| |||
МЕДЛАЙН.РУ
|
|||
|
Клиническая медицина » Хирургия • Травматология
Том: 23 Статья: « 27 » Страницы:. 432-480 Опубликована в журнале: 10 июня 2022 г. English version Нарушения метаболизма селена при ортопедических заболеваниях (обзор литературы)Хальчицкий С.Е.1, Буслов К.Г.1, Ли А.О.1, Комов Ю.В.2, Батоцыренова Е.Г.2, Кашуро В.А.2,3,4.
1 ФГБУ «Национальный медицинский исследовательский центр детской травматологии и ортопедии им. Г.И. Турнера» Минздрава России, г. Санкт-Петербург, РФ 2 ФГБОУ ВО «Санкт-Петербургский государственный педиатрический медицинский университет» Минздрава России, г. Санкт-Петербург, РФ 3 ФГБОУ ВО «Российский государственный педагогический университет им. А.И.Герцена», г. Санкт-Петербург, РФ 4 ФГБГОУ ВО «Санкт-Петербургский государственный университет», г. Санкт-Петербург, РФ
Резюме
Селен (Se) считается важным микроэлементом, поскольку он является структурным компонентом антиоксидантных ферментов; однако на его концентрацию могут влиять диета, лекарства и генетические полиморфизмы. Роль селена в основном играют селенопротеины, синтезируемые системой метаболизма селена. Селенопротеины выполняют широкий спектр клеточных функций, включая регуляцию транспорта селена, гормонов щитовидной железы, иммунитета и окислительно-восстановительного гомеостаза. Дефицит селена способствует развитию ортопедических заболеваний, таких как остеоартрит (ОА) и ревматоидный артрит (РА) и др. В обзоре обсуждаются различные аспекты недостаточности селена, влияние на патологические процессы в организме, а также пищевые и фармакологические методы коррекции патологических состояний. Ключевые слова селен, селенопротеины, остеоартрит, ревматоидный артрит, пищевая и фармакологическая коррекция. (статья в формате PDF. Для просмотра необходим Adobe Acrobat Reader) открыть статью в новом окне Список литературы 1. Hatfield, D. L. & Gladyshev, V. N. How selenium has altered our understanding of the genetic code // Mol. Cell Biol. - 2002. - Vol. 22. - P. 3565-3576. 2. Rayman, M. P. Selenium and human health // Lancet. - 2012. - Vol. 379. - P. 1256-1268. 3. Arthur, J. R., McKenzie, R. C. & Beckett, G. J. Seleniumin the immune system // J. Nutr. - 2003. - Vol. 133. - P. 1457S-1459S. 4. Schomburg, L. Selenium, selenoproteins and the thyroid gland: interactions in health and disease // Nat. Rev. Endocrinol. - 2011. - Vol. 8. - P. 160-171. 5. Hawkes, W. C., Kelley, D. S. & Taylor, P. C. The effects of dietary selenium on the immune system in healthymen // Biol. Trace Elem. Res. - 2001. - Vol. 81. - P. 189-213. 6. Wood, S. M., Beckham, C., Yosioka, A., Darban, H. & Watson, R. R. beta-Carotene and selenium supplementation enhances immune response in aged humans // Integr. Med. - 2000. - Vol. 2. - P. 85-92. 7. Broome, C. S. et al. An increase in selenium intake improves immune function and poliovirus handling in adults with marginal selenium status // Am. J. Clin. Nutr. - 2004. - Vol. 80. - P. 154-162. 8. Nève, J. Selenium as a risk factor for cardiovascular diseases // J. Cardiovascular Risk. - 1996. - Vol. 3. - P. 42-47. 9. Alissa, E. M., Bahijri, S. M. & Ferns, G. A. The controversy surrounding selenium and cardiovascular disease: a review of the evidence // Med. Sci. Monitor. - 2003. - Vol. 9. - P. RA9-RA18. 10. Zhang, X., Liu, C., Guo, J. & Song, Y. Selenium status and cardiovascular diseases: meta-analysis of prospective observational studies and randomized controlled trials // Eur. J. Clin. Nutr. - 2016. - Vol. 70. - P. 162-169. 11. Chen, X. et al. Studies on the relations of selenium and Keshan disease // Biol. Trace Elem. Res. - 1980. - Vol. 2. - P. 91-107. 12. Loscalzo, J. Keshan disease, selenium deficiency, and the selenoproteome // N. Engl. J. Med. - 2014. - Vol. 370. - P. 1756-1760. 13. Hatfield, D. L., Tsuji, P. A., Carlson, B. A. & Gladyshev, V. N. Selenium and selenocysteine: roles in cancer, health, and development // Trends Biochem. Sci. - 2014. - Vol. 39. - P. 112-120. 14. Patrick, L. Selenium biochemistry and cancer: a review of the literature // Alternative Med. Rev. - 2004. - Vol. 9. - P. 239-258. 15. Willett, W. et al. Prediagnostic serum selenium and risk of cancer // Lancet. - 1983. - Vol. 322. - P. 130-134. 16. Navarro-Alarcon, M., de la Serrana, H. L.-G., Perez-Valero, V. & López-Martıńez, M. Selenium concentrations in serum of individuals with liver diseases (cirrhosis or hepatitis): relationship with some nutritional and biochemical markers // Sci. Total Environ. - 2002. - Vol. 291. - P. 135-141. 17. Guo, C. H., Chen, P. C. & Ko, W. S. Status of essential trace minerals and oxidative stress in viral hepatitis C patients with nonalcoholic fatty liver disease // Int. J. Med. Sci. - 2013. - Vol. 10. - P. 730-737. 18. Davis, C. D., Tsuji, P. A. & Milner, J. A. Selenoproteins and cancer prevention // Annu. Rev. Nutr. - 2012. - Vol. 32. - P. 73-95. 19. Clark, L. C. et al. Effects of selenium supplementation for cancer prevention in patients with carcinoma of the skin: a randomized controlled trial // JAMA. - 1996. - Vol. 276. P. 1957-1963. 20. Zhuo, H., Smith, A. H. & Steinmaus, C. Selenium and lung cancer: a quantitative analysis of heterogeneity in the current epidemiological literature // Cancer Epidemiol. Biomarkers Prev. - 2004. - Vol. 13. - P. 771-778. 21. Lawrence, R. A. & Burk, R. F. Glutathione peroxidase activity in seleniumdeficient rat liver // Biochem. Biophys. Res. Commun. - 1976. - Vol. 71. - P. 952-958. 22. Li, S., Cao, J., Caterson, B. & Hughes, C. E. Proteoglycan metabolism, cell death and Kashin-Beck disease // Glycoconj. J. - 2012. -Vol. 29. - P. 241-248. 23. Wang, Q. et al. Correlation between selenium and Kaschin-Beck disease: a meta-analysis // Clin. J. Evid. Based Med. - 2013. - Vol. 13. - P. 1421-1430. 24. Yang, L., Zhao, G.-h, Yu, F.-f, Zhang, R.-q & Guo, X. Selenium and iodine levels in subjects with Kashin-Beck disease: a meta-analysis // Biol. Trace Elem. Res. - 2016. - Vol. 170. - P. 43-54. 25. Wang, L. et al. Serious selenium deficiency in the serum of patients with Kashin-Beck disease and the effect of nano-selenium on their chondrocytes // Biological Trace Elem. Res. - 2019. - https://doi.org/10.1007/s12011-019-01759-7. 26. Jordan, J. M. An ongoing assessment of osteoarthritis in African Americans and Caucasians in North Carolina: The Johnston County Osteoarthritis Project // Trans. Am. Clin. Climatol. Assoc. - 2015. - Vol. 126. - P. 77-86. 27. Jordan, J. et al. 34 Low selenium levels are associated with increased odds of radiographic hip osteoarthritis in African American and white women // Osteoarthr. Cartil. - 2007. - Vol. 15. - P. C33. 28. Sasaki, S., Iwata, H., Ishiguro, N., Habuchi, O. & Miura, T. Low-selenium diet, bone, and articular cartilage in rats // Nutrition. - 1994. - Vol. 10. - P. 538-543. 29. Raisbeck, M. F. Selenosis // Vet. Clin. North Am.?Food Anim. Pract. - 2000. - Vol. 16. - P. 465-480. 30. Sutter, M. E., Thomas, J. D., Brown, J. &Morgan, B. Selenium toxicity: a case of selenosis caused by a nutritional supplement // Ann. Intern. Med. - 2008. - Vol. 148. - P. 970-971. 31. Loeser, R. F., Goldring, S. R., Scanzello, C. R. & Goldring, M. B. Osteoarthritis: a disease of the joint as an organ // Arthritis Rheumatism. - 2012. - Vol. 64. - P. 1697-1707. 