| |||
МЕДЛАЙН.РУ
|
|||
|
Клиническая медицина » Терапия • Психиатрия
Том: 25 Статья: « 17 » Страницы:. 257-318 Опубликована в журнале: 10 апреля 2024 г. English version Нейровоспалительная теория шизофрении. Роль иммуногенетических факторовХальчицкий С.Е.1, Становая В.В.2, Янушко М.Г.2, Моритц А.А.2, Хуторянская Ю.В.3, Грачева Ю.А.1, Буслов К.Г.1, Согоян М.В.1, Батоцыренова Е.Г.3, Комов Ю.В.3, Крецер Т.Ю.3, Кашуро В.А.3,4,5, Виссарионов С.В.1, Иванов М.В.2
1ФГБУ «Национальный медицинский исследовательский центр детской травматологии и ортопедии им. Г.И. Турнера» Минздрава России, г. Санкт-Петербург, РФ 2ФГБУ «Национальный медицинский исследовательский центр психиатрии и неврологии им. В.М. Бехтерева» Минздрава России, г. Санкт-Петербург, РФ 3ФГБОУ ВО «Санкт-Петербургский государственный педиатрический медицинский университет» Минздрава России, г. Санкт-Петербург, РФ 4ФГБОУ ВО «Российский государственный педагогический университет им. А.И.Герцена», г. Санкт-Петербург, РФ 5ФГБГОУ ВО «Санкт-Петербургский государственный университет», г. Санкт-Петербург, РФ
Резюме
Шизофрения - расстройство с гетерогенной этиологией, включающее сложное взаимодействие между генетическими и экологическими факторами риска. В настоящее время известно, что иммунная система играет жизненно важную роль в функционировании и патологии нервной системы посредством регулирования развития нейронов и глии, синаптической пластичности и поведения. В связи с этим иммунная система позиционируется как общее связующее звено между, казалось бы, разнообразными генетическими и средовыми факторами риска шизофрении. Синтез информации о том, как на взаимодействие мозга с иммунной системой влияют многочисленные факторы и как эти факторы могут взаимодействовать при шизофрении, необходим для лучшего понимания патогенеза этого заболевания. В статье предоставлен обзор генетических факторов риска шизофрении, которые модулируют иммунную функцию, а также то, как последствия этих факторов риска связаны с функцией и дисфункцией микроглии. Предполагается, что морфологический и сигнальный дефицит гематоэнцефалического барьера, наблюдаемый у некоторых людей с шизофренией, может выступать в качестве шлюза между воспалением периферической и центральной нервной системы, тем самым влияя на основные функции микроглии. Кроме того, рассматриваются различные роли, которые микроглия играет в ответ на нейровоспаление, и их влияние на развитие мозга и гомеостаз, а также на патофизиологию шизофрении. Ключевые слова шизофрения, нейровоспаление, микроглия, гены, факторы риска, нейрогенез. (статья в формате PDF. Для просмотра необходим Adobe Acrobat Reader) открыть статью в новом окне Список литературы International Schizophrenia Consortium, Rare chromosomal deletions and duplications increase risk of schizophrenia. Nature. 2008; 455(7210):237-241. https://doi.org/10.1038/nature07239. 2. Kato T. A renovation of psychiatry is needed. World Psychiatry. 2011; 10(3):198-199. https://doi.org/10.1002/j.2051-5545.2011.tb00056.x. 3. Perälä J., Suvisaari J., Saarni S.I. et al. Lifetime prevalence of psychotic and bipolar I disorders in a general population. Arch. Gen. Psychiatry. 2007; 64(1):19-28. https://doi.org/10.1001/archpsyc.64.1.19. 4. Trubetskoy V., Pardiñas A.F., Qi T. et al. Mapping genomic loci implicates genes and synaptic biology in schizophrenia. Nature. 2022; 604(7906):502-508. https://doi.org/10.1038/s41586-022-04434-5. 5. Xu B., Roos J.L., Dexheimer P. et al. Exome sequencing supports a de novo mutational paradigm for schizophrenia. Nat. Genet. 2011; 43(9):864-868. https://doi.org/10.1038/ng.902. 6. Pouget, J.G. The emerging immunogenetic architecture of schizophrenia, Schizophr. Bull. 2018; 44(5):993-1004. https://doi.org/10.1093/schbul/sby038. 7. Misra, M.K., Damotte, V., and Hollenbach, J.A., The immunogenetics of neurological disease. Immunology. 2018; 153(4):399-414. https://doi.org/10.1111/imm.12869. 8. Anderson G., Maes M., Schizophrenia: linking prenatal infection to cytokines, the tryptophan catabolite (TRYCAT) pathway, NMDA receptor hypofunction, neurodevelopment and neuroprogression, Prog. Neuropsychopharmacol. Biol. Psychiatry. 2013; 42:5-19. https://doi.org/10.1016/j.pnpbp.2012.06.014. 9. Голимбет В.Е. Иммуногенетика шизофрении в свете современных геномных исследований. Психиатрия. 2023;21(5):40-46. https://doi.org/10.30629/2618-6667-2023-21-5-40-46. 10. Plotnikova M.Y., Kunizheva S.S., Rozhdestvenskikh E.V. et al. Immunogenetic Factors in the Pathogenesis of Schizophrenia. Russ J Genet. 2023; 59:975-982. https://doi.org/10.1134/S1022795423100101 11. Li Z., Chen J., Yu H., He L., Xu Y., Zhang, D. et al. Genome-wide association analysis identifies 30 new susceptibility loci for schizophrenia. Nat. Genet. 2017; 49:1576-1583. 12. Dennison C.A., Legge S.E., Pardinas A.F. et al. Genome-wide association studies in schizophrenia: Recent advances, challenges and future perspective. Schizophr Res. 2020; 217:4-12. 13. Okhuijsen-Pfeifer C., van der Horst M.Z., Bousman C.A. et al. Genome-wide association analyses of symptom severity among clozapine-treated patients with schizophrenia spectrum disorders. Transl Psychiatry. 2022; 12(1):145. 14. Müller N., Schwarz M. J. Immune system and schizophrenia. Curr. Immunol. Rev. 2010; 6:213-220. 15. Stephan A.H., Barres B.A., Stevens B. The complement system: an unexpected role in synaptic pruning during development and disease. Annu. Rev. Neurosci. 2012; 35:369-389. doi: 10.1146/annurev-neuro-061010-113810. 16. Kroken R.A., Sommer I.E., Steen V.M., Dieset I., Johnsen E. Constructing the immune signature of schizophrenia for clinical use and research; an integrative review translating descriptives into diagnostics. Front. Psychiatry. 2018; 9:753. doi: 10.3389/fpsyt.2018.00753. 17. Sommer I. E., van Westrhenen R., Begemann M.J., deWitte L.D., Leucht S., Kahn R.S. Efficacy of anti-inflammatory agents to improve symptoms in patients with schizophrenia: an update. Schizophr. Bull. 2014; 40: 181-191. doi:10.1093/schbul/sbt139. 18. Frydecka D., Krzystek-Korpacka M., Lubeiro A., Stramecki F., Sta´nczykiewicz B., Piotrowski P. et al. Profiling inflammatory signatures of schizophrenia: a cross-sectional and meta-analysis study. Brain Behav. Immun. 2018; 71:28-36. doi: 10.1016/j.bbi.2018.05.002. 19. Misiak B., Stramecki F., Gaweda L., Prochwicz K., Sasiadek M.M., Moustafa A.A. et al. Interactions between variation in candidate genes and environmental factors in the etiology of schizophrenia and bipolar disorder: a systematic review. Mol. Neurobiol. 