banner medline tsn
МЕДЛАЙН.РУ
Содержание журнала

Архив

Редакция
Учредители

Федеральное государственное бюджетное учреждение науки
Институт теоретической и экспериментальной биофизики
Российской академии наук


ООО "ИЦ КОМКОН"


ФГБУН "Институт токсикологии" ФМБА России

Адрес редакции и реквизиты

192012, Санкт-Петербург, ул.Бабушкина, д.82 к.2, литера А, кв.378

Свидетельство о регистрации электронного периодического издания ЭЛ № ФС 77-37726 от 13.10.2009
Выдано - Роскомнадзор

ISSN 1999-6314


Фундаментальные исследования • Фармакология

Том: 24
Статья: « 97 »
Страницы:. 1450-1483
Опубликована в журнале: 21 ноября 2023 г.

English version

Гамка-рецептор как мишень для разработки новых лекарственных средств

Иванов И.М., Орлова А.Б., Никифоров А.С., Карташев В.А., Юдин М.А., Чепур С.В.
1 ФГБУ Государственный научно-исследовательский испытательный институт военной медицины Министерства обороны Российской Федерации,
195043, г. Санкт-Петербург, ул. Лесопарковая, д. 4
e-mail: gniiivm_15@mil.ru
2 ФГБОУ ВО Северо-Западный государственный медицинский университет им. И.И. Мечникова Минздрава Российской Федерации,
195067, г. Санкт-Петербург, Пискаревский проспект, д. 47
e-mail: rectorat@szgmu.ru


Резюме
В обзоре рассмотрены строение, функционирование и особенности сайтов связывания лигандов с рецептором гамма-аминомасляной кислоты типа А (далее ГАМКАР) во внеклеточном и трансмембранном домене рецептора. Проанализированы доступные комплексы ГАМКАР с ортосетрическими агонистами (ГАМК, THIP, гистамин) и антагонистами (бикукуллин), лигандами бензодиазепинового сайта (золпилем, диазепам, DMCD, флумазенил и Ro154513), барбитуратного сайта (фенобарбитал), сайтов общих анестетиков (этомидат, пропофол) и нейростероидами. Проведен частотный анализ паттернов взаимодействия этих лигандов с аминокислотными остатками мишеней и сравнение особенностей взаимодействия с ними агонистов и антагонистов. Визуализованы области связывания лигандов разных типов и оценено их взаиморасположение на рецепторе. Оценена возможность использования доступных трехмерных моделей ГАМКАР в качестве мишеней для поиска новых лигандов с ГАМКергической активностью методами молекулярного моделирования и докинга.


Ключевые слова
ГАМК, ГАМКА-рецептор, сайт связывания, бензодиазепины, барбитураты, общие анестетики, нейростероиды.



(статья в формате PDF. Для просмотра необходим Adobe Acrobat Reader)



открыть статью в новом окне

Список литературы

1. Olsen R.W., Sieghart W. International Union of Pharmacology. LXX. Subtypes of gamma-aminobutyric acid(A) receptors: classification on the basis of subunit composition, pharmacology, and function. Update. Pharmacological reviews. 2008; 60(3): 243-260.


2. D?Hulst C., Atack J.R., Kooy R.F. The complexity of the GABAA receptor shapes unique pharmacological profiles. Drug discovery today. 2009; 14(17-18): 866-875.


3. Sieghart W., Sperk G. Subunit composition, distribution and function of GABA(A) receptor subtypes. Current topics in medicinal chemistry. 2002; 2(8): 795-816.


4. Belelli D., Harrison N.L., Maguire J. et al. Extrasynaptic GABAA receptors: form, pharmacology, and function. Journal of Neuroscience. 2009; 29(41): 12757-12763.


5. Lee V., Maguire J. The impact of tonic GABAA receptor-mediated inhibition on neuronal excitability varies across brain region and cell type. Frontiers in neural circuits. 2014; 8: 3.


6. Feng H.J., Kang J.Q., Song L. et al. Delta subunit susceptibility variants E177A and R220H associated with complex epilepsy alter channel gating and surface expression of α4β2δ GABAA receptors. Journal of Neuroscience. 2006; 26(5): 1499-1506.


