| |||
МЕДЛАЙН.РУ
|
|||
|
Фундаментальные исследования • Биофизика
Том: 9 Статья: « 20 » Страницы:. 196-240 Опубликована в журнале: ноябрь 2008 г. English version Дифференцировка клеток обратима: соматические научились превращать в плюрипотентные стволовыеБочарова Л.С.
Институт теоретической и экспериментальной биофизики РАН Пущино, Московская область
Резюме
Серьезный прорыв в области клеточных технологий сделал возможным превращение различных соматических клеток в индуцированные плюрипотентные стволовые (iPS) клетки. По свойствам они аналогичны клеткам внутренней клеточной массы бластоцисты (ICM) и эмбриональным стволовым (ES) клеткам. iPS клетки активно пролиферируют in vitro, сохраняя свойства недифференцированных клеток, и в то же время способны превращаться в любые клетки организма. В обзоре анализируются свойства iPS клеток мышей и человека, методы их получения, молекулярные механизмы трансформации специализированных клеток, возможность их применении в медицинской практике. Ключевые слова дифференцировка, плюрипотентность, индукторы, эпигенетические изменения, клеточная терапия, источники клеток (статья в формате PDF. Для просмотра необходим Adobe Acrobat Reader) открыть статью в новом окне Список литературы 1. Никольский Н.Н., Габай И.А., Сомова Н.В. Эмбриональные стволовые клетки человека. Проблемы и перспективы. Обзор. Цитология. 2007; 49: 259-236 2. Adhikary S., Eilers M. Transcriptional regulation and transformation by Myc proteins. Review. Nature Rev. Molecular Cell Biology. 2005; 6: 635-645 3. Allegrucci C., Young L.E. Differences between human embryonic stem cell lines. Human Reproduct. 2007; 13: 103-120 4. Aoi T., Yae K., Nakagawa M., Ichisaka T., Okita K., Takahashi K., Chiba T., Yamanaka S. Generation of pluripotent stem cells from adult mouse liver and stomach cells. Science Express 2008; published on line 14 February 5. Baker M. Mouse skin cells made pluripotent by genetic modification can give rise to all types of tissue. Nature Reports Stem Cells. Published online: 7 June 2007 6. Bang A.G., Carpenter M.K. Reconstructing pluripotency. Science. 2008; 380: 58-59 7. Bibikova M., Laurent L.C., Ren B. et al. Unraveling Epigenetic Regulation in Embryonic Stem Cells. Review. Cell Stem Cells. 2008; 2: 123-134 8. Blelloch, R., Venere, M., Yen, J., Ramalho-Santos, M. Generation of induced pluripotent stem cells in the absence of drug selection. Cell Stem Cell. 2007: 1; 245–247 9. Brambrink T., Foreman R., Welstead G. et al. Sequential expression of pluripotency markers during direct reprogramming of mouse somatic cells. Cell. Stem Cells. 2008; 2: 151-159 10. Buszczak M., Spradling A. Searching Chromatin for Stem Cell Identity. Cell. 2006; 125: 233-236 11. Cowan, C.A., Atienza, J., Melton, D.A., Eggan, K. Nuclear reprogramming of somatic cells after fusion with human embryonic stem cells. Science. 2005: 309; 1369–1373 12. Cyranoski D. Race to mimic human embryonic stem cells. Nature. 2007; 450: 462-463 13. Cyranoski D. Verdict: Hwang’s human stem cells were all fakes. Nature. 2006; 439: 122-123 14. Fourse S.D., Shen Y. et al. Promoter CpG Methylation contributes to ES cell gene regulation in parallel with Oct4/Nanog, PcG complex, and histone H3 K4/K27 trimethylation. Cell Stem Cell. 2008; 2: 160–169 15. Gottweis H., Minger S. iPS and the politics of promises. Nature Biotechnology. 2008; 26: 271-272 16. Guhr A., Kurtz A., Friedgen K., Oser P.L. Current state of human embryonic stem cell research: an overview of cell lines and their use in experimental work. Stem Cells. 2006; 24: 2187-2191 17. Hanna J., Markoulaki S., Schorderet P. et al. Direct reprogramming of terminally differentiated mature B lymphocytes to pluripotency. Cell. 2008; 133: 250-264 18. Hanna J., Wernig M., Markoulaki S. et al. Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science 2007; 318 : 1920-23 19. Hattori N., Nishino K. et al. Epigenetic control of mouse Oct-4 gene expression in embryonic stem cells and trophoblast stem cells. J. Biol. Chem. 2004; 279: 17063-17069 20. Hawley R.G., Sobieski D.A. Somatic stem cell plasticity: To be or not to be... Stem Cells. 