2018; 55: 5075-5100. doi: 10.1007/s12035-017-0708-y. 20. Elmer B.M., McAllister A.K. Major histocompatibility complex class I proteins in brain development and plasticity. Trends Neurosci. 2012; 35:660-670. doi: 10.1016/j.tins.2012.08.001. 21. Nimmerjahn A., Kirchhoff F., Helmchen F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science. 2005; 308:1314-1318. doi: 10.1126/science.1110647. 22. Liu Y.U., Ying Y., Li Y., Eyo U.B., Chen T., Zheng J. et al. Neuronal network activity controls microglial process surveillance in awake mice via norepinephrine signaling. Nat. Neurosci. 2019; 22:1771-1781. doi: 10.1038/s41593-019-0511-3. 23. Ayata P., Badimon A., Strasburger H.J., Duff M.K., Montgomery S.E., Loh Y.E. et al. Epigenetic regulation of brain region-specific microglia clearance activity. Nat. Neurosci. 2019; 21:1049-1060. doi: 10.1038/s41593-018-0192-3. 24. Galloway D.A., Phillips A.E.M., Owen D.R.J., Moore C.S. Phagocytosis in the brain: homeostasis and disease. Front. Immunol. 2019; 10:790. doi: 10.3389/fimmu.2019.00790. 25. Tay T.L., Mai D., Dautzenberg J., Lin G., Drougard A., Stempfl T. A new fate mapping system reveals context-dependent random or clonal expansion of microglia. Nat. Neurosci. 2017; 20:793-803. doi: 10.1038/nn.4547. 26. Hammond T.R., Dufort C., Giera S., Young A., Wysoker A., Walker A.J. Single-Cell RNA sequencing of microglia throughout the mouse lifespan and in the injured brain reveals complex cell-state changes. Immunity. 2019; 50:253-271. doi: 10.1016/j.immuni.2018.11.004. 27. Sankowski R., Böttcher C., Masuda T., Geirsdottir L., Sindram E., Seredenina T. et al. Mapping microglia states in the human brain through the integration of high-dimensional techniques. Nat. Neurosci. 2019; 22:2098-2110. doi:10.1038/s41593-019-0532-y. 28. Tan Y.L., Yuan Y., Tian L. Microglial regional heterogeneity and its role in the brain. Mol. Psychiatry. 2020; 25:351-367. doi: 10.1038/s41380-019-0609-8. 29. Hammond T.R., Robinton D., Stevens B. Microglia and the Brain: complementary partners in development and disease. Annu. Rev. Cell Dev. Biol. 2018; 34:523-544. doi: 10.1146/annurev-cellbio-100616-060509. 30. Bohlen C.J., Friedman B.A., Dejanovic B., Sheng M. Microglia in brain development, homeostasis, and neurodegeneration. Annu. Rev. Genet. 2019; 53:263-288. doi: 10.1146/annurev-genet-112618-043515. 31. Bloomfield P.S., Selvaraj S., Veronese M., Rizzo G., Bertoldo A., Owen D.R. et al. Microglial activity in people at ultra high risk of psychosis and in schizophrenia: an [(11)C]PBR28 PET brain imaging study. Am. J. Psychiatry. 2016; 173:44-52. doi: 10.1176/appi.ajp.2015.14101358. 32. Trépanier M.O., Hopperton K.E., Mizrahi R., Mechawar N., Bazinet R.P. Postmortem evidence of cerebral inflammation in schizophrenia: a systematic review. Mol. Psychiatry. 2016; 21:1009-1026. doi: 10.1038/mp.2016.90. 33. De Picker L.J., Morrens M., Chance S. A., Boche D. Microglia and brain plasticity in acute psychosis and schizophrenia illness course: a meta-review. Front. Psychiatry. 2017; 8:238. doi: 10.3389/fpsyt.2017.00238. 34. Sellgren C.M., Gracias J., Watmuff B., Biag J.D., Thanos J.M., Whittredge P.B. Increased synapse elimination by microglia in schizophrenia patient-derived models of synaptic pruning. Nat. Neurosci. 2019; 22:374-385. doi: 10.1038/s41593-018-0334-7. 35. Uranova N.A., Vikhreva O.V., Rakhmanova V.I., Orlovskaya D.D. Dystrophy of oligodendrocytes and adjacent microglia in prefrontal gray matter in schizophrenia. Front. Psychiatry. 2020; 11:204. doi: 10.3389/fpsyt.2020.00204. 36. Cardno A. G., Gottesman I.I. Twin studies of schizophrenia: from bow-and-arrow concordances to star wars Mx and functional genomics. Am. J. Med. Genet. 2000; 97:12-17. doi: 10.1002/(sici)1096-8628(200021)97:1. 37. Stefansson H., Ophoff R.A., Steinberg S., Andreassen O.A., Cichon S., Rujescu, D. et al. Common variants conferring risk of schizophrenia. Nature. 2009; 460:744-747. 38. van Kesteren C.F., Gremmels H., deWitte L.D., Hol E.M., Van Gool A.R., Falkai P.G. Immune involvement in the pathogenesis of schizophrenia: a meta-analysis on postmortem brain studies. Transl. Psychiatry. 2017; 7:e1075. doi:10.1038/tp.2017.4. 39. Mokhtari R., Lachman H.M. The Major Histocompatibility Complex (MHC) in Schizophrenia: A Review. J Clin Cell Immunol. 2016; 7(6):479. doi: 10.4172/2155-9899.1000479. 40. Sekar A., Bialas A.R., Davis A., Hammond T.R., Kamitaki N., Tooley K. et al. Schizophrenia risk from complex variation of complement component 4. Nature. 52016; 30:177-183. doi: 10.1038/nature16549. 41. Veerhuis R., Nielsen H.M., Tenner A.J. Complement in the brain. Mol. Immunol. 2011; 48:1592-1603. 42. Lee J.D., Coulthard L.G., Woodruff T.M. Complement dysregulation in the central nervous system during development and disease. Semin. Immunol. 2019; 45:101340. doi: 10.1016/j.smim.2019.101340. 43. Stevens B., Allen N.J., Vazquez L.E., Howell G.R., Christopherson K.S., Nouri N. et al. The classical complement cascade mediates CNS synapse elimination. Cell. 2007; 131:1164-1178. doi: 10.1016/j.cell.2007.10.036. 44. Schafer D.P., Lehrman E.K., Kautzman A.G., Koyama R., Mardinly A.R., Yamasaki R. et al. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron. 2012; 74:691-705. doi: 10. 1016/j.neuron.2012.03.026. 45. Hong S., Beja-Glasser V.F., Nfonoyim B.M., Frouin A., Li S., Ramakrishnan S. et al. Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science. 2016; 352:712-716. doi: 10.1126/science.aad8373. 46. Comer A.L., Jinadasa T., Sriram B., Phadke R.A., Kretsge L.N., Nguyen T.P. Increased expression of schizophrenia-associated gene C4 leads to hypoconnectivity of prefrontal cortex and reduced social interaction. PLoS Biol. 2020; 18:e3000604. doi: 10.1371/journal.pbio.3000604. 47. Kamitaki N., Sekar A., Handsaker R.E., Tooley K., Morris D.L., Taylor K.E. Complement genes contribute sex-biased vulnerability in diverse disorders. Nature. 2020; 582:577-581. doi: 10.1038/s41586-020-2277-x. 48. Mondelli V., Di Forti M., Morgan B.P., Murray R.M., Pariante C.M., Dazzan P. Baseline high levels of complement component 4 predict worse clinical outcome at 1-year follow-up in first-episode psychosis. Brain Behav. Immun. 2020; 88:913-915. doi: 10.1016/j.bbi.2020.01.014. 49. Kraus D.M., Elliott G.S., Chute H., Horan T., Pfenninger K.H., Sanford S.D. CSMD1 is a novel multiple domain complement-regulatory protein highly expressed in the central nervous system and epithelial tissues. J. Immunol. 2006; 176:4419-4430. doi: 10.4049/jimmunol.176.7.4419. 50. Håvik B., Le Hellard S., Rietschel M., Lybæk H., Djurovic S., Mattheisen M. The complement control-related genes CSMD1and CSMD2associate to schizophrenia. Biol. Psychiatry. 