| |||
МЕДЛАЙН.РУ
|
|||
|
Фундаментальные исследования • Фармакология
Том: 25 Статья: « 38 » Страницы:. 697-740 Опубликована в журнале: 10 декабря 2024 г. English version Применение циклодекстринов для оптимизации фармацевтических свойств препаратов при создании лекарственных форм (Обзор литературы)Орлова А.Б., Иванов И.М., Свентицкая А.М., Никифоров А.С.
ФГБУ «Государственный научно-исследовательский испытательный институт военной медицины» Министерства обороны Российской Федерации
Резюме
Циклодекстрины (CD) нашли широкое применение в области создания лекарственных форм препаратов, не обладающих оптимальными физико-химическими и фармацевтическими свойствам (малая водная растворимость, низкая стабильность в растворах, выраженное местнораздражающее действие). Эффективность и целесообразность использования CD в лекарственных формах подтверждается немалым число разрешенных к клиническому применению лекарственных препаратов на их основе. В обзоре приведены общие сведения о CD и примеры разрешенных препаратов на их основе, охарактеризована их собственная токсичность при разных путях введения. Рассмотрены механизмы снижения местнораздражающего действия препаратов в комплексе с CD. Систематизированы примеры использования CD для создания парентеральных, пероральных, ингаляционных, офтальмологических и интраназальных форм лекарственных препаратов. Ключевые слова циклодекстрины, супрамолекулярная система, лекарственная форма, стабильность, местнораздражающее действие, биодоступность, назальная лекарственная форма (статья в формате PDF. Для просмотра необходим Adobe Acrobat Reader) открыть статью в новом окне Список литературы 1. Jambhekar S.S., Breen P. Cyclodextrins in pharmaceutical formulations I: structure and physicochemical properties, formation of complexes, and types of complex. Drug discovery today. 2016; 21 (2): 356-362. 2. Khan N.A., Durakshan M. Cyclodextrin: an overview. Intarnational Journal of Bioassays. 2013; 2 (6): 858-865. 3. Carrier R.L., Miller L.A., Ahmed I. The utility of cyclodextrins for enhancing oral bioavailability. Journal of Controlled Release. 2007; 123 (2): 78-99. 4. Brewster M.E., Loftsson T. Cyclodextrins as pharmaceutical solubilizers. Advanced drug delivery reviews. 2007; 59 (7): 645-666. 5. Kurkov S.V., Loftsson T. Cyclodextrins. International journal of pharmaceutics. 2013; 453 (1): 167 - 180. 6. Gould S., Scott R.C. 2-Hydroxypropyl-β-cyclodextrin (HP-β-CD): a toxicology review. Food Chem. Toxicol. 2005; 43: 1451-1459. 7. European Medicines Agency (EMA). (2017). Cyclodextrins used as excipients. Report published in support of the ‘Questions and answers on cyclodextrins used as excipients in medicinal products for human use’. EMA/CHMP/495747/2013. 8. Poulson.B.G., Alsulami Q.A., Sharfalddin A. et al. Cyclodextrins: Structural, chemical and physical properties and applications. Polysaccharides. 2021; 3 (1): 1-31. 9. Jacob S., Nair A.B. Cyclodextrin complexes: Perspective from drug delivery and formulation. Drug development research. 2018; 79 (5): 201-217. 10. Zia V., Rajewski R.A., Stella V.J. Effect of cyclodextrin charge on complexation of neutral and charged substrates: comparison of SBEβCD to HPβCD. Pharmaceutical Research. 2001; 18, (5): 667-673. 11. Vranic E., Uzunovic A. Dissolution studies of physical mixtures of indomethacin with alpha- and gamma-cyclodextrins. Bosnian Journal of Basic Medical Sciences. 2010; 10 (3): 197. 12. Loftsson T., Brewster M.E. Pharmaceutical applications of cyclodextrins: effects on drug permeation through biological membranes. Journal of Pharmacology. 2011; 63 (9): 1119-1135. 13. McEwen J. Clinical pharmacology of piroxicam-β-cyclodextrin. Clinical Drug Investigation. 2000; 19 (2): 27-31. 14. Ghanghoria R., Kesharwani P., Agashe H.B. et al. Transdermal delivery of cyclodextrin solubilized curcumine. Drug Delivery and translational research. 2013; 3: 272-285. 