32. Yang, S. et al. Hypoxia-inducible factor-2alpha is a catabolic regulator of osteoarthritic cartilage destruction // Nat. Med. - 2010. - Vol. 16. - P. 687-693. 33. Kim, J. H. et al. Regulation of the catabolic cascade in osteoarthritis by the zinc-ZIP8-MTF1 axis // Cell. - 2014. - Vol. 156. - P. 730-743. 34. Choi, W. S. et al. The CH25H-CYP7B1-ROR alpha axis of cholesterol metabolism regulates osteoarthritis // Nature. - 2019. - Vol. 566. - P. 254. 35. Kim, S. et al. Tankyrase inhibition preserves osteoarthritic cartilage by coordinating cartilage matrix anabolism via effects on SOX9 PARylation // Nat. Commun. - 2019. - Vol. 10. - P. 4898. 36. Kang, D. et al. Stress-activated miR-204 governs senescent phenotypes of chondrocytes to promote osteoarthritis development // Sci. Transl. Med. - 2019. - Vol. 11. - https://doi.org/10.1126/scitranslmed.aar6659. 37. Loeser, R. F., Collins, J. A. & Diekman, B. O. Ageing and the pathogenesis of osteoarthritis // Nat. Rev. Rheumatol. - 2016. - Vol. 12. - P. 412. 38. Felson, D. T. Osteoarthritis as a disease of mechanics // Osteoarthr. Cartil. - 2013. - Vol. 21. - P. 10-15. 39. Hui, W. et al. Oxidative changes and signalling pathways are pivotal in initiating age-related changes in articular cartilage // Ann. Rheum. Dis. - 2016. - Vol. 75. - P. 449-458. 40. Yudoh, K. et al. Potential involvement of oxidative stress in cartilage senescence and development of osteoarthritis: oxidative stress induces chondrocyte telomere instability and downregulation of chondrocyte function // Arthritis Res. Ther. - 2005. - Vol. 7. - P. R380-R391. 41. Ramiro, S.; Aletaha, D.; McInnes, I.B. Rheumatoid arthritis // Lancet. - 2016. - Vol. 388. - P. 2023-2038. 42. Ramiro, S.; Aletaha, D.; Barton, A.; Burmester, G.R.; Emery, P.; Firestein, G.S.; Kavanaugh, A.; McInnes, I.B.; Solomon, D.H.; Strand, V.; et al. Rheumatoid arthritis // Nat. Rev. Dis. Prim. - 2018. - 4. - P. 18001. 43. Firestein, G.; McInnes, I.B. Immunopathogenesis of rheumatoid arthritis // Immunity. - 2017. - Vol. 46. - P. 183-196. 44. Rodriguez, D.A.; Pluchino, N.; Canny, G.; Gabay, C.; Straub, R.H. The role of female hormonal factors in the development of rheumatoid arthritis // Rheumatology. - 2016. - Vol. 56. - P. 1254-1263. 45. Xu, B.; Lin, J. Characteristics and risk factors of rheumatoid arthritis in the United States: An NHANES analysis // PeerJ. - 2017. - Vol. 5. - P. e4035. 46. Skoczy´nska, M.; ´Swierkot, J. The role of diet in rheumatoid arthritis // Reumatologia. - 2018. - Vol. 56. - P. 259-267. 47. Zapatera, B.; Prados, A.; Gómez-Martínez, S.; Marcos, A. Immunonutrition: Methodology and applications // Nutr. Hosp. - 2015. - Vol. 31. - P. 145-154. 48. Suchner, U.; Kuhn, K.S.; Fürst, P. The scientific basis of immunonutrition // Proc. Nutr. Soc. - 2000. - Vol. 59. - P. 553-563. 49. Vetvicka, V.; Vetvickova, J. Concept of Immuno-Nutrition // J. Nutr. Food Sci. - 2016. - Vol. 6. - P. 500. 50. Khanna, S.; Jaiswal, K.S.; Gupta, B. Managing Rheumatoid Arthritis with Dietary Interventions // Front. Nutr. - 2017. - Vol. 4. - P. 52. 51. García-González, A.; Gaxiola-Robles, R.; Zenteno-Savín, T. Oxidative stress in patients with rheumatoid arthritis // Rev. Investig. Clin. - 2015. - Vol. 67. - P. 46-53. 52. Veselinovic, M.; Barudzic, N.; Vuletic, M.; Zivkovic, V.; Tomic-Lucic, A.; Djuric, D.; Jakovljevic, V. Oxidative stress in rheumatoid arthritis patients: Relationship to diseases activity // Mol. Cell. Biochem. - 2014. - Vol. 391. - P. 225-232. 53. Quiñonez-Flores, C.M.; González-Chávez, S.A.; Nájera, D.D.R.; Pacheco-Tena, C. Oxidative Stress Relevance in the Pathogenesis of the Rheumatoid Arthritis: A Systematic Review // Biomed. Res. Int. - 2016. - Vol. 2016. - P. 6097417. 54. Bodnar, M.; Konieczka, P.; Namie´snik, J. The properties, functions, and use of selenium compounds in living organisms // J. Environ. Sci. Health C Environ. Carcinog. Ecotoxicol. Rev. - 2012. - Vol. 30. - P. 225-252. 55. National Research Council. Chemistry. In Selenium in Nutrition, Revised ed.; The National Academies Press: Washington, DC, USA, - 1983. - P. 3-9. 56. Bhattacharya, P.T.; Misra, S.R.; Hussain, M. Nutritional Aspects of Essential Trace Elements in Oral Health and Disease: An Extensive Review // Scientifica. - 2016. - Vol. 2016. - P. 5464373. 57. Kryukov, G.V.; Castellano, S.; Novoselov, S.V.; Lobanov, A.V.; Zehtab, O.; Guigó, R.; Gladyshev, V.N. Characterization of mammalian selenoproteomes // Science. - 2003. - Vol. 300. - P. 1439-1443. 58. Labunsky, V.M.; Hatfield, L.L.; Gladyshev, V.N. Selenoproteins: Molecular Pathways and Physiological Roles // Physiol. Rev. - 2014. - Vol. 94. - P. 739-777. 59. Huang, Z.; Rose, A.H.; Homann, P.R. The role of selenium in inflammation and immunity: From molecular mechanisms to therapeutic opportunities // Antioxid. Redox Signal. - 2012. - Vol. 16. - P. 705-743. 60. Schomburg, L.; Schweizer, U. Hierarchical regulation of selenoprotein expression and sex-specific effects of selenium // Biochim. Biophys. Acta. - 2009. - Vol. 1790. - 1453-1462. 61. Liu, H.; Xu, H.; Huang, K. Selenium in the prevention of atherosclerosis and its underlying mechanisms // Metallomics. - 2017. - Vol. 9. - P. 21-37. 62. Oropeza-Moe, M.; Wislø_, H.; Bernhoft, A. Selenium deficiency associated porcine and human cardiomyopathies // J. Trace Elem. Med. Biol. - 2015. - Vol. 31. - P. 148-156. 63. Thomson, C.D. Selenium|Physiology. In Encyclopedia of Food Sciences and Nutrition, 2nd ed.; Elsevier: Dunedin, New Zeland. - 2003. - P. 5117-5124. 64. Roman, M.; Jitaru, P.; Barbante, C. Selenium biochemistry and its role for human health // Metallomics. - 2014. - 6. - P. 25-54. 65. Fairweather-Tait, S.; Bao, Y.; Broadley, M.R.; Collings, R.; Ford, D.; Hesketh, J.E.; Hurst, R. Selenium in human health and disease // Antioxid. Redox Signal. - 2011. - Vol. 14. P. 1337-1383. 66. Kiela, P.R.; Ghishan, F.K. Physiology of Intestinal Absorption and Secretion // Best Pract. Res. Clin. Gastroenterol. - 2016. - Vol. 30. P. 145-159. 67. Go, J.P. Invited review: Mineral absorption mechanisms, mineral interactions that a_ect acid-base and antioxidant status, and diet considerations to improve mineral status // J. Dairy Sci. - 2018. - Vol. 101. P. 2763-2813. 68. Kieliszek, M. Selenium-Fascinating Microelement, Properties and Sources in Food // Molecules. - 2019. - Vol. 24. - P. 1298. 69. Fairweather-Tait, S.; Hurrell, R.F. Bioavailability of minerals and trace elements // Nutr. Res. Rev. - 1996. - Vol. 9. P. 295-324. 70. Nickel, A.; Kottra, G.; Schmidt, G.; Danier, J.; Hofmann, T.; Daniel, H. Characteristics of transport of selenoamino acids by epithelial amino acid transporters // Chem. Biol. Interact. - 2009. - Vol. 177. - P. 234-241. 71. Drug Bank. Available online: https://www.drugbank.ca/drugs/DB11135 (accessed on 24 April 2020). 72. Fung, E.B. Nutritional deficiencies in patients with thalassemia // Ann. N. Y. Acad. Sci. - 2010. - Vol. 1202. - P. 188-196. 73. Sherief, L.M.; El-Salam, S.M.A.; Kamal, N.M.; El Safy, O.; Almalky, M.A.; Azab, S.F.; Morsy, H.M.; Gharieb, A.F. Nutritional biomarkers in children and adolescents with Beta-thalassemia-major: An Egyptian center experience // Biomed. Res. Int. - 2014. - Vol. 2014. - ID. 261761. 74. Pliakou, X.I.; Koutsouka, F.P.; Damigos, D.; Bourantas, K.L.; Briasoulis, E.C.; Voulgari, P.V. Rheumatoid arthritis in patients with hemoglobinopathies // Rheumatol. Int. - 2012. - Vol. 32. - P. 2889-2892. 