7. Brickley S.G., Mody I. Extrasynaptic GABAA receptors: their function in the CNS and implications for disease. Neuron. 2012; 73(1): 23-34.


8. Meltzer-Brody S., Colquhoun H., Riesenberg R. et al. Brexanolone injection in post-partum depression: two multicentre, double-blind, randomised, placebo-controlled, phase 3 trials. Lancet. 2018; 392(10152): 1058-1070.


9. Kaur K.H., Baur R., Sigel E. Unanticipated structural and functional properties of delta-subunit-containing GABAA receptors. Journal of biological chemistry. 2009; 284(12): 7889-7896.


10. Fritschy J.M, Brünig I. Formation and plasticity of GABAergic synapses: physiological mechanisms and pathophysiological implications. Pharmacology & therapeutics. 2003; 98(3): 299-323.


11. Meera P., Wallner M., Otis T.S. Molecular basis for the high THIP/gaboxadol sensitivity of extrasynaptic GABAA receptors. Journal of neurophysiology. 2011; 106(4): 2057-2064.


12. Baumann S.W., Baur R., Sigel E. Individual properties of the two functional agonist sites in GABA A receptors. The Journal of Neuroscience. 2003; 23(35): 11158-11166.


13. Padgett C.L., Hanek A.P., Lester H.A. et al. Unnatural amino acid mutagenesis of the GABA(A) receptor binding site residues reveals a novel cation-pi interaction between GABA and beta 2Tyr97. Journal of Neuroscience. 2007; 27(4): 886-892.


14. Newell J.G., McDevitt R.A., Czajkowski C. Mutation of glutamate 155 of the GABAA receptor beta2 subunit produces a spontaneously open channel: a trigger for channel activation. Journal of Neuroscience. 2004; 24(50): 11226-11235.


15. Lummis S.C. Locating GABA in GABA receptor binding sites. Biochemical Society Transactions. 2009; 37: 1343-1346.


16. Lee H.J., Absalom N.L., Hanrahan J.R. et al. A pharmacological characterization of GABA, THIP and DS2 at binary alpha4beta3 and beta3delta receptors: GABA activates beta3delta receptors via the beta3(+)delta(-) interface. Brain research. 2016; 1644: 222-230.


17. Sente A., Desai R., Naydenova K. et al. Differential assembly diversifies GABAA receptor structures and signalling. Nature. 2022; 604(7904): 190-194.


18. Storustovu S.I., Ebert B. Pharmacological characterization of agonists at delta-containing GABAA receptors: functional selectivity for extrasynaptic receptors is dependent on the absence of gamma2. Journal of Pharmacology and Experimental Therapeutics. 2006; 316(3): 1351-1359.


19. Brown N., Kerby J., Bonnert T.P. et al. Pharmacological characterization of a novel cell line expressing human alpha(4)beta(3)delta GABA(A) receptors. British journal of pharmacology. 2002; 136(7): 965-974.


20. Salentin S., Schreiber S., Haupt V.J. et al. PLIP: fully automated protein-ligand interaction profiler. Nucleic acids research. 2015; 43: 443-447.


21. Phulera S., Zhu H., Yu J. et al. Cryo-EM structure of the benzodiazepine-sensitive α1β1γ2S tri-heteromeric GABAA receptor in complex with GABA. Elife. 2018; 7: e39383.


22. Bekkers J.M. Enhancement by histamine of NMDA-mediated synaptic transmission in the hippocampus. Science. 1993; 261(5117): 104-106.


23. Saras A., Gisselmann G., Vogt-Eisele A.K. et al. Histamine action on vertebrate GABAA receptors: direct channel gating and potentiation of GABA responses. Journal of Biological Chemistry. 2008; 283(16): 10470-10475.


24. Saper C.B., Scammell T.E., Lu J. Hypothalamic regulation of sleep and circadian rhythms. Nature. 2005; 437(7063):1257-1263.


25. Bianchi M.T., Clark A.G., Fisher J.L. The wake-promoting transmitter histamine preferentially enhances α-4 subunit-containing GABAA receptors. Neuropharmacology. 2011; 61(4): 747-752.


