| |||
МЕДЛАЙН.РУ
|
|||
|
Фундаментальные исследования • Патологическая анатомия
Том: 23 Статья: « 4 » Страницы:. 57-74 Опубликована в журнале: 15 февраля 2022 г. English version Патофизиологические основы для прогнозирования устойчивости человека к гипоксии в условиях горной местности (обзор литературы)Ширяева А.И., Фатеев И.В., Кузьмин А.А., Овчинникова А.С., Ветряков О.В., Шкарупа А.В.
ФГБУ «Государственный научно-исследовательский испытательный институт военной медицины» Министерства обороны Российской Федерации ФГБВОУ ВО «Военно-медицинская академия имени С. М. Кирова»
Резюме
Число профессионалов, выполняющих свою работу в горах, так же, как и людей, занимающихся спортом и активным отдыхом на больших высотах, постоянно растeт, что, несомненно, повышает актуальность разработки и внедрения в практику медицинских мероприятий по предварительной оценке устойчивости организма человека к неблагоприятным факторам высокогорья и прогнозированию возможных рисков для состояния здоровья людей. В связи с этим нами был проведен анализ современных литературных данных о влиянии горной гипоксии на функциональное состояние человека, рассмотрены основные патогенетические механизмы компенсаторных реакций дыхательной, сердечно-сосудистой и нервной систем на гипоксемию, возникающую в условиях пониженного содержания кислорода во вдыхаемом воздухе. В результате была показана необходимость комплексного изучения функционирования и реагирования данных систем организма для разработки прогностических методов устойчивости человека к гипоксии. Ключевые слова горная гипоксия, устойчивость к гипоксии, острая горная болезнь, гипоксическая легочная вазоконстрикция, HVR, VE, PIO2, SaO2. (статья в формате PDF. Для просмотра необходим Adobe Acrobat Reader) открыть статью в новом окне Список литературы 1. Лукашов А. А. Горы // Большая российская энциклопедия / под ред. Ю. С. Осипов. М.: «Большая Российская энциклопедия». 2007. Т. 7. С. 499. ISBN 978-5-85270-337-8. 2. Burtscher M., Bodner T., Burtscher J., Ruedl G., Kopp M., Broessner G. 2013. Life style characteristics and cardiovascular risk factors in regular downhill skiers: an observational study. BMC Public Health. Colorado Tourism Office. 2018. Vol. 13. 788. Р. 3. National Bureau of Statistics of China. accssed 2018. http://www.stats.gov.cn/tjsj/ndsj/2018/indexeh.htm. 4. Sagamartha National Park Office. Sagarmartha National Park Entrance Statistics. Conservation DoNPaW, ed. Government of Nepal, Namche Bazar, Solukhumbu. 2020. 5. A. M. Luks, P. N. Ainslie, J. S. Lawley. Ward, Milledge and West?s High Altitude Medicine and Physiology: sixth edition. CRC Press. 2021. 550-555 p. 6. Новиков В.С., Сороко С.И., Шустов Е.Б. Дезадаптационные состояния человека при экстремальных воздействиях и их коррекция. СПб: Политехника-принт. 2018. 548 с. 7. Агаджанян Н.А., Гневушев В.В., Катков А.Ю. Адаптация к гипоксии и биоэкономика внешнего дыхания. М.: Изд-во Ун-та дружбы народов. 1987. 180-186 с. 8. Васильев Г.А., Медведев Ю.А., Хмельницкий О.К. Эндокринная система при кислородном голодании. Л.: Наука. 1974. 150-169 с. 9. Сороко С.И. Значение стресс-реакции в интегративном ответе организма человека на острое гипоксическое воздействие // Вестник образования и развития науки РАЕН. 2016. Т. 20. ? 4. С. 88-95. 10. Бурых Э.