75. Cardoso, B.R.; Roberts, B.; Bush, A.I.; Hare, D.J. Selenium, selenoproteins and neurodegenerative diseases // Metallomics. - 2015. - Vol. 7. - P. 1213-1228. 76. Seale, L.A. Selenocysteine _-Lyase: Biochemistry, Regulation and Physiological Role of the Selenocysteine Decomposition Enzyme // Antioxidants. - 2019. - Vol. 8. - P. 357. 77. Squires, J.E.; Berry, M.J. Eukaryotic selenoprotein synthesis: Mechanistic insight incorporating new factors and new functions for old factors // IUBMB Life. - 2008. - Vol. 60. - P. 232-235. 78. Zoidis, E.; Seremelis, I.; Kontopoulos, N.; Danezis, G. Selenium-Dependent Antioxidant Enzymes: Actions and Properties of Selenoproteins // Antioxidants. - 2018. - Vol. 7. - P. 66. 79. Lu, J. & Holmgren, A. Selenoproteins // J. Biol. Chem. - 2009. - Vol. 284. P. 723-727. 80. Kryukov, G. V. et al. Characterization of mammalian selenoproteomes // Science. 2003. Vol. 300. P. 1439-1443. 81. Pitts, M. W. & Hoffmann, P. R. Endoplasmic reticulum-resident selenoproteins as regulators of calcium signaling and homeostasis // Cell Calcium. - 2018. - Vol. 70. - P. 76-86. 82. Sreelatha, A. et al. Protein AMPylation by an evolutionarily conserved pseudokinase // Cell. - 2018. - Vol. 175. - P. 809-821 e819. 83. Brigelius-Flohe, R. Glutathione peroxidases and redox-regulated transcription factors // Biol. Chem. - 2006. - Vol. 387. - P. 1329-1335. 84. Ingold, I. et al. Selenium utilization by GPX4 is required to prevent hydroperoxide-induced ferroptosis // Cell. - 2018. - Vol. 172. P. 409-422. e421. 85. Arnér, E. S. & Holmgren, A. Physiological functions of thioredoxin and thioredoxin reductase // Eur. J. Biochem. - 2000. - Vol. 267. - P. 6102-6109. 86. Conrad, M. et al. Essential role for mitochondrial thioredoxin reductase in hematopoiesis, heart development, and heart function // Mol. Cell Biol. - 2004. - Vol. 24. - P. 9414-9423. 87. Jakupoglu, C. et al. Cytoplasmic thioredoxin reductase is essential for embryogenesis but dispensable for cardiac development // Mol. Cell Biol. - 2005. - Vol. 25. - P. 1980-1988. 88. Gereben, B. et al. Cellular and molecular basis of deiodinase-regulated thyroid hormone signaling // Endocr. Rev. - 2008. - Vol. 29. - P. 898-938. 89. Liang, Y. et al. Effect of selenium on selenoprotein expression in the adipose tissue of chickens // Biol. Trace Elem. Res. - 2014. - Vol. 160. - P. 41-48. 90. Christensen, M. J. & Burgener, K. W. Dietary selenium stabilizes glutathione peroxidase mRNA in rat liver // J. Nutr. - 1992. - Vol. 122. - P. 1620-1626. 91. Avissar, N., Kerl, E. A., Baker, S. S. & Cohen, H. Extracellular glutathione peroxidase mRNA and protein in human cell lines // Arch. Biochem. Biophys. - 1994. - Vol. 309. - P. 239-246. 92. Zhao, H., Whitfield, M. L., Xu, T., Botstein, D. & Brooks, J. D. Diverse effects of methylseleninic acid on the transcriptional program of human prostate cancer cells // Mol. Biol. Cell. - 2004. - Vol. 15. - P. 506-519. 93. Vunta, H. et al. Selenium attenuates pro‐inflammatory gene expression in macrophages // Mol. Nutr. Food Res. - 2008. - Vol. 52. - P. 1316-1323. 94. Kosik-Bogacka, D. I. et al. Effects of biological factors and health condition on mercury and selenium concentrations in the cartilage, meniscus and anterior cruciate ligament // J. Trace Elem. Med. Biol. - 2017. - Vol. 44. - P. 201-208. 95. Bissardon, C. et al. Sub-ppm level high energy resolution fluorescence detected X-ray absorption spectroscopy of selenium in articular cartilage // Analyst. - 2019. - Vol. 144. - P. 3488-3493. 96. Thompson, K. M., Haibach, H. & Sunde, R. A. Growth and plasma triiodothyronine concentrations are modified by selenium deficiency and repletion in second-generation selenium-deficient rats // J. Nutr. - 1995. - Vol. 125. - P. 864-873. 97. Yang, C., Wolf, E., Roser, K., Delling, G. & Muller, P. K. Selenium deficiency and fulvic acid supplementation induces fibrosis of cartilage and disturbs subchondral ossification in knee joints of mice: an animal model study of Kashin-Beck disease // Virchows Arch. A Pathol. Anat. Histopathol. - 1993. - Vol. 423. - P. 483-491. 98. Ren, F. L. et al. Effects of selenium and iodine deficiency on bone, cartilage growth plate and chondrocyte differentiation in two generations of rats // Osteoarthr. Cartil. - 2007. - Vol. 15. - P. 1171-1177. 99. Moreno-Reyes, R., Egrise, D., Neve, J., Pasteels, J. L. & Schoutens, A. Selenium deficiency-induced growth retardation is associated with an impaired bone metabolism and osteopenia // J. Bone Miner. Res. - 2001. - Vol. 16. - P. 1556-1563. 100. Cao, J. J., Gregoire, B. R. & Zeng, H. Selenium deficiency decreases antioxidative capacity and is detrimental to bone microarchitecture in mice // J. Nutr. - 2012. - Vol. 142. P. 1526-1531. 101. Xiong, Y. M. et al. Association study between polymorphisms in selenoprotein genes and susceptibility to Kashin-Beck disease // Osteoarthr. Cartil. - 2010. - Vol. 18. - P. 817-824. 102. Huang, L. et al. Association study of polymorphisms in selenoprotein genes and kashin-beck disease and serum selenium/iodine concentration in a tibetan population // PLoS ONE. - 2013. - Vol. 8. - P. e71411. 103. Du, X. et al. Role of selenoprotein S (SEPS1)-105G> A polymorphisms and PI3K/Akt signaling pathway in Kashin-Beck disease // Osteoarthr. Cartil. - 2015. - Vol. 23. - P. 210-216. 104. Wu, R. et al. The study on polymorphisms of sep15 and TrxR2 and the expression of AP-1 signaling pathway in Kashin-Beck disease // Bone. - 2019. - Vol. 120. - P. 239-245. 105. Lu, M. L. et al. The effects of mycotoxins and selenium deficiency on tissueengineered cartilage // Cells Tissues Organs. - 2012. - Vol. 196. - P. 241-250. 106. Min, Z. et al. Abnormality of epiphyseal plate induced by selenium deficiency diet in two generation DA rats // Apmis. - 2015. - Vol. 123. - P. 697-705. 107. Downey, C. M. et al. Osteo-chondroprogenitor-specific deletion of the selenocysteine tRNA gene, Trsp, leads to chondronecrosis and abnormal skeletal development: a putative model for Kashin-Beck disease // PLoS Genet. - 2009. - Vol. 5. - P. e1000616. 108. Guo, X. et al. Recent advances in the research of an endemic osteochondropathy in China: Kashin-Beck disease // Osteoarthr. Cartil. - 2014. - Vol. 22. - P. 1774-1783. 109. Zou, K., Liu, G., Wu, T. & Du, L. Selenium for preventing Kashin-Beck osteoarthropathy in children: a meta-analysis // Osteoarthr. Cartil. - 2009. - Vol. 17. - P. 144-151. 110. Glasson, S. S. et al. Deletion of active ADAMTS5 prevents cartilage degradation in a murine model of osteoarthritis // Nature. - 2005. - Vol. 434. - P. 644-648. 111. Blom, A. B. et al. Crucial role of macrophages in matrix metalloproteinasemediated cartilage destruction during experimental osteoarthritis: involvement of matrix metalloproteinase 3 // Arthritis Rheumatism. - 2007. - Vol. 56. - P. 147-157. 112. Little, C. B. et al. Matrix metalloproteinase 13-deficient mice are resistant to osteoarthritic cartilage erosion but not chondrocyte hypertrophy or osteophyte development // Arthritis Rheumatism. - 2009. - Vol. 60. - P. 3723-3733. 113. Marcu, K. B. et al. NF-kappa B signaling: multiple angles to target OA // Curr. Drug Targets. - 2010. - Vol. 11. - P. 599-613. 