26. Sigel E., Ernst M. The benzodiazepine binding sites of GABAA receptors. Trends in pharmacological sciences. 2018; 39(7): 659-671.


27. Richter L., De Graaf C., Sieghart W. et al. Diazepam-bound GABAA receptor models identify new benzodiazepine binding-site ligands. Nature chemical biology. 2012; 8(5): 455-464.


28. Wafford K.A., Bain C.J., Whiting P.J., Kemp J.A. Functional comparison of the role of g subunits in recombinant human g-aminobutyric acidA/benzodiazepine receptors. Molecular pharmacology. 1993; 44(2): 437-442.


29. Wong G., Skolnick P. High affinity ligands for ?diazepam-insensitive? benzodiazepine receptors. European Journal of Pharmacology: Molecular Pharmacology. 1992; 225(1): 63-68.


30. Sigel E., Steinmann M.E. Structure, function and modulation of GABAA receptors. Journal of Biological Chemistry. 2012; 287(48): 40224-40231.


31. Ramerstorfer J., Furtmüller R., Sarto-Jackson I. et al. The GABAA receptor alpha+beta- interface: a novel target for subtype selective drugs. Journal of Neuroscience. 2011; 31(3): 870-877.


32. Baur R., Tan K.R., Lüscher B.P. et al. Covalent modification of GABAA receptor isoforms by a diazepam analogue provides evidence for a novel benzodiazepine binding site that prevents modulation by these drugs. Journal of neurochemistry. 2008; 106(6): 2353-2363.


33. Wongsamitkul N., Maldifassi M.C., Simeone X. et al. a subunits in GABAA receptors are dispensable for GABA and diazepam action. Scientific reports. 2017; 7(1): 15498.


34. Sente A., Desai R., Naydenova K. et al. Differential assembly diversifies GABAA receptor structures and signalling. Nature. 2022; 604(7904): 190-194.


35. Olsen R.W., Hanchar H.J., Meera P., Wallner M. GABAA receptor subtypes: the "one glass of wine" receptors. Alcohol. 2007; 41(3): 201-209.


36. Maldifassi M.C., Baur R., Sigel E. Molecular mode of action of CGS 9895 at a1b2g2 GABAA receptors. Journal of neurochemistry. 2016; 138(5): 722-730.


37. Evans A.K., Lowry C.A. Pharmacology of the β-Carboline FG-7142, a Partial Inverse Agonist at the Benzodiazepine Allosteric Site of the GABAA Receptor: Neurochemical, Neurophysiological, and Behavioral Effects. CNS Drug Reviews. 2007; 13: 475-501.


38. Löscher W., Rogawski M.A. How theories evolved concerning the mechanism of action of barbiturates. Epilepsia. 2012; 53: 12-25.


39. Zhu S., Noviello C.M., Teng J. et al. Structure of a human synaptic GABAA receptor. Nature. 2018; 559(7712): 67-72.


40. Chiara D.C., Jayakar S.S., Zhou X. et al. Specificity of intersubunit general anesthetic-binding sites in the transmembrane domain of the human α1β3γ2 γ-aminobutyric acid type A (GABAA) receptor. Journal of Biological Chemistry. 2013; 288(27), 19343-19357.


41. Zeller A., Arras M., Jurd R., Rudolph U. Identification of a molecular target mediating the general anesthetic actions of pentobarbital. Molecular pharmacology. 2007; 71(3): 852-859.


42. Kim J.J., Gharpure A., Teng J. et al. Shared structural mechanisms of general anaesthetics and benzodiazepines. Nature. 2020; 585(7824): 303-308.


43. Gropper M.A., Miller R.D., Cohen N.H. et al. Miller's anesthesia. 2020.


44. Forman S.A. Clinical and molecular pharmacology of etomidate. Anesthesiology. 2011; 114: 695-707.


45. Belelli D., Lambert J.J., Peters J.A. et al. The interaction of the general anesthetic etomidate with the γ-aminobutyric acid type A receptor is influenced by a single amino acid. Proceedings of the National Academy of Sciences. 1997; 94(20): 11031-11036.


46. Siegwart R., Jurd R., Rudolph U. Molecular determinants for the action of general anesthetics at recombinant α2β3γ2γ-aminobutyric acidA receptors. Journal of neurochemistry. 2002; 80(1): 140-148.


