметра перепапиллярных сосудов, увеличение толщины хориоидеи в субфовеолярной области, а также увеличение площади аваскулярной зоны. К маркерам позднего периода относят - истончение сетчатки за счет СНВС и ганглиозных клеток, увеличение площади аваскулярной зоны которые могут прогрессировать в течение 12 месяцев после клинического выздоровления пациента. Ключевые слова COVID-19, новая коронавирусная инфекция, ковид-ассоциированная ретинопатия, ишемическая ретинопатия, ОКТА, ОКТ, ишемическая макулопатия. (статья в формате PDF. Для просмотра необходим Adobe Acrobat Reader) открыть статью в новом окне Список литературы 1. Quercioli C, Bosco R, Bova G, Mandò M, De Marco MF, Dei S, Gusinu R, Messina G. Evaluating the effect of COVID-19 incidence on Emergency Departments admissions. Results from a retrospective study in Central Italy during the first year of pandemic. Ann Ig. 2023; 35(5):572-585. doi: 10.7416/ai.2023.2570. 2. Poorolajal J. The global pandemics are getting more frequent and severe. J Res Health Sci. 2021; 18;21(1):e00502. doi: 10.34172/jrhs.2021.40. 3. Информация о новой коронавирусной инфекции для медицинских работников. Министерство здравоохранения Российской Федерации. 2024. URL: https://www.rosminzdrav.ru/ministry/med_covid19 (дата обращения 21.04.2024). 4. Siddiqui S, Alhamdi HWS, Alghamdi HA. Recent Chronology of COVID-19 Pandemic. Front Public Health. 2022; 10:778037. doi: 10.3389/fpubh.2022.778037. 5. Semenzato L, Botton J, Le Vu S, Jabagi MJ, et al. Protection of COVID-19 Vaccination Against Hospitalization During the Era of Omicron BA.4 and BA.5 Predominance: A Nationwide Case-Control Study Based on the French National Health Data System. Open Forum Infect Dis. 2023; 10(10):ofad460. doi: 10.1093/ofid/ofad460. 6. Широкова А.Н., Семенова Т.Н. Воздействие COVID-19 на хроническую неинфекционную патологию. Universum: медицина и фармакология. - 2024. - № 5 - С. 110-118. 7. Улумбекова Г.Э., Гиноян А.Б. Уроки пандемии COVID-19 для здравоохранения России. Научные труды Вольного экономического общества России. - 2022. - № 2. - С. 13-29. doi: 10.38197/2072-2060-2022-234-2-54-86 8. Mendelson M, Nel J, Blumberg L, Madhi SA, Dryden M, Stevens W, Venter FWD. Long-COVID: An evolving problem with an extensive impact. S Afr Med J. 2020; 111(1):10-12. doi: 10.7196/SAMJ.2020.v111i11.15433. 9. Brantl V, Schworm B, Weber G, et al. Long-term ocular damage after recovery from COVID-19: lack of evidence at three months. BMC Ophthalmol. 2021; 21(1):421. doi: 10.1186/s12886-021-02179-9. 10. Zaidi AK, Dehgani-Mobaraki P. Long Covid. Prog Mol Biol Transl Sci 2024; 202:113-125. doi: https://doi.org/10.1016/bs.pmbts.2023.11.002. 11. Lopez-Leon S, Wegman-Ostrosky T, Perelman C, Sepulveda R, Rebolledo PA, Cuapio A, Villapol S. More than 50 Long-term effects of COVID-19: a systematic review and meta-analysis. Sci Rep. 2021; 11(1):16144. doi: 10.1038/s41598-021-95565-8. 12. Fernández-de-Las-Peñas C, Pellicer-Valero OJ, Navarro-Pardo E, Palacios-Ceña D, Florencio LL, Guijarro C, Martín-Guerrero JD. Symptoms Experienced at the Acute Phase of SARS-CoV-2 Infection as Risk Factor of Long-term Post-COVID Symptoms: The LONG-COVID-EXP-CM Multicenter Study. Int J Infect Dis. 2022; 116:241-244. doi: 10.1016/j.ijid.2022.01.007. 13. Письмо Минздрава России от 30.01.2023 N 31-2/И/2-1287 «О формировании и экономическом обосновании территориальных программ государственных гарантий бесплатного оказания гражданам медицинской помощи на 2023 - 2025 годы». URL: https://www.consultant.ru/document/cons_doc_LAW_438795/ (дата обращения 21.04.2024). 