114. Berenbaum, F. Diabetes-induced osteoarthritis: from a new paradigm to a new phenotype // Ann. Rheum. Dis. - 2011. - Vol. 70. - P. 1354-1356. 115. Choi, W. S. et al. Critical role for arginase II in osteoarthritis pathogenesis // Ann. Rheum. Dis. - 2019. - Vol. 78. - P. 421-428. 116. Mobasheri, A. et al. The role of metabolism in the pathogenesis of osteoarthritis // Nat. Rev. Rheumatol. - 2017. - Vol. 13. - P. 302-311. 117. Won, Y. et al. Pleiotropic roles of metallothioneins as regulators of chondrocyte apoptosis and catabolic and anabolic pathways during osteoarthritis pathogenesis // Ann. Rheum. Dis. - 2016. - Vol. 75. - P. 2045-2052. 118. Matsuzaki, T. et al. FoxO transcription factors modulate autophagy and proteoglycan 4 in cartilage homeostasis and osteoarthritis // Sci. Transl. Med. - 2018. - Vol. 10. - https://doi.org/10.1126/scitranslmed.aan0746. 119. Cornelis, F. M. F. et al. ANP32A regulates ATM expression and prevents oxidative stress in cartilage, brain, and bone // Sci. Transl. Med. - 2018. - Vol. 10. - https://doi. org/10.1126/scitranslmed.aar8426. 120. Coleman, M. C. et al. Targeting mitochondrial responses to intra-articular fracture to prevent posttraumatic osteoarthritis // Sci. Transl. Med. - 2018. - Vol. 10. - https://doi.org/10.1126/scitranslmed.aan5372. 121. Regan, E. A., Bowler, R. P. & Crapo, J. D. Joint fluid antioxidants are decreased in osteoarthritic joints compared to joints with macroscopically intact cartilage and subacute injury // Osteoarthr. Cartil. - 2008. - Vol. 16. - P. 515-521. 122. Blanco, F. J., Lopez-Armada, M. J. & Maneiro, E. Mitochondrial dysfunction in osteoarthritis // Mitochondrion. - 2004. - Vol. 4. - P. 715-728. 123. Wang, Y., Zhao, X., Lotz, M., Terkeltaub, R. & Liu-Bryan, R. Mitochondrial biogenesis is impaired in osteoarthritis chondrocytes but reversible via peroxisome proliferator-activated receptor gamma coactivator 1alpha // Arthritis Rheumatol. - 2015. - Vol. 67. - P. 2141-2153. 124. McCulloch, K., Litherland, G. J. & Rai, T. S. Cellular senescence in osteoarthritis pathology // Aging Cell. - 2017. - Vol. 16. - P. 210-218. 125. Akhmedov, A. T. & Marin-Garcia, J. Mitochondrial DNA maintenance: an appraisal // Mol. Cell Biochem. - 2015. - Vol. 409. - P. 283-305. 126. Goyns, M. H. Genes, telomeres and mammalian ageing // Mech. Ageing Dev. - 2002. - Vol. 123. - P. 791-799. 127. Sun, M. et al. Maintenance of SOX9 stability and ECM homeostasis by selenium-sensitive PRMT5 in cartilage // Osteoarthr. Cartil. - 2019. - Vol. 27. - P. 932-944. 128. Kurz, B., Jost, B. & Schünke, M. Dietary vitamins and selenium diminish the development of mechanically induced osteoarthritis and increase the expression of antioxidative enzymes in the knee joint of STR/1N mice // Osteoarthr. Cartil. - 2002. - Vol. 10. - P. 119-126. 129. Cheng, A. W., Stabler, T. V., Bolognesi, M. & Kraus, V. B. Selenomethionine inhibits IL-1beta inducible nitric oxide synthase (iNOS) and cyclooxygenase 2(COX2) expression in primary human chondrocytes // Osteoarthr. Cartil. 2011. - Vol. 19. - P. 118-125. 130. Xue, J. et al. The hsa-miR-181a-5p reduces oxidation resistance by controlling SECISBP2 in osteoarthritis // BMC Musculoskelet. Disord. - 2018. - Vol. 19. - P. 355. 131. Aigner, T. et al. Large-scale gene expression profiling reveals major pathogeneticpathways of cartilage degeneration in osteoarthritis // Arthritis Rheumatism. - 2006. - Vol. 54. - P. 3533-3544. 132. Hosseinzadeh, A., Jafari, D., Kamarul, T., Bagheri, A. & Sharifi, A. M. Evaluating the protective effects andmechanisms of diallyl disulfide on interlukin-1betainduced oxidative stress and mitochondrial apoptotic signaling pathways incultured chondrocytes // J. Cell Biochem. - 2017. - Vol. 118. - P. 1879-1888. 133. Bateman, J. F. et al. Transcriptomics of wild-type mice and mice lackingADAMTS-5 activity identifies genes involved in osteoarthritis initiation and cartilage destruction // Arthritis Rheumatism. - 2013. - Vol. 65. - P. 1547-1560. 134. Bos, S. et al. The role of plasma cytokine levels, CRP and Selenoprotein S gene variation in OA // Osteoarthr. Cartil. - 2009. - Vol. 17. - P. 621-626. 135. Bos, S. D. et al. Increased type II deiodinase protein in OA-affected cartilage and allelic imbalance of OA risk polymorphism rs225014 at DIO2 in human OA joint tissues // Ann. Rheumatic Dis. - 2012. - Vol. 71. - P. 1254-1258. 136. Waarsing, J. H. et al. Osteoarthritis susceptibility genes influence the association between hip morphology and osteoarthritis // Arthritis Rheumatism. - 2011. - Vol. 63. - P. 1349-1354. 137. Meulenbelt, I. et al. Identification of DIO2 as a new susceptibility locus for symptomatic osteoarthritis // Hum. Mol. Genet. - 2008. - Vol. 17. - P. 1867-1875. 138. Bomer, N. et al. Underlying molecular mechanisms of DIO2 susceptibility in symptomatic osteoarthritis // Ann. Rheum. Dis. - 2015. - Vol. 74. - P. 1571-1579. 139. Meulenbelt, I. et al. Meta-analyses of genes modulating intracellular T3 bioavailability reveal a possible role for the DIO3 gene in osteoarthritis susceptibility // Ann. Rheum. Dis. - 2011. - Vol. 70. - P. 164-167. 140. Yazar, M., Sarban, S., Kocyigit, A. & Isikan, U. Synovial fluid and plasma selenium, copper, zinc, and iron concentrations in patients with rheumatoid arthritis and osteoarthritis // Biol. Trace Elem. Res. - 2005. Vol. 106. - P. 123-132. 141. de Oliveira El-Warrak, A., Rouma, M., Amoroso, A., Boysen, S. R. & Chorfi, Y. Measurement of vitamin A, vitamin E, selenium, and L-lactate in dogs with and without osteoarthritis secondary to ruptured cranial cruciate ligament // Can. Vet. J. - 2012. - Vol. 53. - P. 1285. 142. Hill, J. & Bird, H. Failure of selenium-ace to improve osteoarthritis // Rheumatology. - 1990. - Vol. 29. - P. 211-213. 143. Li, H. et al. Associations between dietary antioxidants intake and radiographic knee osteoarthritis // Clin. Rheumatol. - 2016. - Vol. 35. - P. 1585-1592. 144. Yan, J. D., Tian, J., Zheng, Y. W., Han, Y. & Lu, S. M. Selenium promotes proliferation of chondrogenic cell ATDC5 by increment of intracellular ATP content under serum deprivation // Cell Biochem. Funct. - 2012. - Vol. 30. - P. 657-663. 145. Ahmed, H. H., Aglan, H. A., Mabrouk, M., Abd-Rabou, A. A. & Beherei, H. H. Enhanced mesenchymal stem cell proliferation through complexation of selenium/titanium nanocomposites // J. Mater. Sci. Mater. Med. - 2019. - Vol. 30. - P. 24. 146. Yan, J. D., Fei, Y., Han, Y. & Lu, S. M. Selenoprotein O deficiencies suppress chondrogenic differentiation of ATDC5 cells // Cell Biol. Int. - 2016. - Vol. 40. - P. 1033-1040. 147. Yan, J. et al. GPx1 knockdown suppresses chondrogenic differentiation of ATDC5 cells through induction of reductive stress // Acta Biochim. Biophys. Sin. (Shanghai). - 2017. - Vol. 49. - P. 110-118. 148. James, C. G., Appleton, C. T. G., Ulici, V., Underhill, T. M. & Beier, F. Microarray analyses of gene expression during chondrocyte differentiation identifies novel regulators of hypertrophy // Mol. Biol. Cell. - 2005. - Vol. 16. - P. 5316-5333. 149. Hawkes, W. C. & Alkan, Z. Regulation of redox signaling by selenoproteins // Biol. Trace Elem. Res. - 2010. - Vol. 134. - P. 235-251. 150. Ramakrishnan, P. et al. Oxidant conditioning protects cartilage from mechanically induced damage // J. Orthop. Res. - 2010. - Vol. 28. - P. 914-920. 