47. Li G.D., Chiara D.C., Sawyer G.W. et al. Identification of a GABAA receptor anesthetic binding site at subunit interfaces by photolabeling with an etomidate analog. Journal of Neuroscience. 2006; 26(45): 11599-11605.


48. Krasowski M.D., Koltchine V.V., Rick C.E. et al. Propofol and other intravenous anesthetics have sites of action on the γ-aminobutyric acid type A receptor distinct from that for isoflurane. Molecular pharmacology. 1998; 53(3): 530-538.


49. Jayakar S.S., Zhou X., Chiara D.C. et al. Multiple propofol-binding sites in a γ-aminobutyric acid type A receptor (GABAAR) identified using a photoreactive propofol analog. Journal of Biological Chemistry. 2014; 289(40): 27456-27468.


50. Bali M., Akabas M.H. Gating-induced conformational rearrangement of the γ-aminobutyric acid type A receptor β-α subunit interface in the membrane-spanning domain. Journal of Biological Chemistry. 2012; 287(33): 27762-27770.


51. Jayakar S.S., Zhou X., Chiara D.C. et al. Identifying drugs that bind selectively to intersubunit general anesthetic sites in the α1β3γ2 GABAAR transmembrane domain. Molecular pharmacology. 2019; 95(6): 615-628.


52. Yip G.M., Chen Z.W., Edge C.J. et al. A propofol binding site on mammalian GABAA receptors identified by photolabeling. Nature chemical biology. 2013; 9(11): 715-720.


53. Jurd R., Arrasa M., Lambert S. et al. General anesthetic actions in vivo strongly attenuated by a point mutation in the GABAA receptor β3 subunit. The FASEB Journal. 2003; 17(2): 250-252.


54. Reynolds D.S., Rosahl T.W., Cirone J. et al. Sedation and anesthesia mediated by distinct GABAA receptor isoforms. Journal of Neuroscience. 2003; 23(24): 8608-8617.


55. Sieghart W., Savić M.M. International Union of Basic and Clinical Pharmacology. CVI: GABAA receptor subtype- and function-selective ligands: key issues in translation to humans. Pharmacological reviews. 2018; 70(4): 836-878.


56. Krasowski M.D., Hong X., Hopfinger A.J., Harrison N.L. 4D-QSAR analysis of a set of propofol analogues: mapping binding sites for an anesthetic phenol on the GABAA receptor. Journal of medicinal chemistry. 2002; 45(15): 3210-3221.


57. Krasowski M.D., Nishikawa K., Nikolaeva N. et al. Methionine 286 in transmembrane domain 3 of the GABAA receptor beta subunit controls a binding cavity for propofol and other alkylphenol general anesthetics. Neuropharmacology. 2001; 41: 952-964.


58. Eaton M.M., Germann L.A., Arora R. et al. Multiple non-equivalent interfaces mediate direct activation of GABAA receptors by propofol. Current Neuropharmacology. 2016; 14(7): 772-780.


59. Li G.D., Chiara D.C., Cohen J.B., Olsen R.W. Neurosteroids Allosterically Modulate Binding of the Anesthetic Etomidate to γ-Aminobutyric Acid Type A Receptors. Journal of Biological Chemistry. 2009; 284: 11771-11775.


60. Akk G., Bracamontes J.R., Covey D.F. et al. Neuroactive steroids have multiple actions to potentiate GABAA receptors. The Journal of Physiology. 2004; 558(1): 59-74.


61. Lan N.C., Gee K.W., Bolger M.B., Chen J.S. Differential responses of expressed recombinant human gamma-aminobutyric acidA receptors to neurosteroids. Journal of neurochemistry. 1991; 57(5): 1818-1821.


62. Akk G., Germann A.L., Sugasawa Y. et al. Enhancement of muscimol binding and gating by allosteric modulators of the GABAA receptor: relating occupancy to state functions. Molecular pharmacology. 2020; 98(4): 303-313.


63. Sapp D.W., Witte U., Turner D.M. et al. Regional variation in steroid anesthetic modulation of [35S] TBPS binding to gamma-aminobutyric acidA receptors in rat brain. Journal of Pharmacology and Experimental Therapeutics. 1992; 262(2): 801-808.