2002; 20: 195-197 21. Hochedlinger, K., Jaenisch, R. Nuclear transplantation, embryonic stem cells, and the potential for cell therapy. Review. New Engl. J. Med. 2003; 349: 275–286 22. Hochedlinger, K., and Jaenisch, R. Monoclonal mice generated by nuclear transfer from mature B and T donor cells. Nature. 2002; 415: 1035–1038 23. Holden C., Vogel G. A seismic shift for stem cell research. Science. 2008; 319: 560-550 24. Itskovitz-Eldor J., Schuldiner M., Karsenti et al. Differentiation of human embryonic stem cells into embryoid bodies compromising the three embryonic germ layers. Mol. Med. 2000; 6: 88–95 25. Ivanova N., Dobrin R., Lu R. et al. Dissecting self-reneval in stem cells with RNA intereference. Review. Nature. 2006; 442; 533-538 26. Jaenisch R., Young R. Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming. Review. Cell. 2008; 132: 567–582 27. Jones P., Baylin S. The epigenomics of cancer. Review. Cell. 2007; 128: 683-692 28. Kim J., Chu J., Shen X., Wang J., Orkin S.H. An extended transcriptional network for pluripotency of embryonic stem cells. Cell. 2008; 132: 1049–1061 29. Knoepfler P.S. Why Myc? An Unexpected ingredient in the stem cell cocktail. Minireview. Cell Stem Cell. 2008; 2: 18-21 30. Levitzky M., Yamanaka S., Reprogramming somatic cells toward pluripotency by defined factors. Review. Current Opinion Biotechnology. 2007; 18: 467-473 31. Lowry W.E., L. Richter L., Yachechko R. et al. Generation of human induced pluripotent stem cells from dermal fibroblasts. PNAS. 2008; 105: 2883–2888 32. Maherali, N., Sridharan, R. Xie, W. et al. Global epigenetic remodeling in directly reprogrammed fibroblasts. Cell Stem Cell. 2007; 1: 55–70 33. Masaki, H., Ishikawa T. et al. Heterogeneity of pluripotent marker gene expression in colonies generated in human iPS cell induction culture, Stem Cell Res. 2008; doi:10.1016/j.scr. 34. Meissner, A., Wernig, M., Jaenisch, R. Direct reprogramming of genetically unmodified fibroblasts into pluripotent stem cells. Nat. Biotechnol. 2007; 25: 1177–1181 35. Meshorer E., Mistoli T. Chromatin in pluripotent embryonic stem cells and differentiation. Review. Nature Rev. Mol. Cell Biol. 2006; 7: 540-546 36. Mikkola M., Olsson C., Palgi J. et al. Distinct differentiation characteristics of individual human embryonic stem cell lines. BMC Developmental Biology. 2006; 6: 40 37. Morshead CM, Benveniste P, Iscove NN et al. Hematopoietic competence is a rare property of neural stem cells that may depend on genetic and epigenetic alterations. Nature Medicine. 2002; 8: 268-273 38. Nakagawa, M., Koyanagi, M., Tanabe, K. et al. Generation of induced pluripotent stem cells without Myc from mouse and human. Nature Biotechnology. 2008; 26: 101-106 39. Okita K., Ichisaka T., Yamanaka S. Generation of germline-competent induced pluripotent stem cells. Nature. 2007; 448: 313–317 40. Panneteier M., Feil R. Epigenetic stability of embryonic stem cells and developmental potential. Review. Trends Biotechnol. 2007; 25: 556-562 41.Park I.H., Zhao R., West J. et al. Reprogramming of human somatic cells to pluripotency with defined factors. Nature. 2008; 451: 141-147 42. Pera M.F., Hasegawa K. Simpler and suffer cell reprogramming. Nature Biotechnology. 2008; 26: 59-60 43. Phinney D.G., Prockop D.J. Mesenchymal stem/multi-potent stromal cells (MSCs): the state of transdifferentiation and modes of tissue repair - current views. Stem Cells. 2007; 25: 2896- 2902 44. Preston S.L., Alison M.R., et al. The new stem cell biology: something for everyone. Review. J Clin Pathol: Mol Pathol. 2003; 56: 86–96 45. Rossat H. Stem cells: The magic brew. Nature 2007; 448: 260-262 46. Ruau D., Ensenat-Waser R., Timo C. Dinger TC. et al. Pluripotency associated genes are rcactivated by chromatin modifying agents in neurosphere cells. Stem Cells Express. 