151. Henrotin, Y., Kurz, B. & Aigner, T. Oxygen and reactive oxygen species in cartilage degradation: friends or foes? // Osteoarthr. Cartil. - 2005. - Vol. 13. - P. 643-654. 152. Bigarella, C. L., Liang, R. & Ghaffari, S. Stem cells and the impact of ROS signaling // Development. - 2014. - Vol. 141. - P. 4206-4218. 153. Loeser, R. F. Aging and osteoarthritis: the role of chondrocyte senescence and aging changes in the cartilage matrix // Osteoarthr. Cartil. - Vol. 17. - P. 971-979. 154. Vaillancourt, F. et al. 4-Hydroxynonenal induces apoptosis in human osteoarthritic chondrocytes: the protective role of glutathione-S-transferase // Arthritis Res Ther. - 2008. - Vol. 10. - P. R107. 155. Brandl, A. et al. Oxidative stress induces senescence in chondrocytes // J. Orthop. Res. - Vol. 29. - P. 1114-1120. 156. Cha, B. H., Lee, J. S., Kim, S. W., Cha, H. J. & Lee, S. H. The modulation of the oxidative stress response in chondrocytes by Wip1 and its effect on senescence and dedifferentiation during in vitro expansion // Biomaterials. - Vol. 34. - P. 2380-2388. 157. Henrotin, Y. E., Bruckner, P. & Pujol, J. P. The role of reactive oxygen species in homeostasis and degradation of cartilage // Osteoarthr. Cartil. - Vol. 11. - P. 747-755. 158. Johnson, K. et al. Mitochondrial oxidative phosphorylation is a downstream regulator of nitric oxide effects on chondrocyte matrix synthesis and mineralization // Arthritis Rheumatism. - 2000. - Vol. 43. - P. 1560-1570. 159. Tiku, M. L., Gupta, S. & Deshmukh, D. R. Aggrecan degradation in chondrocytes is mediated by reactive oxygen species and protected by antioxidants // Free Radic. Res. - 1999. - Vol. 30. - P. 395-405. 160. Ebert, R. et al. Selenium supplementation restores the antioxidative capacity and prevents cell damage in bone marrow stromal cells in vitro // Stem Cells. - Vol. 24. - P. 1226-1235. 161. Chen, J. H. et al. Oxidant damage in Kashin‐Beck disease and a rat Kashin-Beck disease model by employing T-2 toxin treatment under selenium deficient conditions // J. Orthop. Res. - Vol. 30. - P. 1229-1237. 162. Chi, Q., Luan, Y., Zhang, Y., Hu, X. & Li, S. The regulatory effects of miR-138-5p on selenium deficiency-induced chondrocyte apoptosis are mediated by targeting SelM // Metallomics. - 2019. - Vol. 11. - P. 845-857. 163. Gao, H., Liu, C., Song, S. & Fu, J. Effects of dietary selenium against lead toxicity on mRNA levels of 25 selenoprotein genes in the cartilage tissue of broiler chicken // Biol. Trace Elem. Res. - 2016. - Vol. 172. - P. 234-241. 164. Yu, F.-F. et al. Identified molecular mechanism of interaction between environmental risk factors and differential expression genes in cartilage of Kashin-Beck disease // Medicine. - 2016. - Vol. 95. - P. e5669. 165. Wang, W.-Z. et al. Comparative analysis of gene expression profiles between the normal human cartilage and the one with endemic osteoarthritis // Osteoarthr. Cartil. - 2009. - Vol. 17. - P. 83-90. 166. Rose, J. et al. DNA damage, discoordinated gene expression and cellular senescence in osteoarthritic chondrocytes // Osteoarthr. Cartil. - 2012. - Vol. 20. - P. 1020-1028. 167. Grishko, V. I., Ho, R., Wilson, G. L. & Pearsall, A. W. Diminished mitochondrial DNA integrity and repair capacity in OA chondrocytes // Osteoarthr. Cartil. - 2009. - Vol. 17. P. 107-113. 168. Baliga, M. S., Wang, H., Zhuo, P., Schwartz, J. L. & Diamond, A. M. Selenium and GPx-1 overexpression protect mammalian cells against UV-induced DNA damage // Biol. Trace Elem. Res. - 2007. - Vol. 115. - P. 227-241. 169. de Rosa, V. et al. Low doses of selenium specifically stimulate the repair of oxidative DNA damage in LNCaP prostate cancer cells // Free Radic. Res. - 2012. - Vol. 46. - P. 105-116. 170. Seo, Y. R., Sweeney, C. & Smith, M. L. Selenomethionine induction of DNA repair response in human fibroblasts // Oncogene. - 2002. - Vol. 21. - P. 3663-3669. 171. Fischer, J. L., Lancia, J. K., Mathur, A. & Smith, M. L. Selenium protection from DNA damage involves a Ref1/p53/Brca1 protein complex // Anticancer Res. - 2006. - Vol. 26. - P. 899-904. 172. Fischer, J. L., Mihelc, E. M., Pollok, K. E. & Smith, M. L. Chemotherapeutic selectivity conferred by selenium: a role for p53-dependent DNA repair // Mol. Cancer Ther. - 2007. - Vol. 6. - P. 355-361. 173. Wang, L.;Wang, F.-S.; Gershwin, M.E. Human autoimmune diseases: A comprehensive update // J. Intern. Med. - 2015. - Vol. 278. - P. 369-395. 174. Reedy, J.; Lerman, J.L.; Krebs-Smith, S.M.; Kirkpatrick, S.I.; Pannucci, T.;Wilson, M.M.; Subar, A.F.; Kahle, L.L.; Tooze, J.A. Evaluation of the Healthy Eating Index-2015 // J. Acad. Nutr. Diet. - 2018. - Vol. 118. - P. 1622-1633. 175. Krebs-Smith, S.M.; Pannucci, T.; Subar, A.F.; Kirkpatrick, S.I.; Lerman, J.L.; Tooze, J.A.;Wilson, M.M.; Reedy, J.Update of the Healthy Eating Index: HEI-2015 // J. Acad. Nutr. Diet. - 2018. - Vol. 118. - P. 1591-1602. 176. Comee, L.; Taylor, C.A.; Nahikian-Nelms, M.; Ganesan, L.P.; Krok-Schoen, J.L. Dietary patterns and nutrient intake of individuals with rheumatoid arthritis and osteoarthritis in the United States // Nutrition. - 2019. - Vol. 67-68. - P. 110533. 177. Grimstvedt, M.E.; Woolf, K.; Milliron, B.-J.; Manore, M.M. Lower Healthy Eating Index-2005 dietary quality scores in older women with rheumatoid arthritis v. healthy controls // Public Health Nutr. - 2010. - Vol. 13. - P. 1170-1177. 178. Berube, L.T.; Kiely, M.;Woolf, K.; Yazici, Y. Diet quality of individuals with rheumatoid arthritis using the Healthy Eating Index (HEI)-2010 // Nutr. Health. - 2017. - Vol. 23. - P. 17-24. 179. Bärebring, L.; Winkvist, A.; Gjertsson, I.; Lindqvist, H.M. Poor Dietary Quality Is Associated with Increased Inflammation in Swedish Patients with Rheumatoid Arthritis // Nutrients. - 2018. - Vol. 10. - P. 1535. 180. Maggini, S.; Pierre, A.; Calder, P.C. Immune function and micronutrient requirements change over the life course // Nutrients. - 2018. - P. 10. - P. 1531. 181. Duntas, L.H. Selenium and inflammation: Underlying anti-inflammatory mechanisms. Horm. Metab. Res. - 2009. - Vol. 41. - P. 443-447. 182. Hariharan, S.; Dharmaraj, S. Selenium and selenoproteins: It?s role in regulation of inflammation // Inflammopharmacology. - 2020. - Vol. 28. - P. 667-695. 183. Hejazi, J.; Mohtadinia, J.; Kolahi, S.; Bakhtiyari, M.; Delpisheh, A. Nutritional status of Iranian women with rheumatoid arthritis: An assessment of dietary intake and disease activity. // Womens Health. - 2011. - Vol. 7. - P. 599-605. 184. Arablou, T.; Aryaeian, N.; Djalali, M.; Shahram, F.; Rasouli, L. Association between dietary intake of some antioxidant micronutrients with some inflammatory and antioxidant markers in active Rheumatoid Arthritis patients // Int. J. Vitam. Nutr. Res. - 2019. - Vol. 89. - P. 238-245. 185. Stone, J.; Doube, A.; Dudson, D.;Wallace, J. Inadequate calcium, folic acid, vitamin E, zinc, and selenium intake in rheumatoid arthritis patients: Results of a dietary survey // Semin. Arthritis Rheum. - 1997. - Vol. 27. - P. 180-185. 186. Silva, B.N.S.; De Araújo Ísis, L.S.B.; Queiroz, P.M.A.; Duarte Ângela, L.B.P.; Burgos, M.G.P.D.A. Intake of antioxidants in patients with rheumatoid arthritis // Rev. Assoc. Med. Bras. - 2014. - Vol. 60. - P. 555-559. 