2011; 70:35-42. doi: 10.1016/j.biopsych.2011.01.030. 51. Athanasiu L., Giddaluru S., Fernandes C., Christoforou A., Reinvang I., Lundervold A.J. et al. A genetic association study of CSMD1 and CSMD2 with cognitive function. Brain Behav. Immun. 2017; 61:209-216. doi: 10.1016/j.bbi.2016.11.026. 52. Li X., Zhang W., Lencz T., Darvasi A., Alkelai A., Lerer B. et al. Common variants of IRF3 conferring risk of schizophrenia. J. Psychiatr. Res. 2015; 64:67-73. doi: 10.1016/j.jpsychires.2015.03.008. 53. Paul-Samojedny M., Owczarek A., Suchanek R., Kowalczyk M., Fila-Danilow A., Borkowska P. et al. Association study of interferon gamma (IFN-g) C874T/A gene polymorphism in patients with paranoid schizophrenia. J. Mol. Neurosci. 2011; 43:309-315. doi: 10.1007/s12031-010-9442-x. 54. Katila H., Hänninen K., Hurme M. Polymorphisms of the interleukin-1 gene complex in schizophrenia. Mol. Psychiatry. 1999; 4:179-181. doi:10.1038/sj.mp.4000483. 55. Sasayama D., Hori H., Teraishi T., Hattori K., Ota M., Iijima Y. et al. Possible association between interleukin-1b gene and schizophrenia in a Japanese population. Behav. Brain Funct. 2011; 7:35. doi: 10.1186/1744-9081-7-35. 56. Kalmady S.V., Venkatasubramanian G., Shivakumar V., Gautham S., Subramaniam A., Jose D.A. et al. Relationship between Interleukin-6 gene polymorphism and hippocampal volume in antipsychotic-naïve schizophrenia: evidence for differential susceptibility. PLoS One. 2014; 9:e96021. doi:10.1371/journal.pone.0096021. 57. Gao L., Li Z., Chang S., Wang J. Association of interleukin-10 polymorphisms with schizophrenia: a meta-analysis. PLoS One. 2014; 9:e90407. doi:10.1371/journal.pone.0090407. 58. Pouget J.G., Gonçalves V.F., Spain S.L., Finucane H.K., Raychaudhuri S., Kennedy J.L. Genome-wide association studies suggest limited immune gene enrichment in schizophrenia compared to 5 autoimmune diseases. Schizophr. Bull. 2016; 42:1176-1184. doi: 10.1093/schbul/sbw059. 59. Purcell S.M., Wray N.R., Stone J.L., Visscher P.M., Sullivan P.F., Sklar P. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature. 2009; 460:748-752. doi: 10.1038/nature08185. 60. Shi J., Levinson D.F., Duan J., Sanders A.R., Zheng Y., Dudbridge F. et al. Common variants on chromosome 6p22.1 are associated with schizophrenia. Nature. 2009; 460: 753-757. 61. Lashgari N.A., Roudsari N.M., Shamsnia H.S., Shayan M., Momtaz S., Abdolghaffari AH. TLR/mTOR inflammatory signaling pathway: novel insight for the treatment of schizophrenia. Can J Physiol Pharmacol. 2024;102(3):150-160. doi: 10.1139/cjpp-2023-0107. 62. Wright P., Nimgaonkar V.L., Donaldson P.T., Murray R.M. Schizophrenia and HLA: a review. Schizophr. Res. 2001; 47:1-12. doi: 10.1016/s0920-9964(00)00022-0. 63. Lehner T. The genes in the major histocompatibility complex as risk factors for schizophrenia: de omnibus dubitandum. Biol. Psychiatry. 2012; 72:615-616. doi:10.1016/j.biopsych.2012.08.002. 64. Mallard C. Innate immune regulation by toll-like receptors in the brain. ISRN Neurol. 2012; 2012:701950. 65. Chen C.Y., Shih Y.C., Hung Y.F., Hsueh Y.P. Beyond defense: regulation of neuronal morphogenesis and brain functions via Toll-like receptors. J. Biomed. Sci. 2019; 26:90. 66. Barak B., Feldman N., Okun E. Toll-like receptors as developmental tools that regulate neurogenesis during development: an update. Front. Neurosci. 2014; 8:272. doi: 10.3389/fnins.2014.00272. 67. Kang W.S., Park J.K., Lee S.M., Kim S.K., Park H.J., Kim J.W. Association between genetic polymorphisms of Toll-like receptor 2 (TLR2) and schizophrenia in the Korean population. Gene. 2013; 526:182-186. doi: 10.1016/j.gene.2013.04.058. 68. García-Bueno B., Gassó P., MacDowell K.S., Callado L.F., Mas S., Bernardo M. et al. Evidence of activation of the Toll-like receptor-4 proinflammatory pathway in patients with schizophrenia. J. Psychiatry Neurosci. 2016; 41:E46-E55. 69. MacDowell K.S., Pinacho R., Leza J.C., Costa J., Ramos B., García-Bueno B. Differential regulation of the TLR4 signalling pathway in post-mortem prefrontal cortex and cerebellum in chronic schizophrenia: Relationship with SP transcription factors. Prog. Neuropsychopharmacol. Biol. Psychiatry. 2017; 79:481-492. doi: 10.1016/j.pnpbp.2017.08.005. 70. Hudson Z.D., Miller B.J. Meta-analysis of cytokine and chemokine genes in schizophrenia. Clin. Schizophr. Relat. Psychoses. 2018; 12:121-129. 71. Хальчицкий С.Е., Иванов М.В., Становая В.В., Хуторянская Ю.В., Буслов К.Г., Грачева Ю.А., Комов Ю.В., Батоцыренова Е.Г., Щепеткова К.М., Кашуро В.А. Нейровоспалительная теория шизофрении. Роль внешних факторов (обзор литературы). Medline. ru. 2023; 24 (2): 1398-1417. 72. Brandon N.J., Millar J.K., Korth C., Sive H., Singh K.K., Sawa A. Understanding the role of DISC1 in psychiatric disease and during normal development. J. Neurosci. 2009; 29:12768-12775. doi: 10.1523/jneurosci.3355-09.2009. 73. St Clair D., Blackwood D., Muir W., Carothers A., Walker M., Spowart G. Association within a family of a balanced autosomal translocation with major mental illness. Lancet. 1990; 336:13-16. doi: 10.1016/0140-6736(90)91520-k. 74. Chubb J.E., Bradshaw N.J., Soares D.C., Porteous D.J., Millar J.K. The DISC locus in psychiatric illness. Mol. Psychiatry. 2008; 13:36-64. doi:10.1038/sj.mp.4002106. 75. Trossbach S.V., Hecher L., Schafflick D., Deenen R., Popa O., Lautwein T. et al. Dysregulation of a specific immune-related network of genes biologically defines a subset of schizophrenia. Transl. Psychiatry. 2019; 9:156. 76. Chini M., Pöpplau J.A., Lindemann C., Hnida M., Xu X., Ahlbeck J. Resolving and rescuing developmental miswiring in a mouse model of cognitive impairment. Neuron. 2020; 105:60-74.e7. doi: 10.1016/j.neuron.2019.09.042. 77. Sørensen H.J., Mortensen E.L., Reinisch J.M., Mednick S.A. Association between prenatal exposure to bacterial infection and risk of schizophrenia. Schizophr. Bull. 2009; 35:631-637. doi: 10.1093/schbul/sbn121. 78. Pearce B.D. Schizophrenia and viral infection during neurodevelopment: a focus on mechanisms. Mol. Psychiatry. 2001; 6:634-646. doi: 10.1038/sj.mp.4000956. 79. Brown A.S., Derkits E.J. Prenatal infection and schizophrenia: a review of epidemiologic and translational studies. Am. J. Psychiatry. 2010; 167:261-280. doi: 10.1176/appi.ajp.2009.09030361. 80. Estes M.L., McAllister A.K. Maternal immune activation: implications for neuropsychiatric disorders. Science. 2016; 353:772-777. doi: 10.1126/science. aag3194. 