15. Zhao Y., Sun C., Shi F. et al. Preparation, characterization and pharmacokinetics study of capsaicin via hydroxypropyl-beta-cyclodextrin encapsulation. Pharmaceutical biology. 2016; 54 (1): 130-138. 16. Kim J.H., Lee S.K., Ki M.H. et al. Development of parenteral formulation for a novel angiogenesis inhibitor, CKD-732 through complexation with hydroxypropyl-β-cyclodextrin. International journal of pharmaceutics. 2004; 272: 79-89. 17. Loftsson T., Stefansson E. Cyclodextrins and topical drug delivery to the anterior and posterior segments of the eye. International journal of pharmaceutics. 2017; (2): 413-423. 18. Challa R., Ahuja A., Ali J., Khar R. Cyclodextrins in Drug Delivery: An Updated Review. Aaps Pharmscitech. 2005; (6) 2: 329-357. 19. Sigurjónsdóttir J.F., Loftsson T., Másson M. Influence of cyclodextrins on the stability of the peptide salmon calcitonin in aqueous solution. International journal of pharmaceutics. 1999; 186 (2): 205-213. 20. Jarho P., Vander Velde D., Stella V.J. Cyclodextrin-catalyzed deacetylation of spironolactone is pH and cyclodextrin dependent. Journal of pharmaceutical sciences. 2000; 89 (2): 241-249. 21. Jansook P., Ogawa N., Lotsoon T. Cyclodextrins: structure, physicochemical properties and pharmaceutical applications. International journal of pharmaceutics. 2018; 535 (1-2): 272-284. 22. Mouton J.W., van Peer A., de Beule K. et al. Pharmacokinetics of itraconazole and hydroxyitraconazole in healthy subjects after single and multiple doses of a novel formulation. Antimicrobial agents and chemotherapy. 2006; 50 (12): 4096-4102. 23. Saokham P., Muankaew C., Jansook P. et al. Solubility of cyclodextrins and drug/cyclodextrin complexes. Molecules. 2018; 23 (5): 1161. 24. Loffson T. Cyclodextrins in parenteral formulations. Journal of Pharmaceutical Sciences. 2021; 110 (2): 654- 664. 25. Loftsson T., Jarho P., Masson M. et al. Cyclodextrins in drug delivery. Expert opinion on drug delivery. 2005; 2 (2): 335-351. 26. Fahr A., Liu X. Drug delivery strategies for poorly wather-soluble drugs. Expert opinion on drug delivery. 2007; 4 (4): 403-416. 27. Skiba M., Bounoure F., Barbot C. et al. Development of cyclodextrin microspheres for pulmonary drug delivery. Journal of Pharmacy and Pharmaceutical Sciences. 2005; 8 (3): 409-418. 28. Mccallion O.N., Taylor K.M., Thomas M., Taylor A.J. Nebulization of fluids of different physico-chemical properties with air-jet and ultrasonic nebulizers. Pharmaceutical research. 1995; 12: 1682-1688. 29. Evrard B., Bertholet P., Gueders M. et al. Cyclodextrins as a potential carrier in drug nebulization. Journal of Controlled Release. 2004; 96 (3): 403-410. 30. Cabral Marques H.M., Hadgraft J., Kellaway I.W., Taylor G. Studies of cyclodextrin inclusion complexes. III. The pulmonary absorption of β-, DM-β- and HP-β-cyclodextrins in rabbits. International journal of pharmaceutics. 1991; 77 (2-3): 297-302. 31. Srichana T., Suedee R., Reanmongkol W. Cyclodextrin as a potential drug carrier in salbutamol dry powder aerosols: the in vitro deposition and toxicity studies of the complexes. Respiratory medicine. 2001; 95: 513-519. 32. Mahesh Kumar T., Misra A. Pulmonary absorption enhancement of salmon calcitonin. Journal of drug targeting. 2004; 12 (3): 135-144. 33. Fukaya H., Limura A., Hoshiko K. et al. A cyclosporin A/maltosyl-alpha-cyclodextrin complex for inhalation therapy of asthma. European Respiratory Journal. 2003; 22 (2): 213-219. 34. Rassu G., Sorrenti M., Catenacci L. et al. Versatile Nasal Application of Cyclodextrins: Excipients and/or Actives? Pharmaceutics. 2021; 13 (8): 1180. 35. Illum L. Transport of drugs from the nasal cavity to the central nervous system. European journal of pharmaceutical sciences. 2000; 11: 1-18. 36. Illum L. Is nose-to-brain transport of drugs in man a reality? Journal of pharmacy and pharmacology. 2004; 56: 3-17. 