А. Общие закономерности и индивидуальные особенности интегративного ответа организма человека на воздействие острой нормобарической гипоксии: спец. 03.03.01 «физиология» : дис. докт. мед. Наук. Бурых Эдуард Анатольевич. Санкт-Петербург. 2020. 241 с. 11. Беркович С.М. Энергетический обмен в норме и патологии. М.: Медицина. 1964. 334 с. 12. Лукьянова Л.Д. Сигнальные механизмы гипоксии. Л.Д. Лукьянова. М: РАН. 2019. 215 с.: ил. 13. Ван Лир Э., Стикней Г. Гипоксия. Перевод с английского. М. Медицина. 1967. 190 с. 14. Rahn H., Otis AB. Man?s respiratory response during and after acclimatization to high altitude. Am J. Physiol Content. 1949. 157. p. 445-462. 15. Schoene RB. Control of ventilation in climbers to extreme altitude. J. Appl Physiol. 1982. Vol. 53. p. 886-890. 16. Schoene RB., Lahiri S., Hackett PH., Peters RM. Jr, et al. Relationship of hypoxic ventilatory response to exercise performance on Mount Everest. J. Appl Physiol. 1984. Vol. 56. Р. 1478-1483. 17. Masuyama S., Kimura H., Sugita T., Kuriyama T., Tatsumi K., Kunitomo F., Okita S., Tojima H., Yuguchi Y., Watanabe S. Control of ventilation in extreme-altitude climbers. J. Appl Physiol. 1986. Vol. 61. Р. 500-506 18. Milledge JS., Ward MP., Williams ES., Clarke CR. Cardiorespiratory response to exercise in men repeatedly exposed to extreme altitude. J. Appl Physiol Respir Environ Exerc Physiol. 1983. Vol. 55. Р. 1370-1379. 19. Schoene RB., Hackett PH., Roach RC., Houston CS., Coates G., Sutton JR., eds. Praeger. Blunted hypoxic chemosensitivity at altitude and sea level in an elite high altitude climber. In Hypoxia and Cold.. New York. 1987. p. 532. 20. Bernardi L., Schneider A., Pomidori L., Paolucci E. Cogo AHypoxic ventilatory response in successful extreme altitude climbers. Eur Respir J. 2006. Vol. 27. Р. 165-171. 21. Barcroft J., Binger CA., Bock AV. Observations upon the effect of high altitude on the physiological processes of the human b Philos Trans R Soc Lond Ser. 1923.Vol. 211. Р. 351-480. 22. Grollman A. Physiological variations of the cardiac output of man. VII. The effect of high altitude on the cardiac output and its related functions: an account of experiments conducted on the summit of Pikes Peak, Colorado. Am J. Physiol. 1930. Vol. 93. Р. 19-40. 23. Christensen EH., Forbes WH. Der Kreislauf in grossen Höhen. Skand Arch Physiol. 1937. Vol. 76. Р. 75-89. 24. Klausen K. Cardiac output in man in rest and work during and after acclimatization to 3,800 m. J. Appl Physiol. 1966. Vol. 21. Р. 609-616. 25. Vogel JA, Hansen JE, Harris CW. Cardiovascular responses in man during exhaustive work at sea level and high altitude. J. Appl Physiol. 1967. Vol. 23. Р. 531-539. 26. Balasubramanian V., Mathew OP., Tiwari SC., Behl A., Sharma SC., Hoon RS. Alterations in left ventricular function in normal man on exposure to high altitude (3658 m). Br Heart J. 1978. Vol. 40. Р. 276-285. 27. Hoon RS., Balasubramanian V., Mathew OP., Tiwari SC., Sharma SC., Chadha KS. Effect of high-altitude exposure for 10 days on stroke volume and cardiac output. J. Appl Physiol Respir Environ Exerc Physiol. 1977. Vol. 42. Р. 722-727. 28. Sime F., Penaloza D., Ruiz L., Gonzales N., Covarrubias E., Postigo R. Hypoxemia, pulmonary hypertension, and low cardiac output in newcomers at low altitude. J. Appl Physiol. 