81. Wu W.L., Hsiao E.Y., Yan Z.,Mazmanian S.K., Patterson P.H. The placental interleukin-6 signaling controls fetal brain development and behavior. Brain Behav. Immun. 2017; 62:11-23. doi: 10.1016/j.bbi.2016.11.007. 82. Fernández de Cossío L., Guzmán A., van der Veldt S., Luheshi G.N. Prenatal infection leads to ASD-like behavior and altered synaptic pruning in the mouse offspring. Brain Behav. Immun. 2017; 63:88-98. doi: 10.1016/j.bbi.2016.09.028. 83. Pendyala G., Chou S., Jung Y., Coiro P., Spartz E., Padmashri R. Maternal immune activation causes behavioral impairments and altered cerebellar cytokine and synaptic protein expression. Neuropsychopharmacology. 2017; 42:1435-1446. doi: 10.1038/npp.2017.7. 84. Shin Yim Y., Park A., Berrios J., Lafourcade M., Pascual L.M., Soares N. Reversing behavioural abnormalities in mice exposed to maternal inflammation. Nature. 2017; 549:482-487. doi: 10.1038/nature23909. 85. Haida O., Al Sagheer T., Balbous A., Francheteau M., Matas E., Soria F. et al. Sex-dependent behavioral deficits and neuropathology in a maternal immune activation model of autism. Transl. Psychiatry. 2019; 9:124. 86. Glantz L.A., Lewis D.A. Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia. Arch. Gen. Psychiatry. 2000; 57:65-73. 87. Hui C.W., St-Pierre A., El Hajj H., Remy Y., Hébert S.S., Luheshi G.N. et al. Prenatal immune challenge in mice leads to partly sexdependent behavioral, microglial, and molecular abnormalities associated with schizophrenia. Front. Mol. Neurosci. 2018; 11:13. doi: 10.3389/fnmol.2018.00013. 88. Onwordi E. C.,Halff E.F., Whitehurst T., Mansur A., Cotel M.C., Wells L. et al. Synaptic density marker SV2A is reduced in schizophrenia patients and unaffected by antipsychotics in rats. Nat. Commun. 2020; 11:246. 89. Benes F.M. Amygdalocortical circuitry in schizophrenia: from circuits to molecules. Neuropsychopharmacology. 2010; 35:239-257. doi: 10.1038/npp.2009.116. 90. Li Y., Missig G., Finger B.C., Landino S.M., Alexander A.J., Mokler E.L. et al. Maternal and early postnatal immune activation produce dissociable effects on neurotransmission in mPFC-amygdala circuits. J. Neurosci. 2018; 38:3358-3372. doi: 10.1523/jneurosci.3642-17.2018. 91. Kim S., Kim H., Yim Y.S., Ha S., Atarashi K., Tan T.G. Maternal gut bacteria promote neurodevelopmental abnormalities in mouse offspring. Nature. 2017; 549:528-532. doi: 10.1038/nature23910. 92. Simões L.R., Sangiogo G., Tashiro M.H., Generoso J.S., Faller C.J., Dominguini D. Maternal immune activation induced by lipopolysaccharide triggers immune response in pregnant mother and fetus, and induces behavioral impairment in adult rats. J. Psychiatr. Res. 2018; 100:71-83. doi: 10.1016/j.jpsychires.2018.02.007. 93. Garay P.A., Hsiao E.Y., Patterson P.H., McAllister A.K. Maternal immune activation causes age- and region-specific changes in brain cytokines in offspring throughout development. Brain Behav. Immun. 2013; 31:54-68. doi:10.1016/j.bbi.2012.07.008. 94. Zhang J., Jing Y., Zhang H., Bilkey D.K., Liu P. Maternal immune activation altered microglial immunoreactivity in the brain of postnatal day 2 rat offspring. Synapse. 2018; 73:e22072. doi: 10.1002/syn.22072. 95. Schaafsma W., Basterra L.B., Jacobs S., Brouwer N., Meerlo P., Schaafsma A. Maternal inflammation induces immune activation of fetal microglia and leads to disrupted microglia immune responses, behavior, and learning performance in adulthood. Neurobiol. Dis. 2017; 106:291-300. doi: 10.1016/j.nbd.2017.07.017. 96. Pratt L., Ni L., Ponzio N.M., Jonakait G.M. Maternal inflammation promotes fetal microglial activation and increased cholinergic expression in the fetal basal forebrain: role of interleukin-6. Pediatr. Res. 2013; 74:393-401. doi:10.1038/pr.2013.126. 97. Bisht K., Sharma K.P., Lecours C., Milior G., Luheshi G., Branchi I. et al. Dark microglia: a new phenotype predominantly associated with pathological states. Glia. 2016; 64:826-839. doi: 10.1002/glia.22966. 98. Mattei D., Ivanov A., Ferrai C., Jordan P., Guneykaya D., Buonfiglioli A. et al. Maternal immune activation results in complex microglial transcriptome signature in the adult offspring that is reversed by minocycline treatment. Transl. Psychiatry. 2017; 7:e1120. doi: 10.1038/tp.2017.80. 99. Hickman S.E., El Khoury J. Analysis of the microglial sensome. Methods Mol. Biol. 2019; 2034:305-323. doi: 10.1007/978-1-4939-9658-2_23. 100. Purves-Tyson T.D., Weber-Stadlbauer U., Richetto J., Rothmond D.A., Labouesse M.A., Polesel M. et al. Increased levels of midbrain immune-related transcripts in schizophrenia and in murine offspring after maternal immune activation. Mol. Psychiatry. 2021; 26(3):849-863. doi:10.1038/s41380-019-0434-0. 101. Ikezu S., Yeh H., Delpech J.C., Woodbury M.E., Ruan Z., Sivakumaran S. Inhibition of colony stimulating factor 1 receptor corrects maternal inflammation-induced microglial and synaptic dysfunction and behavioral abnormalities. Mol. Psychiatry. 2021; 26(6):1808-1831. doi: 10.1038/s41380-020-0671-2. 102. Bernardo A., Minghetti L. PPAR-gamma agonists as regulators of microglial activation and brain inflammation. Curr. Pharm. Des. 2006; 12:93-109. doi: 10.2174/138161206780574579. 103. Zhao Q., Wang Q., Wang J., Tang M., Huang S., Peng K. et al. Maternal immune activation-induced PPARg-dependent dysfunction of microglia associated with neurogenic impairment and aberrant postnatal behaviors in offspring. Neurobiol. Dis. 2019; 125:1-13. doi: 10.1016/j.nbd.2019.01.005. 104. Yüksel R.N., Titiz A.P., Turhan T., Erzin G., Züngün C., Aydemir M. Serum PGE2, 15d-PGJ, PPARg and CRP levels in patients with schizophrenia. Asian J. Psychiatr. 2019; 46:24-28. doi: 10.1016/j.ajp.2019.09.026. 105. Hadar R., Dong L., Del-Valle-Anton L., Guneykaya D., Voget M., Schweibold R. Deep brain stimulation during early adolescence prevents microglial alterations in a model of maternal immune activation. Brain Behav. Immun. 2017; 63:71-80. doi: 10.1016/j.bbi.2016.12.003. 106. Meyer U. Neurodevelopmental Resilience and Susceptibility to Maternal Immune Activation. Trends Neurosci. 2019; 42:793-806. doi: 10.1016/j.tins.2019.08.001. 107. Estes M.L., Farrelly K., Cameron S., Aboubechara J.P., Haapanen L., Schauer J.D. et al. Baseline immunoreactivity before pregnancy and poly(I:C) dose combine to dictate susceptibility and resilience of offspring to maternal immune activation. Brain Behav Immun. 2020; 88:619-630. doi: 10.1016/j.bbi.2020.04.061. 108. Schwartzer J.J., Careaga M., Onore C.E., Rushakoff J.A., Berman R.F., Ashwood P. Maternal immune activation and strain specific interactions in the development of autism-like behaviors in mice. Transl. Psychiatry. 