2008; first published online January 17 47. Shaun D. Fouse,1 Yin Shen,1 уet al. Promoter CpG methylation contributes to ES cell gene regulation in parallel with Oct4/Nanog, PcG complex, and histone H3 K4/K27 trimethylation. Cell Stem Cell. 2008; 2: 160–169 48. Schmittwolf C, Kirchhof N, Jauch A et al. In vivo haematopoietic activity is induced in neurosphere cells by chromatin-modifying agents. EMBO J. 2005; 24: 554-566. 49. Spivakov M., Fisher A.G. Epigenetic signatures of stem cells. Review. Nature Rev. Genetics. 2007; 8: 263-271 50. Stadtfeld M., Nimet Maherali N., David T. Breault D.T., Hochedlinger K. Defining molecular cornerstones during fibroblast to iPS cell reprogramming in mouse. Cell Stem Cell. 2008; 2: 230–240 51.Sumi T., Tsuneyoshi N., Nakatsuji N. et al. Apoptosis and differentiation of human embryonic stem cells induced by sustained activation of c-Myc. Oncogene. 2007; 26: 5564–5576 52. Surani M.A., Hayashi K., Hajkova P. Genetic and epigenetic regulators of pluripotency. Review. Cell. 2007; 128: 747–762 53. Tada, M., Takahama, Y., Abe, K., Nakatsuji, N. and Tada, T. Nuclear reprogramming of somatic cells by in vitro hybridization with ES cells. Current Biol. 2001; 11: 1553–1558 54. Takahashi K., Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006; 126: 663–76 55. Takahashi K., Yamanaka S., Tanabe K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007; 131 : 861-72 56. Taranger C.K., Noer A., Sorensen A.L. et al. Induction of dedifferentiation, genome wide transcriptional programming, and epigenetic reprogramming by extracts of carcinoma and embryonic stem cells. Mol. Biol. Cell. 2005; 16: 5719-5735 57. Tsuji-Takayama K., Inoue T. et al. Demethylating agent, 5-azacytidine, reverses differentiation of embryonic stem cells. Bioch. Bioph. Res. Com. 2004; 323: 86-90 58. Thomson J.A., Itskovitz-Eldor J., Shapiro S.S. Embryonic stem cell lines derived from human blastocysts. Science. 1998; 282: 1145–1147 59. Ullmann U., In’t Veld P., et al. Epithelial–mesenchymal transition process in human embryonic stem cells cultured in feeder-free conditions. Mol. Human Reproduction. 2007:13: 21–32 60. Vogel G., Holden C. Field Leaps Forward With New Stem Cell Advances. Science. 2007; 318: 1224-1225 61. Wagers A.J., Weissman I.L. Plasticity of adult stem cells. Review. Cell. 2004; 116: 639–648 62. Wang Y. Armstrong S.A. Cancer: Inappropriate Expression of Stem Cell Programs? Cell Stem Cell. 2008; 2: 297-299 63. Wernig M., Meissner, A., Foreman, R. et al. In vitro reprogrammed fibroblasts have a similar developmental potential as ES cells and an ES cell-like epigenetic state. Nature. 2007; 448: 318-325 64. Wernig M., Alexander Meissner A., Cassady J.P., Jaenisch R. c-Myc is dispensable for direct reprogramming of mouse fibroblasts. Cell. Stem Cells. 2008; 2: 10-13 65. Wernig M., Zhao J-P., Pruszak J. et al. Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson's disease. PNAS. 2008; 105: 5856-5861 66. Wilmut I. The first direct reprogramming of adult human fibroblasts. Cell Stem Cells. 2007; 1: 593-594 67. Wobus A.M., Boheler K.R. Embryonic stem cells: prospects for developmental biology and cell Therapy. Review. Physiol. Rev. 2005; 85: 635-678 68. Wong D.J., Liu H. et al. Module map of stem cell genes guides creation of epithelial cancer stem cells, Cell Stem Cell. 2008; 2: 333–344 69. Wu L.C., Sun C.W., Ryan T.M., et al. Correction of sickle cell disease by homologous recombination in embryonic stem cells. Blood. 2006; 108: 1183-1188 70. Zaehres H., Schuler H.R. Induction of pluripotency: from mouse to human. Cell. 2007; 131: 864-865 71. Yamanaka, S. Strategies and new developments in the generation of patient-specific pluripotent stem cells. Review. Cell Stem Cell. 2007; 1: 39–49. 72. Yang, X., Smith, S.L., et al. Nuclear reprogramming of cloned embryos and its implications for therapeutic cloning. Nat. Genet. 2007; 39: 295–302. 73. Yu J., Vodyanik M.A., Thomson J.A. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007; 318 : 1917-1920 | ||
|