37. Agrawal M., Saraf S., Saraf S. et al. Nose-to-brain drug delivery: An update on clinical challenges and progress towards approval of anti-Alzheimer drugs. Journal of Controlled Release. 2018; 281: 139-177. 38. Hanson L.R., Frey W.H. Strategies for intranasal delivery of therapeutics for the prevention and treatment of neuroAIDS. Journal of Neuroimmune Pharmacology. 2007; 2: 81-86. 39. Casettari L., Illum L. Chitosan in nasal delivery systems for therapeutic drugs. Journal of Controlled Release. 2014; 190: 189-200. 40. Dalpiaz A., Pavan B. Nose-to-brain delivery of antiviral drugs: A way to overcome their active efflux? Pharmaceutics. 2018; 10: 39. 41. Cyclodextrin News, 14 May 2020. Available online: https://cyclodextrinnews.com/2020/02/14/nasal-delivery-with-beta-cyclodextrin-is-approved-a-short-story-of-baqsimi. 42. Jambhekar S.S., Breen P. Cyclodextrins in pharmaceutical formulations I: Structure and physicochemical properties, formation of complexes, and types of complex. Drug Discovery Today. 2016; 21: 356-362. 43. Schrier L., Zuiker R., Merkus F.W. et al. Pharmacokinetics and pharmacodynamics of a new highly concentrated intranasal midazolam formulation for conscious sedation. British journal of clinical pharmacology. 2017; 83 (4): 721-731. 44. Gudmundsdottir H., Sigurjonsdottir J.F., Masson M. et al. Intranasal administration of midazolam in a cyclodextrin based formulation: bioavailability and clinical evaluation in humans. Die Pharmazie. 2001; 56 (12): 963-966. 45. Loftsson T., Gudmundsdóttir H., Sigurjónsdóttir J.F. et al. Cyclodextrin solubilization of benzodiazepines: formulation of midazolam nasal spray. International journal of pharmaceutics. 2001; 212 (1): 29-40. 46. Wermeling D.P., Record K.A., Kelly T.H. et al. Pharmacokinetics and pharmacodynamics of a new intranasal midazolam formulation in healthy volunteers. Anesthesia & Analgesia. 2006; 103 (2): 344-349. 47. Wermeling D.P. Intranasal delivery of antiepileptic medications for treatment of seizures. Neurotherapeutics. 2009; 6 (2): 352-258. 48. Wilson M.T., Macleod S., O’Regan M.E. Nasal/buccal midazolam use in the community. Archives of disease in childhood. 2004; 89: 50 -51. 49. Cirri M., Maestrelli F., Nerli G. et al. Development of a Cyclodextrin-Based Mucoadhesive-Thermosensitive In Situ Gel for Clonazepam Intranasal Delivery. Pharmaceutics. 2021; 13(7): 969. 50. Haschke M., Suter K., Hofmann S. et al. Pharmacokinetics and pharmacodynamics of nasally delivered midazolam. British journal of clinical pharmacology. 2010; 69 (6): 607-616. 51. Kapoor M., Cloyd J.C., Siegel R.A. A review of intranasal formulations for the treatment of seizure emergencies. Journal of Controlled Release. 2016; 237: 147-159. 52. Rincòn-Lòpez J., Almanza-Arjona Y.G., Riascos A.P., Rojas-Aguirre Y. Technological evolution of cyclodextrins in the pharmaceutical field. Journal of Drug Delivery Science and Technology. 2021; 61: 102156. 53. Nonaka N., Farr S.A., Nakamachi T. et al. Intranasal administration of PACAP: Uptake by brain and regional brain targeting with cyclodextrins. Peptides. 2012; 36: 168-175. 54. Prakapenka A.V., Peña V.L., Strouse I. et al. Intranasal 17β-estradiol modulates spatial learning and memory in a rat Model of surgical menopause. Pharmaceutics. 2020; 12: 1225. 55. Zolkowska D., Wu C.Y., Rogawski M.A. Intranasal allopregnanolone confers rapid seizure protection: Evidence for direct nose-to-brain delivery. Neurotherapeutics. 2021; 18: 544-555. 56. Wang X., He H., Leng W., Tang X. Evaluation of brain-targeting for the nasal delivery of estradiol by the microdialysis method. International journal of Pharmaceutics. 2006; 317: 40-46. 57. Rassu G., Soddu E., Cossu M. et al. Solid microparticles based on chitosan or methyl-β-cyclodextrin: A first formulative approach to increase the nose-to-brain transport of deferoxamine mesylate. Journal of Controlled Release. 2015; 201: 68-77. 