2013; 3:e240. doi: 10.1038/tp.2013.16. 109. Vita A., De Peri L., Deste G., Sacchetti E. Progressive loss of cortical gray matter in schizophrenia: a meta-analysis and meta-regression of longitudinal MRI studies. Transl. Psychiatry. 2012; 2:e190. doi: 10.1038/tp.2012.116. 110. Blessing E.M., Murty V.P., Zeng B., Wang J., Davachi L., Goff D.C. Anterior hippocampal-cortical functional connectivity distinguishes antipsychotic naïve first-episode psychosis patients from controls and may predict response to second-generation antipsychotic treatment. Schizophr. Bull. 2020; 46:680-689. doi: 10.1093/schbul/sbz076. 111. Joseph A.T., Bhardwaj S.K., Srivastava L.K. Role of prefrontal cortex anti- and pro-inflammatory cytokines in the development of abnormal behaviors induced by disconnection of the ventral hippocampus in neonate rats. Front. Behav. Neurosci. 2018; 12:244. 112. Supekar K., Uddin L.Q., Khouzam A., Phillips J., Gaillard W.D., Kenworthy L.E. et al. Brain hyperconnectivity in children with autism and its links to social deficits. Cell Rep. 2013; 5:738-747. doi: 10.1016/j.celrep.2013.10.001. 113. Fagan K., Crider A., Ahmed A.O., Pillai A. Complement C3 expression is decreased in autism spectrum disorder subjects and contributes to behavioral deficits in rodents. Mol. Neuropsychiatry. 2017; 3:19-27. doi: 10.1159/000465523. 114. Lu Y.C., Yeh W.C., Ohashi P.S. LPS/TLR4 signal transduction pathway. Cytokine. 2008; 42:145-151. doi: 10.1016/j.cyto.2008.01.006. 115. Zhou Y., Guo M., Wang X., Li J., Wang Y., Ye L.,et al. TLR3 activation efficiency by high or low molecular mass poly I:C. Innate Immun. 2013; 19:184-192. doi: 10.1177/1753425912459975. 116. Gretebeck L.M., Subbarao K. Animal models for SARS and MERS coronaviruses. Curr. Opin. Virol. 2015; 13:123-129. doi: 10.1016/j.coviro.2015.06.009. 117. Fauci A.S., Lane H.C., Redfield R.R. Covid-19 - navigating the uncharted. N. Engl. J. Med. 2020; 382:1268-1269. doi: 10.1056/nejme2002387. 118. Zeng H., Xu C., Fan J., Tang Y., Deng Q., Zhang W. Antibodies in Infants Born to MothersWith COVID-19 Pneumonia. JAMA. 2020; 323:1848-1849. 119. Israel A.K., Seeck A., Boettger M.K., Rachow T., Berger S., Voss A. et al. Peripheral endothelial dysfunction in patients suffering from acute schizophrenia: a potential marker for cardiovascular morbidity? Schizophr. Res. 2011; 128:44-50. doi: 10.1016/j.schres.2011.02.007. 120. Burghardt K., Grove T., Ellingrod V. Endothelial nitric oxide synthetase genetic variants, metabolic syndrome and endothelial function in schizophrenia. J. Psychopharmacol. 2014; 28:349-356. doi:10.1177/0269881113516200. 121. Abbott N.J., Patabendige A.A., Dolman D.E., Yusof S.R., Begley D.J. Structure and function of the blood-brain barrier. Neurobiol. Dis. 2010; 37:13-25. 122. Joost E., Jordão M.J.C., Mages B., Prinz M., Bechmann I., Krueger M. Microglia contribute to the glia limitans around arteries, capillaries and veins under physiological conditions, in a model of neuroinflammation and in human brain tissue. Brain Struct. Funct. 2019; 224:1301-1314. doi: 10.1007/s00429-019-01834-8 123. Bechter K., Reiber H., Herzog S., Fuchs D., Tumani H., Maxeiner H.G. Cerebrospinal fluid analysis in affective and schizophrenic spectrum disorders: identification of subgroups with immune responses and blood-CSF barrier dysfunction. J. Psychiatr. Res. 2010; 44:321-330. doi: 10.1016/j.jpsychires.2009. 08.008 124. Najjar S., Pahlajani S., De Sanctis V., Stern J.N.H., Najjar A., Chong D. Neurovascular unit dysfunction and blood-brain barrier hyperpermeability contribute to schizophrenia neurobiology: a theoretical integration of clinical and experimental evidence. Front. Psychiatry. 2017; 8:83. doi:10.3389/fpsyt.2017. 00083. 125. Morita K., Sasaki H., Furuse M., Tsukita S. Endothelial claudin: claudin-5/TMVCF constitutes tight junction strands in endothelial cells. J. Cell Biol. 1999; 147:185-194. 126. Greene C., Hanley N., Campbell M. Claudin-5: gatekeeper of neurological function. Fluids Barriers CNS. 2019; 16(1):3. doi: 10.1186/s12987-019-0123-z. 127. Murphy K. C. Schizophrenia and velo-cardio-facial syndrome. Lancet. 2002; 359:426-430. 128. Motahari Z., Moody S.A., Maynard T.M., LaMantia A.S. In the line-up: deleted genes associated with DiGeorge/22q11.2 deletion syndrome: Are they all suspects? J. Neurodev. Disord. 2019; 11:7. 129. Fiksinski A.M., Schneider M., Murphy C.M., Armando M., Vicari S., Canyelles J.M. et al. Understanding the pediatric psychiatric phenotype of 22q11.2 deletion syndrome. Am. J. Med. Genet. A. 2018; 176:2182-2191. 130. Greene C., Kealy J., Humphries M.M., Gong Y., Hou J., Hudson N. et al. Dose-dependent expression of claudin-5 is a modifying factor in schizophrenia. Mol. Psychiatry. 2018; 23:2156-2166. doi: 10.1038/mp.2017.156. 131. Haruwaka K., Ikegami A., Tachibana Y., Ohno N., Konishi H., Hashimoto A. Dual microglia effects on blood brain barrier permeability induced by systemic inflammation. Nat. Commun. 2019; 10:5816. 132. Fillman S.G., Weickert T.W., Lenroot R.K., Catts S.V., Bruggemann J.M., Catts V.S. et al. Elevated peripheral cytokines characterize a subgroup of people with schizophrenia displaying poor verbal fluency and reduced Broca?s area volume. Mol. Psychiatry. 2016; 21:1090-1098. doi: 10.1038/mp.2015.90. 133. Zhang Y., Catts V.S., Sheedy D., McCrossin T., Kril J.J., Weickert S.C. Cortical grey matter volume reduction in people with schizophrenia is associated with neuro-inflammation. Transl. Psychiatry. 2016; 6:e982. doi: 10.1038/tp.2016.238. 134. Kavzoglu S.O., Hariri A.G. Intracellular Adhesion Molecule (ICAM-1), Vascular Cell Adhesion Molecule (VCAM-1) and E-Selectin Levels in First Episode Schizophrenic Patients. Bull. Clin. Psychopharmacol. 2013; 23:205-214. doi:10.5455/bcp.20130713091100. 135. Cai H.Q., Catts V.S., Webster M.J., Galletly C., Liu D., Weickert C.S. Increased macrophages and changed brain endothelial cell gene expression in the frontal cortex of people with schizophrenia displaying inflammation. Mol. Psychiatry. 2018; 25:761-777. 136. Nguyen T.T., Dev S.I., Chen G., Liou S.C., Martin A.S., Irwin M.R. et al. Abnormal levels of vascular endothelial biomarkers in schizophrenia. Eur. Arch. Psychiatry Clin. Neurosci. 2018; 268:849-860. doi: 10.1007/s00406-017-0842-6. 137. Hermand P., Huet M., Callebaut I., Gane P., Ihanus E., Gahmberg C.G. et al. Binding sites of leukocyte beta 2 integrins (LFA-1, Mac-1) on the human ICAM-4/LW blood group protein. J. Biol. Chem. 2000; 275:26002-26010. doi: 10.1074/jbc.m002823200 138. Nishiura K., Sugimoto K., Kunii Y., Kashiwagi K., Tanaka M., Yokoyama Y. PKA activation and endothelial claudin-5 breakdown in the schizophrenic prefrontal cortex. Oncotarget. 