187. Hagfors, L.; Leandersson, P.; Sköldstam, L.; Andersson, J.; Johansson, G. Antioxidant intake, plasma antioxidants and oxidative stress in a randomized, controlled, parallel, Mediterranean dietary intervention study on patients with rheumatoid arthritis // Nutr. J. - 2003. - Vol. 2. - P. 5-15. 188. Pedersen, M.; Stripp, C.; Klarlund, M.; Olsen, S.F.; Tjønneland, A.; Frisch, M. Diet and risk of rheumatoid arthritis in a prospective cohort // J. Rheumatol. - 2005. - Vol. 32. - P. 1249-1252. 189. Knekt, P.; Heliövaara, M.; Aho, K.; Alfthan, G.; Marniemi, J.; Aromaa, A. Serum selenium, serum alpha-tocopherol, and the risk of rheumatoid arthritis // Epidemiology. - 2000. - Vol. 11. - P. 402-405. 190. Cerhan, J.R.; Saag, K.G.; Merlino, L.A.; Mikuls, T.R.; Criswell, L.A. Antioxidant micronutrients and risk of rheumatoid arthritis in a cohort of older women // Am. J. Epidemiol. - 2003. - Vol. 157. - P. 345-354. 191. Tarp, U.; Overvad, K.; Thorling, E.B.; Graudal, H.; Hansen, J.C. Selenium treatment in rheumatoid arthritis // Scand. J. Rheumatol. - 1985. - Vol. 14. - P. 364-368. 192. Jäntti, J.; Vapaatalo, H.; Seppala, E.; Ruutsalo, H.M.; Isomaki, H. Treatment of rheumatoid arthritis with fish oil, selenium, Vitamins A and E, and placebo // Scand. J. Rheumatol. - 1991. - Vol. 20. - P. 225. 193. Peretz, A.; Neve, J.; Duchateau, J.; Famaey, J.P. Adjuvant treatment of recent onset rheumatoid arthritis by selenium supplementation: Preliminary observations // Br. J. Rheumatol. - 1992. - Vol. 31. - P. 281-282. 194. Heinle, K.; Adam, A.; Gradl, M.; Wiseman, M.; Adam, O. Selenkonzentration in den Erythrozyten bei Patienten mit rheumatoider Arthritis // Med. Klin. - 1997. - Vol. 92. - P. 29-31. 195. Peretz, A.; Siderova, V.; Nève, J. Selenium supplementation in rheumatoid arthritis investigated in a double blind, placebo-controlled trial // Scand. J. Rheumatol. - 2001. - Vol. 30. - P. 208-212. 196. Canter, P.; Wider, B.; Ernst, E. The antioxidant vitamins A, C, E and selenium in the treatment of arthritis: A systematic review of randomized clinical trials // Rheumatology. - 2007. - Vol. 46. - P. 1223-1233. 197. Malhotra, S.;Welling, M.N.; Mantri, S.B.; Desai, K. In vitro and in vivo antioxidant, cytotoxic, and anti-chronic inflammatory arthritic effect of selenium nanoparticles // J. Biomed. Mater. Res. B Appl. Biomater. - 2016. - Vol. 104. - P. 993-1003. 198. Ren, S.-X.; Zhang, B.; Lin, Y.; Ma, D.-S.; Yan, H. Selenium Nanoparticles Dispersed in Phytochemical Exert Anti-Inflammatory Activity by Modulating Catalase, GPx1, and COX-2 Gene Expression in a Rheumatoid Arthritis Rat Model // Med. Sci. Monit. - 2019. - Vol. 25. - P. 991-1000. 199. Liua, J.; Ma, L.; Zhou, H.; Zhu, X.; Yu, Q.; Chen, X.; Zhao, Y.; Liu, J. Polypeptide nano-Se targeting inflammation and theranostic rheumatoid arthritis by anti-angiogenic and NO activating AMPK_ signaling pathway // J. Mater. Chem. B. - 2018. - Vol. 6. - P. 3497-3514. 200. Hitchon, C.A.; El-Gabalawy, H.S. Oxidation in rheumatoid arthritis // Arthritis Res. Ther. - 2004. - Vol. 6. - P. 265-278. 201. Cejka, D.; Hayer, S.; Niederreiter, B.; Sieghart,W.; Fuereder, T.; Zwerina, J.; Schett, G. Mammalian target of rapamycin signaling is crucial for joint destruction in experimental arthritis and is activated in osteoclasts from patients with rheumatoid arthritis // Arthritis Rheum. - 2010. - Vol. 62. - P. 2294-2302. 202. Camargo, S.M.R.; Singer, D.; Makrides, V.; Huggel, K.; Pos, K.M.; Wagner, C.A.; Kuba, K.; Danilczyk, U.; Skovby, F.; Kleta, R.; et al. Tissue-specific amino acid transporter partners ACE2 and collectrin di_erentially interact with hartnup mutations // Gastroenterology. - 2009. - Vol. 136. - P. 872-882. 203. Seow, H.-F.; Bröer, S.; Broer, A.; Bailey, C.G.; Potter, S.J.; Cavanaugh, J.A.; Rasko, J.E.; Br, S. Hartnup disorder is caused by mutations in the gene encoding the neutral amino acid transporter SLC6A19 // Nat. Genet. - 2004. - Vol. 36. - P. 1003-1007. 204. Popovska-Jankovic, K.; Tasic, V.; Bogdanovic, R.; Miljkovic, P.; Golubovic, E.; Soylu, A.; Saraga, M.; Pavicevic, S.; Baskin, E.; Akil, I.; et al. Molecular characterization of cystinuria in south-eastern European countries // Urolithiasis. - 2013. - Vol. 41. - P. 21-30. 205. Calonge, M.J.; Gasparini, P.; Chillarón, J.; Chillón, M.; Gallucci, M.; Rousaud, F.; Zelante, L.; Testar, X.; Dallapiccola, B.; Di Silverio, F.; et al. Cystinuria caused by mutations in rBAT, a gene involved in the transport of cystine // Nat. Genet. - 1994. - Vol. 6. - P. 420-425. 206. Karunasinghe, N.; Han, D.Y.; Zhu, S.; Yu, J.; Lange, K.; Duan, H.; Medhora, R.; Singh, N.; Kan, J.; Alzaher, W.; et al. Serum selenium and single-nucleotide polymorphisms in genes for selenoproteins: Relationship to markers of oxidative stress in men from Auckland, New Zealand // Genes Nutr. - 2012. - Vol. 7. - P. 179-190. 207. Donadio, J.L.S.; Guerra-Shinohara, E.M.; Rogero, M.M.; Cozzolino, S.M.F. Influence of Gender and SNPs in GPX1 Gene on Biomarkers of Selenium Status in Healthy Brazilians // Nutrients. - 2016. - Vol. 8. - P. 81. 208. Donadio, J.L.S.; Rogero, M.M.; Guerra-Shinohara, E.M.; Barbosa, F., Jr.; Desmarchelier, C.; Borel, P.; Sneddon, A.A.; Hesketh, J.E.; Cozzolino, S.M.F. Genetic variants in selenoprotein genes modulate biomarkers of selenium status in response to Brazil nut supplementation (the SU.BRA.NUT study) // Clin. Nutr. - 2019. - Vol. 38. - P. 539-548. 209. Meplan, C.; Crosley, L.K.; Nicol, F.; Beckett, G.J.; Howie, A.F.; Hill, K.E.; Horgan, G.; Mathers, J.C.; Arthur, J.R.; Hesketh, J.E. Genetic polymorphisms in the human selenoprotein P gene determine the response of selenoprotein markers to selenium supplementation in a gender-specific manner (the SELGEN study) // FASEB J. - 2007. - Vol. 21. - P. 3063-3074. 210. Kopp, T.I.; Outzen, M.; Olsen, A.; Vogel, U.B.; Ravn-Haren, G. Genetic polymorphism in selenoprotein P modifies the response to selenium-rich foods on blood levels of selenium and selenoprotein P in a randomized dietary intervention study in Danes // Genes Nutr. - 2018. - Vol. 13. - P. 20. 211. Alfthan, G.; Neve, J. Reference values for serum selenium in various areas-evaluated according to the TRACY protocol // J. Trace Elem. Med. Biol. - 1996. - Vol. 10. - P. 77-87. 212. National Research Council. Distribution. In Selenium in Nutrition, Revised ed.; The National Academies Press: Washington, DC, USA. - 1983. - P. 10-39. 213. Xia, Y.; E Hill, K.; Li, P.; Xu, J.; Zhou, D.; Motley, A.K.; Wang, L.; Byrne, D.W.; Burk, R.F. Optimization of selenoprotein P and other plasma selenium biomarkers for the assessment of the selenium nutritional requirement: A placebo-controlled, double-blind study of selenomethionine supplementation in selenium-deficient Chinese subjects // Am. J. Clin. Nutr. - 2010. - Vol. 92. - P. 525-531. 214. Müller, S.M.; Dawczynski, C.;Wiest, J.; Lorkowski, S.; Kipp, A.P.; Schwerdtle, T. Functional Biomarkers for the Selenium Status in a Human Nutritional Intervention Study // Nutrients. - 2020. - Vol. - 12. - P. 676. 215. Bredholt, M.; Frederiksen, J.L. Zinc in Multiple Sclerosis: A Systematic Review and Meta-Analysis // ASN Neuro. - 2016. - Vol. 8. - P. 1759091416651511. 216. Sahebari, M.; Abrishami-Moghaddam, M.; Moezzi, A.;Avan, A.; Mirfeizi, Z.; Esmaily, H.; Ferns, G. Association between serum trace element concentrations and the disease activity of systemic lupus erythematosus // Lupus. - 2014. - Vol. 23. - P. 793-801. 