14. Martono, Fatmawati F, Mulyanti S. Risk Factors Associated with the Severity of COVID-19. Malays J Med Sci. 2023; 30(3):84-92. doi: 10.21315/mjms2023.30.3.7. 15. Feng Y, Ling Y, Bai T, et al. COVID-19 with Different Severities: A Multicenter Study of Clinical Features. Am J Respir Crit Care Med. 2020; 201(11):1380-1388. doi: 10.1164/rccm.202002-0445OC. 16. Wilk-Sledziewska K, Sielatycki PJ, Uscinska N, et al. The Impact of Cardiovascular Risk Factors on the Course of COVID-19. J Clin Med. 2022; 11(8):2250. doi: 10.3390/jcm11082250. 17. Chenchula S, Sharma S, Tripathi M, et al. Prevalence of overweight and obesity and their effect on COVID-19 severity and hospitalization among younger than 50 years versus older than 50 years population: A systematic review and meta-analysis. Obes Rev. 2023; 24(11):e13616. doi: 10.1111/obr.13616. 18. Zhang Q, Chen CZ, Swaroop M, et al. Heparan sulfate assists SARS-CoV-2 in cell entry and can be targeted by approved drugs in vitro. bioRxiv Update in: Cell Discov. 2020;6(1):80. doi: 10.1038/s41421-020-00222-5. 19. Pijls BG, Jolani S, Atherley A, Derckx RT, et al. Demographic risk factors for COVID-19 infection, severity, ICU admission and death: a meta-analysis of 59 studies. BMJ Open. 2021; 11(1):e044640. doi: 10.1136/bmjopen-2020-044640. 20. Martínez-Salazar B, Holwerda M, Stüdle C, et al. COVID-19 and the Vasculature: Current Aspects and Long-Term Consequences. Front Cell Dev Biol. 2022; 10:824851. doi: 10.3389/fcell.2022.824851. 21. Pelisek J, Reutersberg B, Greber UF, Zimmermann A. Vascular dysfunction in COVID-19 patients: update on SARS-CoV-2 infection of endothelial cells and the role of long non-coding RNAs. Clin Sci (Lond). 2022; 136(21):1571-1590. doi: 10.1042/CS20220235. 22. Xu SW, Ilyas I, Weng JP. Endothelial dysfunction in COVID-19: an overview of evidence, biomarkers, mechanisms and potential therapies. Acta Pharmacol Sin. 2023; 44(4):695-709. doi: 10.1038/s41401-022-00998-0. 23. Torices S, Motta C, da Rosa B, Marcos A, et al. SARS-CoV-2 infection of human brain microvascular endothelial cells leads to inflammatory activation through NF-κB non-canonical pathway and mitochondrial remodeling. Viruses. 2023; 15(3):745. doi: 10.3390/v15030745. 24. du Preez HN, Aldous C, Hayden MR, Kruger HG, Lin J. Pathogenesis of COVID-19 described through the lens of an undersulfated and degraded epithelial and endothelial glycocalyx. FASEB J. 2022; 36(1):e22052. doi: 10.1096/fj.202101100RR. 25. Najjar S, Najjar A, Chong DJ, et al. Central nervous system complications associated with SARS-CoV-2 infection: integrative concepts of pathophysiology and case reports. J Neuroinflammation. 2020; 17(1):231. doi: 10.1186/s12974-020-01896-0. 26. Pattanaik A, Bhandarkar B S, Lodha L, Marate S. SARS-CoV-2 and the nervous system: current perspectives. Arch Virol. 2023; 168(6):171. doi: 10.1007/s00705-023-05801-x. 27. Acharya S, Diamond M, Anwar S, Glaser A, Tyagi P. Unique case of central retinal artery occlusion secondary to COVID-19 disease. IDCases. 2020;21:e00867. doi: 10.1016/j.idcr.2020.e00867. 28. Park HS, Kim S, Lee CS, Byeon SH, et al. Retinal vascular occlusion risks during the COVID-19 pandemic and after SARS-CoV-2 infection. Sci Rep. 2023;13(1):16851. doi: 10.1038/s41598-023-44199-z. 29. Латиган К.Л., Латиган Д.А., Дубнов К.Э., и др. Клинический случай окклюзии центральной артерии сетчатки на фоне перенесeнной пневмонии, вызванной SARS-CoV-2 (COVID-19). Acta Biomedica Scientifica. - 2021. - Т. 1, № 6. - С. 12-14. 30. Invernizzi A, Pellegrini M, Messenio D, et al. Impending Central Retinal Vein Occlusion in a Patient with Coronavirus Disease 2019 (COVID-19). Ocul Immunol Inflamm. 2020; 28(8):1290-1292. doi: 10.1080/09273948.2020.1807023. 