2017; 8:93382-93391. doi: 10.18632/oncotarget.21850. 139. Fabry Z., Fitzsimmons K.M., Herlein J.A., Moninger T.O., Dobbs M.B., Hart, M.N. Production of the cytokines interleukin 1 and 6 by murine brain microvessel endothelium and smooth muscle pericytes. J. Neuroimmunol. 1993; 47:23-34. doi: 10.1016/0165-5728(93)90281-3. 140. Nishioku, T., Dohgu, S., Takata, F., Eto, T., Ishikawa, N., Kodama, K. B., et al. Detachment of brain pericytes from the basal lamina is involved in disruption of the blood-brain barrier caused by lipopolysaccharide-induced sepsis in mice. Cell. Mol. Neurobiol. 2009; 29:309-316. doi: 10.1007/s10571-008-9322-x. 141. Chen J., Luo Y., Hui H., Cai T., Huang H., Yang F. et al. CD146 coordinates brain endothelial cell-pericyte communication for blood-brain barrier development. Proc. Natl. Acad. Sci. U.S.A. 2017; 114:E7622-E7631. 142. Banks W.A., Kovac A., Morofuji Y. Neurovascular unit crosstalk: pericytes and astrocytes modify cytokine secretion patterns of brain endothelial cells. J. Cereb. Blood Flow Metab. 2018; 38:1104-1118. doi: 10.1177/0271678x17740793. 143. Merlini M., Davalos D., Akassoglou K. In vivo imaging of the neurovascular unit in CNS disease. Intravital. 2012; 1:87-94. doi: 10.4161/intv.22214. 144. Borjini N., Paouri E., Tognatta R., Akassoglou K., Davalos D. Imaging the dynamic interactions between immune cells and the neurovascular interface in the spinal cord. Exp. Neurol. 2019; 322:113046. doi: 10.1016/j.expneurol.2019. 113046. 145. Yenari M.A., Xu L., Tang X.N., Qiao Y., Giffard R.G. Microglia potentiate damage to blood-brain barrier constituents: improvement by minocycline in vivo and in vitro. Stroke. 2006; 37:1087-1093. doi: 10.1161/01.str.0000206281.77178. 146. da Fonseca A.C., Matias D., Garcia C., Amaral R., Geraldo L. H., Lima F.R. The impact of microglial activation on blood-brain barrier in brain diseases. Front. Cell. Neurosci. 2014; 8:362. doi: 10.3389/fncel.2014.00362. 147. Shigemoto-Mogami Y., Hoshikawa K., Sato K. Activated microglia disrupt the blood-brain barrier and induce Chemokines and cytokines in a rat. Front. Cell. Neurosci. 2018; 12:494. doi: 10.3389/fncel.2018.00494. 148. Uranova N.A., Zimina I.S., Vikhreva O.V., Krukov N.O., Rachmanova V.I., Orlovskaya D.D. Ultrastructural damage of capillaries in the neocortex in schizophrenia. World J. Biol. Psychiatry. 2010; 11:567-578. doi:10.3109/15622970903414188. 149. Uhlhaas P.J. Dysconnectivity, large-scale networks and neuronal dynamics in schizophrenia. Curr. Opin. Neurobiol. 2013; 23:283-290. doi: 10.1016/j.conb.2012. 11.004. 150. Glantz L.A., Lewis D.A. Reduction of synaptophysin immunoreactivity in the prefrontal cortex of subjects with schizophrenia. Regional and diagnostic specificity. Arch. Gen. Psychiatry. 1997; 54:943-952. 151. Balu D. T. The NMDA receptor and schizophrenia: from pathophysiology to treatment. Adv. Pharmacol. 2016; 76:351-382. 152. Weickert C.S., Fung S.J., Catts V.S., Schofield P.R., Allen K.M., Moore L.T. et al. Molecular evidence of N-methyl-D-aspartate receptor hypofunction in schizophrenia. Mol. Psychiatry. 2013; 18:1185-1192. doi: 10.1038/mp.2012.137. 153. Becker Y., Marcoux G., Allaeys I., Julien A.S., Loignon R.C., Rauch J. et al. Autoantibodies in systemic lupus erythematosus target mitochondrial RNA. Front. Immunol. 2019; 10:1026. doi: 10.3389/fimmu.2019.01026. 154. Jézéquel J., Johansson E.M., Dupuis J.P., Rogemond V., Kellermayer B., Hamdani N. Dynamic disorganization of synaptic NMDA receptors triggered by autoantibodies from psychotic patients. Nat. Commun. 2017; 8:1791. 155. Kayser M.S., Dalmau J. Anti-NMDA receptor encephalitis, autoimmunity, and psychosis. Schizophr. Res. 2016; 176:36-40. doi: 10.1016/j.schres.2014.10.007. 156. Kannan G., Gressitt K.L., Yang S., Stallings C.R., Katsafanas E., Schweinfurth L. A. Pathogen-mediated NMDA receptor autoimmunity and cellular barrier dysfunction in schizophrenia. Transl. Psychiatry. 2017; 7:e1186. doi: 10.1038/tp.2017.162. 157. Rustenhoven J., Kipnis J. Bypassing the blood-brain barrier. Science. 2019; 366:1448-1449. doi: 10.1126/science.aay0479. 158. Louveau A., Smirnov I., Keyes T.J., Eccles J.D., Rouhani S.J., Peske J.D. et al. Structural and functional features of central nervous system lymphatic vessels. Nature. 2015; 523:337-341. doi: 10.1038/nature14432. 159. Derecki N.C., Cardani A.N., Yang C.H., Quinnies K.M., Crihfield A., Lynch K.R. et al. Regulation of learning and memory by meningeal immunity: a key role for IL-4. J. Exp. Med. 2010; 207:1067-1080. doi: 10.1084/jem.2009 1419. 160. Filiano A.J., Xu Y., Tustison N.J., Marsh R.L., Baker W., Smirnov I. et al. Unexpected role of interferon-g in regulating neuronal connectivity and social behaviour. Nature. 2016; 535:425-429. doi: 10.1038/nature1 8626. 161. Ribeiro M., Brigas H.C., Pousinha P.A., Regen T., Santa C., Coelho J.E. Meningeal gd T cell-derived IL-17 controls synaptic plasticity and short-term memory. Sci. Immunol. 2019; 4:eaay5199. doi: 10.1126/sciimmunol.aay5199. 162. Louveau A., Herz J., Alme M.N., Salvador A.F., Dong M.Q., Viar K.E. et al. CNS lymphatic drainage and neuroinflammation are regulated by meningeal lymphatic vasculature. Nat. Neurosci. 2018; 21:1380-1391. doi: 10.1038/s41593-018-0227-9. 163. Da Mesquita S., Louveau A., Vaccari A., Smirnov I., Cornelison R.C., Kingsmore K.M. et al. Functional aspects of meningeal lymphatics in ageing and Alzheimer?s disease. Nature. 2018; 560:185-191. 164. Schnack H.G., van Haren N.E., Nieuwenhuis M., Hulshoff Pol H.E., Cahn W., Kahn R.S. et al. Accelerated brain aging in schizophrenia: a longitudinal pattern recognition study. Am. J. Psychiatry. 2016; 173:607-616. doi: 10.1176/appi.ajp.2015.15070922. 165. Boerrigter D., Weickert T.W., Lenroot R., Galletly C., Liu D., Burgess M. et al. Using blood cytokine measures to define high inflammatory biotype of schizophrenia and schizoaffective disorder. J. Neuroinflammation. 2017; 14:188. 166. Lesh T.A., Careaga M., Rose D.R., McAllister A.K., Van de Water J., Carter C.S. Cytokine alterations in first-episode schizophrenia and bipolar disorder: relationships to brain structure and symptoms. J. Neuroinflammation. 2018; 15:165. 167. Goldsmith D.R., Rapaport M.H. Inflammation and negative symptoms of schizophrenia: implications for reward processing and motivational deficits. Front. Psychiatry. 2020; 11:46. doi: 10.3389/fpsyt.2020.00046. 