217. Sanna, A.; Davide, F.; Zavattari, P.; Valera, P. Zinc Status and Autoimmunity: A Systematic Review and Meta-Analysis // Nutrients. - 2018. - Vol. 10. - P. 68. 218. Sahebari, M.; Rezaieyazdi, Z.; Khodashahi, M. Selenium and Autoimmune Diseases: A Review Article // Curr. Rheumatol. Rev. - 2019. - Vol. 15. P. 123-134. 219. Aaseth, J.; Munthe, E.; Førre, Ø.; Steinnes, E. Trace elements in serum and urine of patients with rheumatoid arthritis // Scand. J. Rheumatol. - 1978. - Vol. 7. - P. 237-240. 220. Hannonen, P.; Möttönen, T.; Oka, M. Serum selenium and rheumatoid arthritis // Scand. J. Rheumatol. - 1985. - Vol. 14. - P. 440. 221. Borglund, M.; Akesson, A.; Akesson, B. Distribution of selenium and glutathione peroxidase in plasma compared in healthy subjects and rheumatoid arthritis patients // Scand. J. Clin. Lab. Investig. - 1988. - Vol. 48. - P. 27-32. 222. Bacon, M.C.; White, P.H.; Raiten, D.J.; Craft, N.; Margolis, S.; Levander, O.A.; Taylor, M.L.; Lipnick, R.N.; Sami, S. Nutritional status and growth in juvenile rheumatoid arthritis // Semin. Arthritis Rheum. - 1990. - Vol. 20. - P. 97-106. 223. Jacobsson, L.; Lindgärde, F.; Manthorpe, R.; Akesson, B. Correlation of fatty acid composition of adipose tissue lipids and serum phosphatidylcholine and serum concentrations of micronutrients with disease duration in rheumatoid arthritis // Ann. Rheum. Dis. - 1990. - Vol. 49. - P. 901-905. 224. O?Dell, J.R.; Lemley-Gillespie, S.; Palmer,W.R.; Weaver, A.L.; Moore, G.F.; Klassen, L.W. Serum selenium concentrations in rheumatoid arthritis // Ann. Rheum. Dis. - 1991. - Vol 50. - P. 376-378. 225. Heliövaara, M.; Knekt, P.; Aho, K.; Aaran, R.K.; Alfthan, G.; Aromaa, A. Serum antioxidants and risk of rheumatoid arthritis // Ann. Rheum. Dis. - 1994. - Vol. 53. - P. 51-53. 226. Köse, K.; Doˆgan, P.; Karda¸s, Y.; Saraymen, R. Plasma selenium levels in rheumatoid arthritis // Biol. Trace Elem. Res. - 1996. - Vol. 53. - P. 51-56. 227. Witkowska, A.M.; Kuryliszyn-Moskal, A.; Borawska, M.H.; Hukałowicz, K.; Markiewicz, R. A study on soluble intercellular adhesion molecule-1 and selenium in patients with rheumatoid arthritis complicated by vasculitis // Clin. Rheumatol. - 2003. - Vol. 22. - P. 414-419. 228. Yazar, M.; Sarban, S.; Kocyigit, A.; Isikan, U.E. Synovial fluid and plasma selenium, copper, zinc, and iron concentrations in patients with rheumatoid arthritis and osteoarthritis // Biol. Trace Elem. Res. - 2005. - Vol. 106. - P. 123-132. 229. Pemberton, P.W.; Ahmad, Y.; Bodill, H.; Lokko, D.; Hider, S.L.; Yates, A.P.; Walker, M.G.; Laing, I.; Bruce, I. Biomarkers of oxidant stress, insulin sensitivity and endothelial activation in rheumatoid arthritis: A cross-sectional study of their association with accelerated atherosclerosis // BMC Res. Notes. - 2009. - Vol. 2. - P. 83. 230. Onal, S.; Nazıro˘ glu, M.; Çolak, M.; Bulut, V.; Flores-Arce, M.F. E_ects of di_erent medical treatments on serum copper, selenium and zinc levels in patients with rheumatoid arthritis // Biol. Trace Elem. Res. - 2011. - Vol. 142. - P. 447-455. 231. Li, J.; Liang, Y.; Mao, H.; Deng, W.; Zhang, J. E_ects of B-lymphocyte dysfunction on the serum copper, selenium and zinc levels of rheumatoid arthritis patients // Pak. J. Med. Sci. - 2014. - Vol. 30. - P. 1064-1067. 232. Afridi, H.I.; Talpur, F.N.; Kazi, T.G.; Brabazon, D. Estimation of toxic elements in the samples of di_erent cigarettes and their e_ect on the essential elemental status in the biological samples of Irish smoker rheumatoid arthritis consumers // Environ. Monit. Assess. - 2015. - Vol. 187. - P. 157. 233. Sahebari, M.; Ayati, R.; Mirzaei, H.; Sahebkar, A.; Hejazi, S.; Saghafi, M.; Saadati, N.; Ferns, G.A.; Avan, A. Serum Trace Element Concentrations in Rheumatoid Arthritis // Biol. Trace Elem. Res. - 2016. - Vol. 171. - P. 237-245. 234. Ma, Y.; Zhang, X.; Fan, D.; Xia, Q.; Wang, M.; Pan, F. Common trace metals in rheumatoid arthritis: A systematic review and meta-analysis // J. Trace Elem. Med. Biol. - 2019. - Vol. 56. - P. 81-89. 235. Mian, A.N.; Ibrahim, F.; Scott, D.L. A systematic review of guidelines for managing rheumatoid arthritis // BMC Rheumatol. - 2019. - Vol. 3. - P. 42. 236. Cheung, J.M.; Scarsbrook, D.; Klinkho, A.V. Characterization of patients with arthritis referred for gold therapy in the era of biologics // J. Rheumatol. - 2012. - Vol. 39. - P. 716-719. 237. Jackson-Rosario, S.; Cowart, D.; Myers, A.; Tarrien, R.; Levine, R.L.; Scott, R.A.; Self, W.T. Auranofin disrupts selenium metabolism in Clostridium difficile by forming a stable Au-Se adduct // J. Biol. Inorg. Chem. - 2009. - Vol. 14. - P. 507-519. 238. Radenkovic, F.; Holland, O.; Vanderlelie, J.J.; Perkins, A. Selective inhibition of endogenous antioxidants with Auranofin causes mitochondrial oxidative stress which can be countered by selenium supplementation // Biochem. Pharmacol. - 2017. - Vol. 146. - P. 42-52. 239. Roder, C.; Thomson, M.J. Auranofin: Repurposing an old drug for a golden new age // Drugs R D. - 2015. - Vol. 15. - P. 13-20. 240. Chaudiere, J.; Wilhelmsen, E.C.; Tappel, A.L. Mechanism of selenium-glutathione peroxidase and its inhibition by mercaptocarboxylic acids and other mercaptans // J. Biol. Chem. - 1984. - Vol. 259. - P. 1043-1050. 241. Gra˙zyna, G.; Agata, K.; Adam, P.; Tomasz, L.; Agata, W.-C.; Karolina, D.; Grzegorz, C.; Anna, C.; Gromadzka, G.; Karpi ´ nska, A.; et al. Treatment with D-penicillamine or zinc sulphate a_ects copper metabolism and improves but not normalizes antioxidant capacity parameters in Wilson disease // Biometals. - 2014. - Vol. - 27. - P. 207-215. 242. Peretz, A.; Neve, J.; Vertongen, F.; Famaey, J.P.; Molle, L. Selenium status in relation to clinical variables and corticosteroid treatment in rheumatoid arthritis // J. Rheumatol. - 1987. - Vol. 14. - 1104-1107. 243. Marano, G.; Fischioni, P.; Graziano, C.; Iannone, M.; Morisi, G. Increased serum selenium levels in patients under corticosteroid treatment // Pharmacol. Toxicol. - 1990. - Vol. 67. - P. 120-122. 244. Honkanen, V.E. The factors a_ecting plasma glutathione peroxidase and selenium in rheumatoid arthritis: A multiple linear regression analysis // Scand. J. Rheumatol. - 1991. - Vol. 20. - P. 385-391. 245. Deyab, G.; Hokstad, I.; Aaseth, J.; Småstuen, M.C.; Whist, J.E.; Agewall, S.; Lyberg, T.; Tveiten, D.; Hjeltnes, G.; Ghanbari, A.; et al. E_ect of anti-rheumatic treatment on selenium levels in inflammatory arthritis // J. Trace Elem. Med. Biol. - 2018. - Vol. 49. - P. 91-97. 246. Ghashut, R.A.; McMillan, D.C.; Kinsella, J.; Vasilaki, A.T.; Talwar, D.; Duncan, A. The e_ect of the systemic inflammatory response on plasma zinc and selenium adjusted for albumin // Clin. Nutr. - 2016. - Vol. - 35. - P. 381-387. 247. Duncan, A.; Talwar, D.; McMillan, D.C.; Stefanowicz, F.; O?Reilly, D.S.J.; O?Reilly, D.S.J. Quantitative data on the magnitude of the systemic inflammatory response and its e_ect on micronutrient status based on plasma measurements // Am. J. Clin. Nutr. - 2012. - Vol. 95. - P. 64-71. 248. Braunstein, M.; Kusmenkov, T.; Zuck, C.; Angstwurm, M.; Becker, N.-P.; Böcker,W.; Schomburg, L.; Bogner, V. Selenium and Selenoprotein P Deficiency Correlates with Complications and Adverse Outcome after Major Trauma // Shock. - 2020. - Vol. 53. P. 63-70. 