banner medline tsn
МЕДЛАЙН.РУ
Содержание журнала

Архив

Редакция
Учредители

Федеральное государственное бюджетное учреждение науки
Институт теоретической и экспериментальной биофизики
Российской академии наук


ООО "ИЦ КОМКОН"


ФГБУН "Институт токсикологии" ФМБА России

Адрес редакции и реквизиты

192012, Санкт-Петербург, ул.Бабушкина, д.82 к.2, литера А, кв.378

Свидетельство о регистрации электронного периодического издания ЭЛ № ФС 77-37726 от 13.10.2009
Выдано - Роскомнадзор

ISSN 1999-6314


Фундаментальные исследования • Биофизика

Том: 9
Статья: « 20 »
Страницы:. 196-240
Опубликована в журнале: ноябрь 2008 г.

English version

Дифференцировка клеток обратима: соматические научились превращать в плюрипотентные стволовые

Бочарова Л.С.

Институт теоретической и экспериментальной биофизики РАН
Пущино, Московская область


Резюме
Серьезный прорыв в области клеточных технологий сделал возможным превращение различных соматических клеток в индуцированные плюрипотентные стволовые (iPS) клетки. По свойствам они аналогичны клеткам внутренней клеточной массы бластоцисты (ICM) и эмбриональным стволовым (ES) клеткам. iPS клетки активно пролиферируют in vitro, сохраняя свойства недифференцированных клеток, и в то же время способны превращаться в любые клетки организма. В обзоре анализируются свойства iPS клеток мышей и человека, методы их получения, молекулярные механизмы трансформации специализированных клеток, возможность их применении в медицинской практике.


Ключевые слова
дифференцировка, плюрипотентность, индукторы, эпигенетические изменения, клеточная терапия, источники клеток



(статья в формате PDF. Для просмотра необходим Adobe Acrobat Reader)



открыть статью в новом окне

Список литературы

1. Никольский Н.Н., Габай И.А., Сомова Н.В. Эмбриональные стволовые клетки человека. Проблемы и перспективы. Обзор. Цитология. 2007; 49: 259-236


2. Adhikary S., Eilers M. Transcriptional regulation and transformation by Myc proteins. Review. Nature Rev. Molecular Cell Biology. 2005; 6: 635-645


3. Allegrucci C., Young L.E. Differences between human embryonic stem cell lines. Human Reproduct. 2007; 13: 103-120


4. Aoi T., Yae K., Nakagawa M., Ichisaka T., Okita K., Takahashi K., Chiba T., Yamanaka S. Generation of pluripotent stem cells from adult mouse liver and stomach cells. Science Express 2008; published on line 14 February


5. Baker M. Mouse skin cells made pluripotent by genetic modification can give rise to all types of tissue. Nature Reports Stem Cells. Published online: 7 June 2007


6. Bang A.G., Carpenter M.K. Reconstructing pluripotency. Science. 2008; 380: 58-59


7. Bibikova M., Laurent L.C., Ren B. et al. Unraveling Epigenetic Regulation in Embryonic Stem Cells. Review. Cell Stem Cells. 2008; 2: 123-134


8. Blelloch, R., Venere, M., Yen, J., Ramalho-Santos, M. Generation of induced pluripotent stem cells in the absence of drug selection. Cell Stem Cell. 2007: 1; 245–247


9. Brambrink T., Foreman R., Welstead G. et al. Sequential expression of pluripotency markers during direct reprogramming of mouse somatic cells. Cell. Stem Cells. 2008; 2: 151-159


10. Buszczak M., Spradling A. Searching Chromatin for Stem Cell Identity. Cell. 2006; 125: 233-236


11. Cowan, C.A., Atienza, J., Melton, D.A., Eggan, K. Nuclear reprogramming of somatic cells after fusion with human embryonic stem cells. Science. 2005: 309; 1369–1373


12. Cyranoski D. Race to mimic human embryonic stem cells. Nature. 2007; 450: 462-463


13. Cyranoski D. Verdict: Hwang’s human stem cells were all fakes. Nature. 2006; 439: 122-123


14. Fourse S.D., Shen Y. et al. Promoter CpG Methylation contributes to ES cell gene regulation in parallel with Oct4/Nanog, PcG complex, and histone H3 K4/K27 trimethylation. Cell Stem Cell. 2008; 2: 160–169


15. Gottweis H., Minger S. iPS and the politics of promises. Nature Biotechnology. 2008; 26: 271-272


16. Guhr A., Kurtz A., Friedgen K., Oser P.L. Current state of human embryonic stem cell research: an overview of cell lines and their use in experimental work. Stem Cells. 2006; 24: 2187-2191


17. Hanna J., Markoulaki S., Schorderet P. et al. Direct reprogramming of terminally differentiated mature B lymphocytes to pluripotency. Cell. 2008; 133: 250-264