168. Pedraz-Petrozzi B., Elyamany O., Rummel C., Mulert C. Effects of inflammation on the kynurenine pathway in schizophrenia - a systematic review. J. Neuroinflammation. 2020; 17:56. 169. McKernan D.P., Dennison U., Gaszner G., Cryan J.F., Dinan T.G. Enhanced peripheral toll-like receptor responses in psychosis: further evidence of a pro-inflammatory phenotype. Transl. Psychiatry. 2011; 1:e36. doi: 10.1038/tp.2011.37. 170. De Picker L., Fransen E., Coppens V., Timmers M., Oberacher H., Fuchs D. Immune and neuroendocrine trait and state markers in psychotic illness: decreased kynurenines marking psychotic exacerbations. Front. Immunol. 2019; 10:2971. doi: 10.3389/fimmu.2019.02971. 171. Steiner J., Frodl T., Schiltz K., Dobrowolny H., Jacobs R., Fernandes B.S. et al. Innate immune cells and C-reactive protein in acute first-episode psychosis and schizophrenia: relationship to psychopathology and treatment. Schizophr. Bull. 2020; 46:363-373. 172. Selvaraj S., Bloomfield P.S., Cao B., Veronese M., Turkheimer F., Howes O.D. Brain TSPO imaging and gray matter volume in schizophrenia patients and in people at ultra high risk of psychosis. Schizophr. Res. 2018; 195:206-214. doi: 10.1016/j.schres.2017.08.063. 173. Doorduin J., de Vries E.F., Willemsen A. T., de Groo, J.C., Dierckx R.A., Klein H.C. Neuroinflammation in schizophrenia-related psychosis: a PET study. J. Nucl. Med. 2009; 50:1801-1807. doi: 10.2967/jnumed.109.066647. 174. Di Biase M.A., Zalesky A., Laskaris L., Baune B.T., Weickert C.S., Olver J. PET imaging of putative microglial activation in individuals at ultra-high risk for psychosis, recently diagnosed and chronically ill with schizophrenia. Transl. Psychiatry. 2017; 7:e1225. doi: 10.1038/tp.2017.193. 175. Notter T., Coughlin J.M., Gschwind T., Wang Y., Kassiou M., Vernon A.C. et al. Translational evaluation of translocator protein as a marker of neuroinflammation in schizophrenia. Mol. Psychiatry. 2018; 23:323-334. doi: 10.1038/mp.2016.248. 176. Notter T., Schalbetter S.M., Clifton N.E., Mattei D., Richetto J., Thomas K. et al. Neuronal activity increases translocator protein (TSPO) levels. Mol. Psychiatry. 2021; 26(6):2025-2037. doi: 10.1038/s41380-020-0745-1. 177. Sneeboer, M.A.M., van der Doef T., Litjens M., Psy N.B.B., Melief J., Hol E.M. et al. Microglial activation in schizophrenia: Is translocator 18 kDa protein (TSPO) the right marker? Schizophr. Res. 2020; 215:167-172. doi: 10.1016/j.schres.2019.10.045. 178. Bossù P., Piras F., Palladino I., Iorio M., Salani F., Ciaramella A. et al. Hippocampal volume and depressive symptoms are linked to serum IL-18 in schizophrenia. Neurol. Neuroimmunol. Neuroinflamm. 2015; 2:e111. doi: 10.1212/nxi.0000000000000111. 179. Raison C.L., Rutherford R.E., Woolwine B.J., Shuo C., Schettler P., Drake D. F. et al. A randomized controlled trial of the tumor necrosis factor antagonist infliximab for treatment-resistant depression: the role of baseline inflammatory biomarkers. JAMA Psychiatry. 2013; 70:31-41. 180. Weinberger J.F., Raison C.L., Rye D.B., Montague A.R., Woolwine B.J., Felger J.C. Inhibition of tumor necrosis factor improves sleep continuity in patients with treatment resistant depression and high inflammation. Brain Behav. Immun. 2015; 47:193-200. doi: 10.1016/j.bbi.2014.12.016. 181. Dejanovic B., Huntley M.A., Meilandt W.J., Wu T., Srinivasan K., Jiang Z. et al. Changes in the synaptic proteome in tauopathy and rescue of tau-induced synapse loss by C1q antibodies. Neuron. 2018; 100:1322-1336.e7. doi: 10.1016/j.neuron.2018.10.014. 182. Filipello F., Morini R., Corradini I., Zerbi V., Canzi A., Michalski B. et al. The microglial innate immune receptor TREM2 is required for synapse elimination and normal brain connectivity. Immunity. 2018; 48:979-991.e8. doi: 10.1016/j.immuni.2018.04.016. 183. Vainchtein I.D., Chin G., Cho F.S., Kelley K.W., Miller J.G., Chien E.C. et al. Astrocyte-derived interleukin-33 promotes microglial synapse engulfment and neural circuit development. Science. 2018; 359:1269-1273. doi: 10.1126/science.aal3589. 184. Weinhard L., Bolasco G., Machado P., Schieber N.L., Neniskyte U., Exiga M. Microglia remodel synapses by presynaptic trogocytosis and spine head filopodia induction. Nat. Commun. 2018; 9:1228. 185. Parkhurst C.N., Yang G., Ninan I., Savas J.N., Yates J.R., Lafaille J.J. et al. Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor. Cell. 2013; 155:1596-1609. doi: 10.1016/j.cell.2013.11.030. 186. Miyamoto A., Wake H., Ishikawa A.W., Eto K., Shibata K., Murakoshi H. et al. Microglia contact induces synapse formation in developing somatosensory cortex. Nat. Commun. 2016; 7:12540. 187. Akiyoshi R., Wake H., Kato D., Horiuchi H., Ono R., Ikegami A. et al. Microglia enhance synapse activity to promote local network synchronization. eNeuro. 2018; 25;5(5):ENEURO.0088-18.2018. doi: 10.1523/ENEURO.0088-18.2018. 188. MacDonald M.L., Alhassan J., Newman J.T., Richard M., Gu H., Kelly R.M. et al. Selective loss of smaller spines in schizophrenia. Am. J. Psychiatry. 2017; 174:586-594. doi: 10.1176/appi.ajp.2017.16070814. 189. Hui C.W., Bhardwaj S.K., Sharma K., Joseph A.T., Bisht K., Picard K. et al. Microglia in the developing prefrontal cortex of rats show dynamic changes following neonatal disconnection of the ventral hippocampus. Neuropharmacology. 2019; 146:264-275. doi: 10.1016/j.neuropharm.2018.12.007. 190. Deczkowska A., Keren-Shaul H., Weiner A., Colonna M., Schwartz M., Amit I. Disease-associated microglia: a universal immune sensor of neurodegeneration. Cell. 2018; 173:1073-1081. doi: 10.1016/j.cell.2018.05.003. 191. Uranova N.A., Vikhreva O.V., Rakhmanova V.I., Orlovskaya D.D. Ultrastructural pathology of oligodendrocytes adjacent to microglia in prefrontal white matter in schizophrenia. NPJ Schizophr. 2018; 4:26. 192. Stratoulias V., Venero J.L., Tremblay M., Joseph B. Microglial subtypes: diversity within the microglial community. EMBO J. 2019; 38:e101997. 193. Dienel S.J., Lewis D.A. Alterations in cortical interneurons and cognitive function in schizophrenia. Neurobiol. Dis. 2019; 131:104208. doi: 10.1016/j.nbd.2018.06.020. 194. Howes O.D., McCutcheon R., Owen M.J., Murray R.M. The role of genes, stress, and dopamine in the development of schizophrenia. Biol. Psychiatry. 2017; 81:9-20. doi: 10.1016/j.biopsych.2016.07.014. 195. Uno Y., Coyle J.T. Glutamate hypothesis in schizophrenia. Psychiatry Clin. Neurosci. 2019; 73, 204-215. 196. Sigurdsson T., Duvarci S. Hippocampal-prefrontal interactions in cognition, behavior and psychiatric disease. Front. Syst. Neurosci. 2015; 9:190. doi: 10.3389/fnsys.2015.00190. 