31. Walinjkar JA, Makhija SC, Sharma HR, Morekar SR, Natarajan S. Central retinal vein occlusion with COVID-19 infection as the presumptive etiology. Indian J Ophthalmol. 2020; 68(11):2572-2574. doi: 10.4103/ijo.IJO_2575_20. 32. Ashkenazy N, Patel NA, Sridhar J, Yannuzzi NA, et al. Hemi- and Central Retinal Vein Occlusion Associated with COVID-19 Infection in Young Patients without Known Risk Factors. Ophthalmol Retina. 2022; 6(6):520-530. doi: 10.1016/j.oret.2022.02.004. 33. Virgo J, Mohamed M. Paracentral acute middle maculopathy and acute macular neuroretinopathy following SARS-CoV-2 infection. Eye (Lond). 2020; 34(12):2352-2353. doi: 10.1038/s41433-020-1069-8. 34. Gascon P, Briantais A, Bertrand E, et al. Covid-19-Associated Retinopathy: A Case Report. Ocul Immunol Inflamm. 2020; 28(8):1293-1297. doi: 10.1080/09273948.2020.1825751. 35. Vu TA, Schillerstrom M, Mancha S, Sponsel WE. COVID-19 Related Acute Macular Neuroretinopathy (AMN): A Case Series. Int Med Case Rep J. 2023; 16:491-496. doi: 10.2147/IMCRJ.S416492. 36. David JA, Fivgas GD. Acute macular neuroretinopathy associated with COVID-19 infection. Am J Ophthalmol Case Rep. 2024; 24:101232. doi: 10.1016/j.ajoc.2021.101232. 37. Dutta Majumder P, Agarwal A. Acute Macular Neuroretinopathy and Paracentral Acute Middle Maculopathy during SARS-CoV-2 Infection and Vaccination. Vaccines (Basel). 2023; 11(2):474. doi: 10.3390/vaccines11020474. 38. Olguín-Manríquez F, Cernichiaro-Espinosa L, Olguín-Manríquez A, et al. Unilateral acute posterior multifocal placoid pigment epitheliopathy in a convalescent COVID-19 patient. Int J Retina Vitreous. 2021; 7(1):41. doi: 10.1186/s40942-021-00312-w. 39. Sitaula S, Poudel A, Gajurel BP. Non-arteritic anterior ischemic optic neuropathy in COVID-19 infection - A case report. Am J Ophthalmol Case Rep. 2022; 27:101684. doi: 10.1016/j.ajoc.2022.101684. 40. Tarcha R, Ghazal A, Al-Darwish L, Abdoh H, Kudsi M. Optic neuritis after mRNA COVID-19 vaccination: a case report. Clin Case Rep. 2023 Nov 25;11(11):e8263. doi: 10.1002/ccr3.8263. 41. Bansal R, Markan A, Gautam N, et al. Retinal Involvement in COVID-19: Results From a Prospective Retina Screening Program in the Acute and Convalescent Phase. Front Med (Lausanne). 2021; 8:681942. doi: 10.3389/fmed.2021.681942. 42. Marinho PM, Marcos AAA, Romano AC, Nascimento H, Belfort R Jr. Retinal findings in patients with COVID-19. Lancet. 2020; 395(10237):1610. doi: 10.1016/S0140-6736(20)31014-X. 43. Landecho MF, Yuste JR, Gándara E, Sunsundegui P, Quiroga J, Alcaide AB, García-Layana A. COVID-19 retinal microangiopathy as an in vivo biomarker of systemic vascular disease? J Intern Med. 2021; 289(1):116-120. doi: 10.1111/joim.13156. 44. Teo KY, Invernizzi A, Staurenghi G, Cheung CMG. COVID-19-Related Retinal Micro-vasculopathy - A Review of Current Evidence. Am J Ophthalmol. 2022; 235:98-110. doi: 10.1016/j.ajo.2021.09.019. 45. Jidigam VK, Singh R, Batoki JC, et al. Histopathological assessments reveal retinal vascular changes, inflammation, and gliosis in patients with lethal COVID-19. Graefes Arch Clin Exp Ophthalmol. 2022; 260(4):1275-1288. doi: 10.1007/s00417-021-05460-1. 46. Turker IC, Dogan CU, Dirim AB, et al. Evaluation of early and late COVID-19-induced vascular changes with OCTA. Can J Ophthalmol. 2022; 57(4):236-241. doi: 10.1016/j.jcjo.2021.05.001. 47. Sumer F, Subasi S. Effects of COVID-19 on Retinal and Choroidal Thickness by Optical Coherence Tomography. J Glaucoma. 2023; 32(7):569-574. doi: 10.1097/IJG.0000000000002204. 