1974. Vol. 36. Р. 561-565. 29. Wolfel EE., Selland MA., Mazzeo RS., Reeves JT. 1994. Systemic hypertension at 4,300 m is related to sympathoadrenal activity. J. Appl Physiol 198. Vol. 76. Р. 1643-1650. 30. Koller EA., Drechsel S., Hess T., Macherel P., Boutellier U. Effects of atropine and propranolol on the respiratory, circulatory, and ECG responses to high altitude in man. Eur J. Appl Physiol Occup Physiol. 1988. Vol. 57. Р. 163-172. 31. Vogel JA., Harris CW. Cardiopulmonary responses of resting men during early exposure to high altitude. J. Appl Physiol. 1967. Vol. 22. Р. 1124-1128. 32. Kontos HA., Levasseur JE., Richardson DW., Mauck HP., Jr. Patterson JL., Jr. Comparative circulatory responses to systemic hypoxia in man and in unanesthetized dog. J. Appl physiol. 1967. Vol. 23. Р. 381-386. 33. Marshall JM. Peripheral chemoreceptors and cardiovascular regulation. Physiol Rev. 1994. Vol. 74. Р. 543-594. 34. Hansen J., Sander M. Sympathetic neural overactivity in healthy humans after prolonged exposure to hypobaric hypoxia. J. Physiol. 2003. Vol. 546. Р. 921-929. 35. Rowell LB., Johnson DG., Chase PB., Comess KA., Seals DR. 1989; Hypoxemia raises muscle sympathetic activity but not norepinephrine in resting humans. J. Appl Physiol 1985. Vol. 66. Р. 1736-1743. 36. Somers VK., Mark AL., Abboud FM. Sympathetic activation by hypoxia and hypercapnia-implications for sleep apnea. Clin Exp Hypertens A. 10 Suppl. 1988. Vol. 10. Р. 413-422. 37. Richalet JP., Sutton JR., Coates G. The heart and adrenergic system. In: Hypoxia: The Adaptations. Dekker, Philadelphia. 1990. p. 231-240. 38. Hopkins SR., Bogaard HJ., Niizeki K., Yamaya Y., Ziegler MG., Wagner PD. Beta-adrenergic or parasympathetic inhibition, heart rate and cardiac output during normoxic and acute hypoxic exercise in humans. J. Physiol. 2003. Vol. 550. Р. 605-616. 39. Richardson DW., Kontos HA., Raper AJ., Patterson JL., Jr. Modification by beta-adrenergic blockade of the circulatory responses to acute hypoxia in man. J. Clin Invest. 1967. Vol. 46. Р. 77-85. 40. Siebenmann C., Rasmussen P., Sorensen H., Bonne TC., Zaar M., Aachmann-Andersen NJ., Norsborg NB., Secher NH., Lundby C. Hypoxia increases exercise heart rate despite combined inhibition of beta-adrenergic and muscarinic receptors. Am J. Physiol Heart Circ Physiol. 2015. Vol. 308. Р. 1540-1546. 41. Boussuges A., Molenat F., Burnet H., Cauchy E., Gardette B., Sainty JM., Jammes Y., Richalet JP. Operation Everest III. Сomex ?97: modifications of cardiac function secondary to altitude-induced hypoxia. An echocardiographic and Doppler study. Am J. Respir Crit Care Med. 2000. Vol. 161. Р. 264-270. 42. Reeves JT., Groves BM., Sutton JR., Wagner PD., Cymerman A., Malconian MK., Rock PB., Young PM., Houston CS. 1987. Operation Everest II: preservation of cardiac function at extreme altitude. J. Appl Physiol. 1985. Vol. 63. Р. 531-539. 43. Siebenmann C., Hug M., Keiser S., Muller A., van Lieshout J., Rasmussen P., Lundby C. Hypovolemia explains the reduced stroke volume at altitude. Physiol Rep. 2013. Vol. 1. 44. Stembridge M., Levine BD. No heartbreak at high altitude; preserved cardiac function in chronic hypoxia. Exp Physiol. 2019. Vol. 104. Р. 619-620. 45. Vogel JA., Hartley LH., Cruz JC.. Cardiac output during exercise in altitude natives at sea level and high altitude. J. Appl Physiol. 