197. Rogers G.B., Keating D.J., Young R.L., Wong M.L., Licinio J., Wesselingh S. From gut dysbiosis to altered brain function and mental illness: mechanisms and pathways. Mol. Psychiatry. 2016; 21:738-748. doi: 10.1038/mp.2016.50. 198. Luchicch, A., Lecca S., Melis M., De Felice M., Cadeddu F., Frau R. et al. Maternal immune activation disrupts dopamine system in the offspring. Int. J. Neuropsychopharmacol. 2016; 19:pyw007. doi: 10.1093/ijnp/pyw007. 199. Kesby J.P., Eyles D.W., McGrath J.J., Scott J.G. Dopamine, psychosis and schizophrenia: the widening gap between basic and clinical neuroscience. Transl. Psychiatry. 2018; 8:30. 200. Thion M.S., Mosser C.A., Férézou I., Grisel P., Baptista S., Low D. et al. Biphasic impact of prenatal inflammation and macrophage depletion on the wiring of neocortical inhibitory circuits. Cell Rep. 2019; 28:1119-1126.e4. doi: 10.1016/j.celrep.2019.06.086. 201. Brenhouse H.C., Danese A., Grassi-Oliveira R. Neuroimmune impacts of early-life stress on development and psychopathology. Curr. Top. Behav. Neurosci. 2019; 43:423-447. doi: 10.1007/7854_2018_53. 202. Goodwill H.L., Manzano-Nieves G., LaChance P., Teramoto S., Lin S., Lopez C. Early life stress drives sex-selective impairment in reversal learning by Affecting parvalbumin interneurons in orbitofrontal cortex of mice. Cell Rep. 2018; 25:2299-2307.e4. doi: 10.1016/j.celrep.2018.11.010. 203. Ohta K.I., Suzuki S., Warita K., Sumitani K., Tenkumo C., Ozawa T. et al. The effects of early life stress on the excitatory/inhibitory balance of the medial prefrontal cortex. Behav. Brain Res. 2020; 379:112306. doi: 10.1016/j.bbr.2019.112306. 204. Holland F.H., Ganguly P., Potter D.N., Chartoff E.H., Brenhouse H.C. Early life stress disrupts social behavior and prefrontal cortex parvalbumin interneurons at an earlier time-point in females than in males. Neurosci. Lett. 2014; 566:131-136. doi: 10.1016/j.neulet.2014.02.023. 205. Kaar S.J., Angelescu I., Marques T.R., Howes O.D. Pre-frontal parvalbumin interneurons in schizophrenia: a meta-analysis of post-mortem studies. J. Neural Transm. 2019; 126:1637-1651. doi:10.1007/s00702-019-02080-2. 206. Borrell V., Marín O. Meninges control tangential migration of hemderived Cajal-Retzius cells via CXCL12/CXCR4 signaling. Nat. Neurosci. 2006; 9:1284-1293. doi: 10.1038/nn1764. 207. Krystal J.H., Karper L.P., Seibyl J.P., Freeman G.K., Delaney R., Bremner J.D. et al. Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Arch. Gen. Psychiatry. 1994; 51:199-214. 208. Adler C.M., Goldberg T.E., Malhotra A.K., Pickar D., Breier A. Effects of ketamine on thought disorder, working memory, and semantic memory in healthy volunteers. Biol. Psychiatry. 1998; 43:811-816. doi: 10.1016/s0006-3223(97)00556-8. 209. Hu W., MacDonald M.L., Elswick D.E., Sweet R.A. The glutamate hypothesis of schizophrenia: evidence from human brain tissue studies. Ann. N. Y. Acad. Sci. 2015; 1338:38-57. doi: 10.1111/nyas.12547. 210. Ehrenreich H. Autoantibodies against N-methyl-d-aspartate receptor 1 in health and disease. Curr. Opin. Neurol. 2018; 31:306-312. doi: 10.1097/wco.0000000000000546. 211. Ma, Y. J., and Garred, P. Pentraxins in complement activation and regulation. Front. Immunol. 2018; 9:3046. doi: 10.3389/fimmu.2018.03046. 212. Mei Y.Y., Wu D.C., Zhou N. Astrocytic regulation of glutamate transmission in schizophrenia. Front. Psychiatry. 2018; 9:544. 213. Johansson E.M., Bouchet D., Tamouza R., Ellul P., Morr A., Avignone E. et al. Human endogenous retroviral protein triggers deficit in glutamate synapse maturation and behaviors associated with psychosis. Sci. Adv. 2020; 6:eabc0708. doi: 10.1126/sciadv.abc0708. 214. Sofroniew N.J., Flickinger D., King J., Svoboda K. A large field of view two-photon mesoscope with subcellular resolution for in vivo imaging. eLife. 2016; 5:e14472. 215. Boido D., Rungta R.L., Osmanski B.F., Roche M., Tsurugizawa T., Charpak S. Mesoscopic and microscopic imaging of sensory responses in the same animal. Nat. Commun. 2019; 10:1110. 216. Grandjean J., Canella C., Anckaerts C., Bougacha S., Bienert T., Buehlmann D. et al. Common functional networks in the mouse brain revealed by multi-centre resting-state fMRI analysis. Neuroimage. 2020; 205:116278. 217. Glausier J.R., Lewis D.A. Dendritic spine pathology in schizophrenia. Neuroscience. 2013; 251:90-107. doi: 10.1016/j.neuroscience.2012.04.044 218. Berdenis van Berlekom A., Muflihah C.H., Middeldorp J., Hol E.M., Kahn R.S., de Witte L. D. Synapse pathology in schizophrenia: a metaanalysis of postsynaptic elements in postmortem brain studies. Schizophr. Bull. 2020; 46, 374-386. 219. Paolicelli R.C., Bolasco G., Pagani F., Maggi L., Scianni M., Panzanelli P. et al. Synaptic pruning by microglia is necessary for normal brain development. Science. 2011; 333:1456-1458. doi: 10.1126/science.1202529. 220. Tay T.L., Savage J.C., Hui C.W., Bisht K., Tremblay M. Microglia across the lifespan: from origin to function in brain development, plasticity and cognition. J. Physiol. 2017; 595:1929-1945. doi: 10.1113/jp272134. 221. Trachtenberg J.T., Chen B.E., Knott G.W., Feng G., Sanes J.R.E. et al. Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex. Nature. 2002; 420:788-794. doi: 10.1038/nature01273. 222. Holtmaat A., Svoboda K. Experience-dependent structural synaptic plasticity in the mammalian brain. Nat. Rev. Neurosci. 2009; 10:647-658. doi: 10. 1038/nrn2699. 223. Cruz-Martín A., Crespo M., Portera-Cailliau C. Glutamate induces the elongation of early dendritic protrusions via mGluRs in wild type mice, but not in fragile X mice. PLoS One. 2012; 7:e32446. doi: 10.1371/journal.pone.0032446. 224. Tremblay M., Lowery R.L., Majewska R.K. Microglial interactions with synapses are modulated by visual experience. PLoS Biol. 2010; 8:e1000527. doi: 10.1371/journal.pbio.1000527. 225. Lehrman E.K., Wilton D.K., Litvina E.Y., Welsh C.A., Chang S.T., Frouin A. et al. CD47 protects synapses from excess microgliamediated pruning during development. Neuron. 2018; 100:120-134.e6. doi: 10.1016/j.neuron.2018.09.017. 226. Cruz-Martín A., Crespo M., Portera-Cailliau C. Delayed stabilization of dendritic spines in fragile X mice. J. Neurosci. 2010; 30:7793-7803. doi: 10.1523/jneurosci.0577-10.2010. 227. Okano H., Sasaki E., Yamamori T., Iriki A., Shimogori T., Yamaguchi Y. et al. Brain/MINDS: a Japanese national brain project for marmoset neuroscience. Neuron. 2016; 92:582-590. doi: 10.1016/j.neuron.2016.10.018. 228. Servick K. U.S. labs clamor for marmosets. Science. 2018; 362:383-384. doi: 10.1126/science.362.6413.383. | ||
|