58. De Oliveira E.R., Truzzi E., Ferraro L. et al. Nasal administration of nanoencapsulated geraniol/ursodeoxycholic acid conjugate: Towards a new approach for the management of Parkinson’s disease. Journal of Controlled Release. 2020; 321: 540-552. 59. Truzzi E., Rustichelli C., de Oliveira Junior E.R. et al. Nasal biocompatible powder of geraniol oil complexed with cyclodextrins for neurodegenerative diseases: Physicochemical characterization and in vivo evidences of nose to brain delivery. Journal of Controlled Release. 2021; 335: 191-202. 60. Giuliani A., Balducci A.G., Zironi E. et al. In vivo nose-to-brain delivery of the hydrophilic antiviral ribavirin by microparticle agglomerates. Drug Delivery. 2018; 25: 376-387. 61. Di Gioia S., Trapani A., Mandracchia D. et al. Intranasal delivery of dopamine to the striatum using glycol chitosan/sulfobutylether-β-cyclodextrin based nanoparticles. European Journal of Pharmaceutics and Biopharmaceutics. 2015; 94: 180-193. 62. Vaka S.R.K., Murthy S.N., Repka M.A., Nagy T. Upregulation of endogenous neurotrophin levels in the brain by intranasal administration of carnosic acid. Journal of pharmaceutical sciences. 2011; 100: 3139-3145. 63. Nakao Y., Horiguchi M., Nakamura R. et al. LARETH-25 and β-CD improve central transitivity and central pharmacological effect of the GLP-2 peptide. International journal of pharmaceutics. 2016; 515: 37-45. 64. Wang Q.S., Li K., Gao L.N. et al. Intranasal delivery of berberine via in situ thermoresponsive hydrogels with non-invasive therapy exhibits better antidepressant-like effects. Biomaterials science. 2020; 8: 2853-2865. 65. Chen W., Li R., Zhu S. et al. Nasal timosaponin BII dually sensitive in situ hydrogels for the prevention of Alzheimer’s disease induced by lipopolysaccharides. International journal of pharmaceutics. 2020; 578: 119115. 66. Qu Y., Sun X., Ma L. et al. Therapeutic effect of disulfiram inclusion complex embedded in hydroxypropyl-β-cyclodextrin on intracranial glioma-bearing male rats via intranasal route. European Journal of Pharmaceutical Sciences. 2021; 156: 105590. 67. Kim T.K., Kang W., Chun I.K. et al. Pharmacokinetic evaluation and modeling of formulated levodopa intranasal delivery systems. European Journal of Pharmaceutical Sciences.. 2009; 38: 525-532. 68. Bshara H., Osman R., Mansour S., El-Shamy A. Chitosan and cyclodextrin in intranasal microemulsion for improved brain buspirone hydrochloride pharmacokinetics in rats. Carbohydrate polymers. 2014; 99: 297-305. 69. Yalcin A., Soddu E., Turunc Bayrakdar E. et al. Neuroprotective effects of engineered polymeric nasal microspheres containing hydroxypropyl-β-cyclodextrin on β-amyloid (1-42)-induced toxicity. Journal of pharmaceutical sciences. 2016; 105: 2372-2380. 70. Liu S., Ho P.C. Intranasal administration of brain-targeted HP-β-CD/chitosan nanoparticles for delivery of scutellarin, a compound with protective effect in cerebral ischaemia. Journal of Pharmacy and Pharmacology. 2017; 69: 1495-1501. 71. Rassu G., Ferraro L., Pavan B. et al. The role of combined penetration enhancers in nasal microspheres on in vivo drug bioavailability. Pharmaceutics. 2018; 10: 206. 72. Lin E.Y., Chen Y.S., Li Y.S. et al. Liposome consolidated with cyclodextrin provides prolonged drug retention resulting in increased drug bioavailability in brain. International Journal of Molecular Sciences. 2020; 21: 4408. 73. Gu F., Fan H., Cong Z. et al. Preparation, characterization, and in vivo pharmacokinetics of thermosensitive in situ nasal gel of donepezil hydrochloride. Acta Pharmaceutica. 2020; 70: 411-422. 74. Zhang L., Yang S., Wong L.R. et al. In vitro and In vivo comparison of curcumin-encapsulated chitosan-coated poly(lactic-co-glycolic acid) nanoparticles and curcumin/hydroxypropyl-beta-cyclodextrin inclusion complexes administered intranasally as therapeutic strategies for Alzheimer’s disease. Molecular pharmaceutics. 2020; 17: 4256-4269. | ||
|