1974. Vol. 36. Р. 173-176. 46. Tamisier R., Norman D., Anand A., Choi Y., Weiss JW. 2004. Evidence of sustained forearm vasodilation after brief isocapnic hypoxia. J. Appl Physiol. 1985. Vol. 96. Р. 1782-1787. 47. Saito M., Abe H., Iwase S., Koga K., Mano T. Muscle sympathetic nerve responsiveness to static contraction is not altered under hypoxia. Jpn. J. Physiol. 1991. Vol. 41. Р. 775-783. 48. Sander M. Does the sympathetic nervous system adapt to chronic altitude exposure? Adv Exp Med Biol. 2016. Vol. 903. Р. 375-393. 49. Sagoo RS., Hutchinson CE., Wright A., Handford C., Parsons H., Sherwood V., Wayte S., Nagaraja S., Ng?Andwe E., Wilson MH., Imray CH. Magnetic Resonance investigation into the mechanisms involved in the development of high-altitude cerebral edema. J. Cereb Blood Flow Metab. 2017. Vol. 37. Р. 319-331. 50. Calbet JAL., Boushel R., Radegran G., Sondergaard H., Wagner PD., Saltin B. Why is VO2 max after altitude acclimatization still reduced despite normalization of arterial O2 content? Am J. Physiol Regul Integr Comp Physiol. 2003. Vol. 284. Р. 304-316. 51. Parati G., Bilo G., Faini A., Bilo B., Revera M., Giuliano A., Lombardi C., Caldara G., Gregorini F., Styczkiewicz K., Zambon A., Piperno A., Modesti PA., Agostoni P., Mancia G. Changes in 24 h ambulatory blood pressure and effects of angiotensin II receptor blockade during acute and prolonged high-altitude exposure: a randomized clinical trial. Eur Heart J. 2014. Vol. 35. Р. 3113-3122. 52. Kamat SR., Banerji BC. Study of cardiopulmonary function on exposure to high altitude. I. Acute acclimatization to an altitude of 3,5000 to 4,000 meters in relation to altitude sickness and cardiopulmonary function. Am Rev Respir Dis. 1972. Vol. 106. Р. 404-413. 53. Palatini P., Businaro R., Berton G., Mormino P., Rossi GP., Racioppa A., Pessina AC., Dal Palu C. Effects of low altitude exposure on 24-hour blood pressure and adrenergic activity. Am J Cardiol. 1989. Vol. 64. Р. 1379-1382. 54. Keyes LE., Sallade TD., Duke C., Starling J., Sheets A., Pant S., Young DS., Twillman D., Regmi N., Phelan B., Paudel P., McElwee M., Mather L., Cole D., McConnell T., Basnyat B. Blood pressure and altitude: an observational cohort study of hypertensive and nonhypertensive Himalayan trekkers in Nepal. High Alt Med Biol. 2017. Vol. 18. Р. 267-277. 55. Sylvester JT., Shimoda LA., Aaronson PI., Ward JP. Hypoxic pulmonary vasoconstriction. Physiol Rev. 2012. Vol. 92. Р. 367-520. 56. Dawson A. Regional lung function during early acclimatization to 3,100 m altitude. J. Appl Physiol. 1972. Vol. 33. Р. 218-223. 57. West JB. Diffusing capacity of the lung for carbon monoxide at high altitude. J Appl Physiol. 1962. Vol. 17. Р. 421-426. 58. Balanos GM,. Pugh K., Frise MC., Dorrington KL. Exaggerated pulmonary vascular response to acute hypoxia in older men. Exp Physiol. 2015. Vol. 100. Р. 1187-1198. 59. Frise MC., Robbins PA. Iron, oxygen, and the pulmonary circulation. J. Appl Physiol. 1985. Vol. 119. Р. 1421-1431. 60. Talbot NP., Balanos GM., Dorrington KL., Robbins PA. Two temporal components within the human pulmonary vascular response to approximately 2 h of isocapnic hypoxia. J. Appl Physiol. 1985. Vol. 98. Р. 1125-1139. 