18. Hanna J., Wernig M., Markoulaki S. et al. Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science 2007; 318 : 1920-23


19. Hattori N., Nishino K. et al. Epigenetic control of mouse Oct-4 gene expression in embryonic stem cells and trophoblast stem cells. J. Biol. Chem. 2004; 279: 17063-17069


20. Hawley R.G., Sobieski D.A. Somatic stem cell plasticity: To be or not to be... Stem Cells. 2002; 20: 195-197


21. Hochedlinger, K., Jaenisch, R. Nuclear transplantation, embryonic stem cells, and the potential for cell therapy. Review. New Engl. J. Med. 2003; 349: 275–286


22. Hochedlinger, K., and Jaenisch, R. Monoclonal mice generated by nuclear transfer from mature B and T donor cells. Nature. 2002; 415: 1035–1038


23. Holden C., Vogel G. A seismic shift for stem cell research. Science. 2008; 319: 560-550


24. Itskovitz-Eldor J., Schuldiner M., Karsenti et al. Differentiation of human embryonic stem cells into embryoid bodies compromising the three embryonic germ layers. Mol. Med. 2000; 6: 88–95


25. Ivanova N., Dobrin R., Lu R. et al. Dissecting self-reneval in stem cells with RNA intereference. Review. Nature. 2006; 442; 533-538


26. Jaenisch R., Young R. Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming. Review. Cell. 2008; 132: 567–582


27. Jones P., Baylin S. The epigenomics of cancer. Review. Cell. 2007; 128: 683-692


28. Kim J., Chu J., Shen X., Wang J., Orkin S.H. An extended transcriptional network for pluripotency of embryonic stem cells. Cell. 2008; 132: 1049–1061


29. Knoepfler P.S. Why Myc? An Unexpected ingredient in the stem cell cocktail. Minireview. Cell Stem Cell. 2008; 2: 18-21


30. Levitzky M., Yamanaka S., Reprogramming somatic cells toward pluripotency by defined factors. Review. Current Opinion Biotechnology. 2007; 18: 467-473


31. Lowry W.E., L. Richter L., Yachechko R. et al. Generation of human induced pluripotent stem cells from dermal fibroblasts. PNAS. 2008; 105: 2883–2888


32. Maherali, N., Sridharan, R. Xie, W. et al. Global epigenetic remodeling in directly reprogrammed fibroblasts. Cell Stem Cell. 2007; 1: 55–70


33. Masaki, H., Ishikawa T. et al. Heterogeneity of pluripotent marker gene expression in colonies generated in human iPS cell induction culture, Stem Cell Res. 2008; doi:10.1016/j.scr.


34. Meissner, A., Wernig, M., Jaenisch, R. Direct reprogramming of genetically unmodified fibroblasts into pluripotent stem cells. Nat. Biotechnol. 2007; 25: 1177–1181


35. Meshorer E., Mistoli T. Chromatin in pluripotent embryonic stem cells and differentiation. Review. Nature Rev. Mol. Cell Biol. 2006; 7: 540-546


36. Mikkola M., Olsson C., Palgi J. et al. Distinct differentiation characteristics of individual human embryonic stem cell lines. BMC Developmental Biology. 2006; 6: 40


37. Morshead CM, Benveniste P, Iscove NN et al. Hematopoietic competence is a rare property of neural stem cells that may depend on genetic and epigenetic alterations. Nature Medicine. 2002; 8: 268-273


38. Nakagawa, M., Koyanagi, M., Tanabe, K. et al. Generation of induced pluripotent stem cells without Myc from mouse and human. Nature Biotechnology. 2008; 26: 101-106


39. Okita K., Ichisaka T., Yamanaka S. Generation of germline-competent induced pluripotent stem cells. Nature. 2007; 448: 313–317


40. Panneteier M., Feil R. Epigenetic stability of embryonic stem cells and developmental potential. Review. Trends Biotechnol. 2007; 25: 556-562


41.Park I.H., Zhao R., West J. et al. Reprogramming of human somatic cells to pluripotency with defined factors. Nature. 2008; 451: 141-147


42. Pera M.F., Hasegawa K. Simpler and suffer cell reprogramming. Nature Biotechnology. 2008; 26: 59-60


43. Phinney D.G., Prockop D.J. Mesenchymal stem/multi-potent stromal cells (MSCs): the state of transdifferentiation and modes of tissue repair - current views. Stem Cells. 2007; 25: 2896- 2902


44. Preston S.L., Alison M.R., et al. The new stem cell biology: something for everyone. Review. J Clin Pathol: Mol Pathol. 2003; 56: 86–96


45. Rossat H. Stem cells: The magic brew. Nature 2007; 448: 260-262


46. Ruau D., Ensenat-Waser R., Timo C. Dinger TC. et al. Pluripotency associated genes are rcactivated by chromatin modifying agents in neurosphere cells. Stem Cells Express. 2008; first published online January 17


47. Shaun D. Fouse,1 Yin Shen,1 уet al. Promoter CpG methylation contributes to ES cell gene regulation in parallel with Oct4/Nanog, PcG complex, and histone H3 K4/K27 trimethylation. Cell Stem Cell. 2008; 2: 160–169


48. Schmittwolf C, Kirchhof N, Jauch A et al. In vivo haematopoietic activity is induced in neurosphere cells by chromatin-modifying agents. EMBO J. 2005; 24: 554-566.