64. Sugasawa Y., Cheng W.W., Bracamontes J.R. et al. Site-specific effects of neurosteroids on GABAA receptor activation and desensitization. eLife. 2020; 9: e55331.


65. Wang M., He Y., Eisenman L.N. et al. 3beta-hydroxypregnane steroids are pregnenolone sulfate-like GABA(A) receptor antagonists. Journal of Neuroscience. 2002; 22(9): 3366-3375.


66. Chen Z.W., Bracamontes J.R., Budelier M.M. Multiple functional neurosteroid binding sites on GABAA receptors. PLoS Biol. 2019; 17(3): e3000157.


67. Jayakar S.S., Chiara D.C., Zhou X. et al. Photoaffinity labeling identifies an intersubunit steroid-binding site in heteromeric GABA type A (GABAA) receptors. Journal of Biological Chemistry. 2020; 295(33): 11495-11512.


68. Laverty D., Thomas P., Field M. et al. Crystal structures of a GABAA-receptor chimera reveal new endogenous neurosteroid-binding sites. Nature structural & molecular biology. 2017; 24(11): 977-985.


69. Miller P.S., Scott S., Masiulis S. Structural basis for GABAA receptor potentiation by neurosteroids. Nature structural & molecular biology. 2017; 24(11): 986-992.


70. Chen Q., Wells M.M., Arjunan P. et al. Structural basis of neurosteroid anesthetic action on GABAA receptors. Nature Communications. 2018; 9(1): 3972.


71. Ziemba A.M., Szabo A., Pierce D.W. Alphaxalone binds in inner transmembrane beta+-alpha- interfaces of alpha1beta3gamma2 gamma-aminobutyric acid type A receptors. Anesthesiology. 2018; 128(2): 338-351.


72. Germann A.L., Pierce S.R., Tateiwa H. et al. Intrasubunit and intersubunit steroid binding sites independently and additively mediate α1β2γ2L GABAA receptor potentiation by the endogenous neurosteroid allopregnanolone. Molecular pharmacology. 2021; 100(1): 19-31.


73. Sugasawa Y., Bracamontes J.R., Krishnan K. et al. The molecular determinants of neurosteroid binding in the GABA(A) receptor. The Journal of steroid biochemistry and molecular biology. 2019; 192: 105383.


74. Hosie A.M., Wilkins M.E., da Silva H.M., Smart T.G. Endogenous neurosteroids regulate GABAA receptors through two discrete transmembrane sites. Nature. 2006; 444(7118): 486-489.


75. Akk G., Li P., Bracamontes J. et al. Mutations of the GABA-A receptor α1 subunit M1 domain reveal unexpected complexity for modulation by neuroactive steroids. Molecular pharmacology. 2008; 74(3): 614-627.


76. Wang L., Covey D.F., Akk G., Evers A.S. Neurosteroid Modulation of GABAA Receptor Function by Independent Action at Multiple Specific Binding Sites. Current Neuropharmacology. 2022; 20(5): 886-890.


77. Chisari M., Eisenman L.N., Krishnan K. et al. The influence of neuroactive steroid lipophilicity on GABAA receptor modulation: Evidence for a low-affinity interaction. Journal of neurophysiology. 2009; 102(2): 1254-1264.


78. Li P., Shu H.J., Wang C. et al. Neurosteroid migration to intracellular compartments reduces steroid concentration in the membrane and diminishes GABA-A receptor potentiation. The Journal of Physiology. 2007; 584(3): 789-800.


79. Sooksawate T., Simmonds M.A. Influence of membrane cholesterol on modulation of the GABA(A) receptor by neuroactive steroids and other potentiators. British journal of pharmacology. 2001; 134(6): 1303-1311.


80. Lee A.G. Interfacial binding sites for cholesterol on GABAA receptors and competition with neurosteroids. Biophysical Journal. 2021; 120(13): 2710-2722.


81. Budelier M.M., Cheng W.W.L., Chen Z.W. et al. Common binding sites for cholesterol and neurosteroids on a pentameric ligand-gated ion channel. Biochimica Et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids. 2019; 1864(2) :128-136.