61. Swenson ER., Bartsch P. High-altitude pulmonary edema. Compr Physiol. 2012. Vol. 2. Р. 2753-2773. 62. Grunig E., Mereles D., Hildebrandt W., Swenson ER., Kubler W., Kuecherer H., Bartsch P. Stress Doppler echocardiography for identification of susceptibility to high altitude pulmonary edema. J. Am Coll Cardiol. 2000. Vol. 35. Р. 980-987. 63. Ainslie PN., Hoiland RL., Bailey DM. Lessons from the laboratory. Integrated regulation of cerebral blood flow during hypoxia. Exp Physiol. 2016. Vol. 101. Р. 1160-1166. 64. Ainslie PN., Subudhi AW. Cerebral blood flow at high altitude. High Alt Med Biol. 2014. Vol. 15. Р. 133-140. 65. Ainslie PN., Wilson M., Imray CH. The cerebral circulation and brain. In High Altitude. Human Adaptation to Hypoxia. E Swenson and Pr Bartsch, eds. Springer. New York & Basel. 2014. Р. 141-171. 66. Haddad GG., Jiang C. O2 deprivation in the central nervous system: on mechanisms of neuronal response, differential sensitivity and injury. Prog Neurobiol. 1993. Vol. 40. Р. 277-318. 67. Hoiland RL., Bain AR., Rieger MG., Bailey DM., Ainslie PN. Hypoxemia, oxygen content, and the regulation of cerebral blood flow. Am J. Physiol Regul Integr Comp Physiol. 2016. Vol. 310. Р. 398-413. 68. Hossmann KA. The hypoxic brain. Insights from ischemia research. Adv Exp Med Biol. 1999. Vol. 474. Р. 155. 69. Raichle ME, Hornbein TF. The high-altitude brain. In: High Altitude: An Exploration of Human Adaptation. TF Hornbein and RB Schoen, eds. Marcel Dekker: New York. 2001. P. 377-423. 70. Siesjö BK. Pathophysiology and treatment of focal cerebral ischemia. Part I: pathophysiology. J. Neurosurg. 1992а. Vol. 77. Р. 169-184. 71. Siesjö BK. Pathophysiology and treatment of focal cerebral ischemia. Part II: mechanisms of damage and treatment. J. Neurosurg. 1992b. Vol. 77. Р. 337-354. 72. Лебединский А.В., Попов А.П. Влияние пониженного барометрического давления на функции анализаторов // Авиационная медицина, М. Воениздат, 1953. С. 125-154. 73. Новиков В.С. Физиология экстремальных состояний / Новиков В.С., Горанчук В.В., Шустов Е.Б. СПб. Наука, 1998. 257 с. 74. Быков В. Н., Ветряков О. В., Цыган В. Н. [и дР.]. Оценка устойчивости военнослужащих к гипоксии на фоне гипобарии и высокой физической активности // Вестник Российской Военно-медицинской академии. 2017. ?3. Т. 59. С. 133. 75. Perez-Pinzon MA., Chan CY., Rosenthal M., Sick TJ. Membrane and synaptic activity during anoxia in the isolated turtle cerebellum. Am J. Physiol. 1992. Vol. 263. Р. 1057-1063. 76. Kerem D., Elsner R. Cerebral tolerance to asphyxial hypoxia in the harbor seal. Respir Physiol. 1973. Vol. 19. Р. 188-200. 77. Faraci FM., Fedde MR. Regional circulatory responses to hypocapnia and hypercapnia in bar-headed geese. Am J. Physiol Integr Comp Physiol. 1986. Vol. 250. R499-R504. 78. Laguë SL. High-altitude champions: birds that live and migrate at altitude. J. Appl Physiol. 2017. Vol. 123. Р. 942-950. 79. Scott GR., Hawkes LA., Frappell PB., Butler PJ., Bishop CM., Milsom WK. How bar-headed geese fly over the Himalayas. Physiology. 2015. Vol. 30. Р. 107-115. 80. Garrido E., Castelló A., Ventura J., Capdevila A., Rodriguez F. Cortical atrophy and other brain magnetic resonance imaging (MRI) changes after extremely high-altitude climbs without oxygen. Int. J. Sport Med. 1993. Vol. 14. Р. 232-234. | ||
|