48. Gündoğan M, Vural E, Bayram N, et al. Change in retinal vessel diameter and choroidal thickness in patients with severe COVID-19: Change In Retinal Parameters In Patients With Severe COVID-19. Photodiagnosis Photodyn Ther. 2022; 37:102674. doi: 10.1016/j.pdpdt.2021.102674. 49. Mavi Yildiz A, Ucan Gunduz G, Yalcinbayir O, Acet Ozturk NA, Avci R, Coskun F. SD-OCT assessment of macular and optic nerve alterations in patients recovered from COVID-19. Can J Ophthalmol. 2022; 57(2):75-81. doi: 10.1016/j.jcjo.2021.06.019. 50. Cennamo G, Reibaldi M, Montorio D, et al. Optical Coherence Tomography Angiography Features in Post-COVID-19 Pneumonia Patients: A Pilot Study. Am J Ophthalmol. 2021; 227:182-190. doi: 10.1016/j.ajo.2021.03.015. 51. González-Zamora J, Bilbao-Malavé V, Gándara E, et al. Retinal Microvascular Impairment in COVID-19 Bilateral Pneumonia Assessed by Optical Coherence Tomography Angiography. Biomedicines. 2021; 9(3):247. doi: 10.3390/biomedicines9030247. 52. Burgos-Blasco B, Güemes-Villahoz N, Vidal-Villegas B, et al. One-Year Changes in Optic Nerve Head Parameters in Recovered COVID-19 Patients. J Neuroophthalmol. 2022; 42(4):476-482. doi: 10.1097/WNO.0000000000001626. 53. Dağ Şeker E, Erbahçeci Timur İE. Assessment of early and long-COVID related retinal neurodegeneration with optical coherence tomography. Int Ophthalmol. 2023; 43(6):2073-2081. doi: 10.1007/s10792-022-02607-9. 54. Turker IC, Dogan CU, Guven D, Kutucu OK, Gul C. Optical coherence tomography angiography findings in patients with COVID-19. Can J Ophthalmol. 2021; 56(2):83-87. doi: 10.1016/j.jcjo.2020.12.021. 55. Santos AR, Lopes M, Santos T, et al. Intraretinal Microvascular Abnormalities in Eyes with Advanced Stages of Nonproliferative Diabetic Retinopathy: Comparison Between UWF-FFA, CFP, and OCTA-The RICHARD Study. Ophthalmol Ther. 2024; 13(12):3161-3173. doi: 10.1007/s40123-024-01054-2. 56. Abrishami M, Emamverdian Z, Shoeibi N, et al. Optical coherence tomography angiography analysis of the retina in patients recovered from COVID-19: a case-control study. Can J Ophthalmol. 2021; 56(1):24-30. doi: 10.1016/j.jcjo.2020.11.006. 57. Hazar L, Karahan M, Vural E, et al. Macular vessel density in patients recovered from COVID 19. Photodiagnosis Photodyn Ther. 2021; 34:102267. doi: 10.1016/j.pdpdt.2021.102267. 58. Savastano A, Crincoli E, Gemelli Against Covid-Post-Acute Care Study Group. Peripapillary Retinal Vascular Involvement in Early Post-COVID-19 Patients. J Clin Med. 2020; 9(9):2895. doi: 10.3390/jcm9092895. 59. Bilbao-Malavé V, González-Zamora J, Saenz de Viteri M, et al. Persistent Retinal Microvascular Impairment in COVID-19 Bilateral Pneumonia at 6-Months Follow-Up Assessed by Optical Coherence Tomography Angiography. Biomedicines. 2021; 9(5):502. doi: 10.3390/biomedicines9050502. 60. Oren B, Aksoy Aydemır G, Aydemır E, et al. Quantitative assessment of retinal changes in COVID-19 patients. Clin Exp Optom. 2021; 104(6):717-722. doi: 10.1080/08164622.2021.1916389. 61. Abdelmassih Y, Azar G, Bonnin S, et al. COVID-19 Associated Choroidopathy. J Clin Med. 2021; 10(20):4686. doi: 10.3390/jcm10204686. 62. Bankhead P, Scholfield CN, McGeown JG, Curtis TM. Fast retinal vessel detection and measurement using wavelets and edge location refinement. PLoS One. 2012;7(3):e32435. doi: 10.1371/journal.pone.0032435. 63. Jevnikar K, Meglič A, Lapajne L, et al. The impact of acute COVID-19 on the retinal microvasculature assessed with multimodal imaging. Graefes Arch Clin Exp Ophthalmol. 2023; 261(4):1115-1125. doi: 10.1007/s00417-022-05887-0. 64. Aşıkgarip N, Temel E, Hızmalı L, et al. Retinal Vessel Diameter Changes in COVID-19 Infected Patients. Ocul Immunol Inflamm. 2021; 29(4):645-651. doi: 10.1080/09273948.2020.1853783. | ||
|