49. Spivakov M., Fisher A.G. Epigenetic signatures of stem cells. Review. Nature Rev. Genetics. 2007; 8: 263-271


50. Stadtfeld M., Nimet Maherali N., David T. Breault D.T., Hochedlinger K. Defining molecular cornerstones during fibroblast to iPS cell reprogramming in mouse. Cell Stem Cell. 2008; 2: 230–240


51.Sumi T., Tsuneyoshi N., Nakatsuji N. et al. Apoptosis and differentiation of human embryonic stem cells induced by sustained activation of c-Myc. Oncogene. 2007; 26: 5564–5576


52. Surani M.A., Hayashi K., Hajkova P. Genetic and epigenetic regulators of pluripotency. Review. Cell. 2007; 128: 747–762


53. Tada, M., Takahama, Y., Abe, K., Nakatsuji, N. and Tada, T. Nuclear reprogramming of somatic cells by in vitro hybridization with ES cells. Current Biol. 2001; 11: 1553–1558


54. Takahashi K., Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006; 126: 663–76


55. Takahashi K., Yamanaka S., Tanabe K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007; 131 : 861-72


56. Taranger C.K., Noer A., Sorensen A.L. et al. Induction of dedifferentiation, genome wide transcriptional programming, and epigenetic reprogramming by extracts of carcinoma and embryonic stem cells. Mol. Biol. Cell. 2005; 16: 5719-5735


57. Tsuji-Takayama K., Inoue T. et al. Demethylating agent, 5-azacytidine, reverses differentiation of embryonic stem cells. Bioch. Bioph. Res. Com. 2004; 323: 86-90


58. Thomson J.A., Itskovitz-Eldor J., Shapiro S.S. Embryonic stem cell lines derived from human blastocysts. Science. 1998; 282: 1145–1147


59. Ullmann U., In’t Veld P., et al. Epithelial–mesenchymal transition process in human embryonic stem cells cultured in feeder-free conditions. Mol. Human Reproduction. 2007:13: 21–32


60. Vogel G., Holden C. Field Leaps Forward With New Stem Cell Advances. Science. 2007; 318: 1224-1225


61. Wagers A.J., Weissman I.L. Plasticity of adult stem cells. Review. Cell. 2004; 116: 639–648


62. Wang Y. Armstrong S.A. Cancer: Inappropriate Expression of Stem Cell Programs? Cell Stem Cell. 2008; 2: 297-299


63. Wernig M., Meissner, A., Foreman, R. et al. In vitro reprogrammed fibroblasts have a similar developmental potential as ES cells and an ES cell-like epigenetic state. Nature. 2007; 448: 318-325


64. Wernig M., Alexander Meissner A., Cassady J.P., Jaenisch R. c-Myc is dispensable for direct reprogramming of mouse fibroblasts. Cell. Stem Cells. 2008; 2: 10-13


65. Wernig M., Zhao J-P., Pruszak J. et al. Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson's disease. PNAS. 2008; 105: 5856-5861


66. Wilmut I. The first direct reprogramming of adult human fibroblasts. Cell Stem Cells. 2007; 1: 593-594


67. Wobus A.M., Boheler K.R. Embryonic stem cells: prospects for developmental biology and cell Therapy. Review. Physiol. Rev. 2005; 85: 635-678


68. Wong D.J., Liu H. et al. Module map of stem cell genes guides creation of epithelial cancer stem cells, Cell Stem Cell. 2008; 2: 333–344


69. Wu L.C., Sun C.W., Ryan T.M., et al. Correction of sickle cell disease by homologous recombination in embryonic stem cells. Blood. 2006; 108: 1183-1188


70. Zaehres H., Schuler H.R. Induction of pluripotency: from mouse to human. Cell. 2007; 131: 864-865


71. Yamanaka, S. Strategies and new developments in the generation of patient-specific pluripotent stem cells. Review. Cell Stem Cell. 2007; 1: 39–49.


72. Yang, X., Smith, S.L., et al. Nuclear reprogramming of cloned embryos and its implications for therapeutic cloning. Nat. Genet. 2007; 39: 295–302.


73. Yu J., Vodyanik M.A., Thomson J.A. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007; 318 : 1917-1920