249. Heyland, D.K.; Dhaliwal, R.; Day, A.G.; Muscedere, J.; Drover, J.; Suchner, U.; Cook, D.; Canadian Critical Care Trials Group. REducing Deaths due to OXidative Stress (The REDOXS Study): Rationale and study design for a randomized trial of glutamine and antioxidant supplementation in critically-ill patients // Proc. Nutr. Soc. - 2006. - Vol. 65. P. 250-263. 250. Mateo, G.F.; Navas-Acien, A.; Pastor-Barriuso, R.; Guallar, E. Selenium and coronary heart disease: A meta-analysis // Am. J. Clin. Nutr. - 2006. - Vol. 84. - P. 762-773. 251. Bleys, J.; Navas-Acien, A.; Guallar, E. Serum selenium levels and all-cause, cancer, and cardiovascular mortality among US adults // Arch. Intern. Med. - 2008. - Vol. 168. - P. 404-410. 152. Alehagen, U.; Johansson, P.; Björnstedt, M.; Rosén, A.; Post, C.; Aaseth, J. Relatively high mortality risk in elderly Swedish subjects with low selenium status // Eur. J. Clin. Nutr. - 2016. - Vol. 70. - P. 91-96. 253. Suadicani, P.; Hein, H.; Gyntelberg, F. Serum selenium concentration and risk of ischaemic heart disease in a prospective cohort study of 3000 males // Atherosclerosis. - 1992. - Vol. 96. - P. 33-42. 254. Alehagen, U.; Alexander, J.; Aaseth, J. Supplementation with Selenium and Coenzyme Q10 Reduces Cardiovascular Mortality in Elderly with Low Selenium Status. A Secondary Analysis of a Randomised Clinical Trial // PLoS ONE. - 2016. - Vol. 11. - P. e0157541. 255. Gombart, A.F.; Pierre, A.; Maggini, S. A Review of Micronutrients and the Immune System-Working in Harmony to Reduce the Risk of Infection // Nutrients. - 2020. - Vol. 12. - P. 236. 256. Hoffmann, P.R.; Berry, M.J. The influence of selenium on immune responses // Mol. Nutr. Food Res. - 2008. - Vol. 52. - P. 1273-1280. 257. Da Fonseca, L.J.S.; Nunes-Souza, V.; Goulart, M.O.F.; Rabelo, L.A. Oxidative Stress in Rheumatoid Arthritis: What the Future Might Hold regarding Novel Biomarkers and Add-On Therapies // Oxid. Med. Cell. Longev. - 2019. - Vol. 2019. - P. 7536805. 258. Nakajima, A.; Aoki, Y.; Shibata, Y.; Sonobe, M.; Terajima, F.; Takahashi, H.; Saito, M.; Taniguchi, S.; Yamada, M.; Nakagawa, K. Identification of clinical parameters associated with serum oxidative stress in patients with rheumatoid arthritis // Mod. Rheumatol. - 2014. - Vol. 24. - P. 926-930. 259. Smallwood, M.J.; Nissim, A.; Knight, A.R.; Whiteman, M.; Haigh, R.; Winyard, P.G. Oxidative stress in autoimmune rheumatic diseases // Free Radic. Biol. Med. - 2018. - Vol. 125. - P. 3-14. 260. Khojah, H.M.; Ahmed, S.; Abdel-Rahman, M.S.; Hamza, A.-B. Reactive oxygen and nitrogen species in patients with rheumatoid arthritis as potential biomarkers for disease activity and the role of antioxidants // Free Radic. Biol. Med. - 2016. - Vol. 97. - P. 285-291. 261. Lingappan, K. NF-kB in Oxidative Stress // Curr. Opin. Toxicol. - 2017. - Vol. 7. - P. 81-86. 262. Mateen, S.; Moin, S.; Shahzad, S.; Khan, A.Q. Level of inflammatory cytokines in rheumatoid arthritis patients: Correlation with 25-hydroxy vitamin D and reactive oxygen species // PLoS ONE. - 2017. - Vol. 12. - P. e0178879. 263. Bala, A.; Mondal, C.; Haldar, P.K.; Khandelwal, B. Oxidative stress in inflammatory cells of patient with rheumatoid arthritis: Clinical efficacy of dietary antioxidants // Inflammopharmacology. - 2017. - Vol. 25. P. 595-607. 264. Morgan, M.J.; Liu, Z.G. Crosstalk of reactive oxygen species and NF-kB signaling // Cell Res. - 2011. - Vol. 21. - P. 103-115. 265. Mateen, S.; Moin, S.; Khan, A.Q.; Zafar, A.; Fatima, N. Increased Reactive Oxygen Species Formation and Oxidative Stress in Rheumatoid Arthritis // PLoS ONE. - 2016. - Vol. 11. - P. e0152925. 266. Taylor, P.C.; Sivakumar, B. Hypoxia and angiogenesis in rheumatoid arthritis // Curr. Opin. Rheumatol. - 2005. - Vol. 17. - P. 293-298. 267. Kretz-Remy, C.; Arrigo, A.P. Selenium: A key element that controls NF-kappa B activation and I kappa B alpha half life // Biofactors. - 2001. - Vol. 14. - P. 117-125. 268. Maehira, F.; Miyagi, I.; Eguchi, Y. Selenium regulates transcription factor NF-kappaB activation during the acute phase reaction // Clin. Chim. Acta. - 2003. - Vol. 334. - P. 163-171. 269. Alhasan, R.; Kharma, A.; Leroy, P.; Jacob, C.; Gaucher, C. Selenium Donors at the Junction of Inflammatory Diseases // Curr. Pharm. Des. - 2019. - Vol. 25. - P. 1707-1716. 270. Avery, J.C.; Hoffmann, P.R. Selenium, Selenoproteins, and Immunity // Nutrients. - 2018. - Vol. 10. - P. 1203. 271. National Agricultural Library. Selenium. Available online: https://www.nal.usda.gov/ fnic/selenium (accessed on 10 May 2020). 272. National Agricultural Library. Food Composition. Available online: https://www.nal.usda.gov/fnic/foodcomposition (accessed on 10 May 2020). 273. Alwarith, J.; Kahleova, H.; Rembert, E.; Yonas,W.; Dort, S.; Calcagno, M.; Burgess, N.; Crosby, L.; Barnard, N.D. Nutrition Interventions in Rheumatoid Arthritis: The Potential Use of Plant-Based Diets. A Review // Front. Nutr. - 2019. - Vol. 6. - P. 141. 274. Kreps, D.J.; Halperin, F.; Desai, S.P.; Zhang, Z.Z.; Losina, E.; Olson, A.T.; Karlson, E.W.; Bermas, B.L.; Sparks, J.A. Association of weight loss with improved disease activity in patients with rheumatoid arthritis: A retrospective analysis using electronic medical record data // Int. J. Clin. Rheumatol. - 2018. - Vol. 13. - P. 1-10. 275. Petersson, S.; Philippou, E.; Rodomar, C.; Nikiphorou, E. The Mediterranean diet, fish oil supplements and Rheumatoid arthritis outcomes: Evidence from clinical trials // Autoimmun. Rev. - 2018. - Vol. 17. - P. 1105-1114. 276. Forsyth, C.; Kouvari, M.; D?Cunha, N.M.; Georgousopoulou, E.N.; Panagiotakos, D.B.; Mellor, D.; Kellett, J.; Naumovski, N. The effects of the Mediterranean diet on rheumatoid arthritis prevention and treatment: A systematic review of human prospective studies // Rheumatol. Int. - 2018. - Vol. 38. - P. 737-747. 277. Hafstrom, I.; Ringertz, B.; Spångberg, A.; Von Zweigbergk, L.; Brannemark, S.; Nylander, I.; Rönnelid, J.; Laasonen, L.; Klareskog, L. A vegan diet free of gluten improves the signs and symptoms of rheumatoid arthritis: The effects on arthritis correlate with a reduction in antibodies to food antigens // Rheumatology. - 2001. - Vol. 40. - P. 1175-1179. 278. Caja, S.; Mäki, M.; Kaukinen, K.; Lindfors, K. Antibodies in celiac disease: Implications beyond diagnostics // Cell. Mol. Immunol. - 2011. - Vol. 8. - P. 103-109. 279. Horta-Baas, G.; Romero-Figueroa, M.D.S.; Montiel-Jarquín, A.J.; et al. Intestinal Dysbiosis and Rheumatoid Arthritis: A Link between Gut Microbiota and the Pathogenesis of Rheumatoid Arthritis // J. Immunol. Res. - 2017. - Vol. 2017. - P. 4835189. 280. Badsha, H. Role of Diet in Influencing Rheumatoid Arthritis Disease Activity // Open Rheumatol. J. - 2018. - Vol. 12. - P. 19-28. 281. Li, J.; Gang, D.; Yu, X.; Hu, Y.; Yue, Y.; Cheng,W.; Pan, X.; Zhang, P. Genistein: The potential for efficacy in rheumatoid arthritis // Clin. Rheumatol. - 2013. - Vol. 32. - P. 535-540. 282. Jalili, M.; Kolahi, S.; Aref-Hosseini, S.-R.; Mamegani, M.E.; Hekmatdoost, A. Beneficial role of antioxidants on clinical outcomes and erythrocyte antioxidant parameters in rheumatoid arthritis patients // Int. J. Prev. Med. - 2014. - Vol. 5. - P. 835-840. 283. Longo, V.D.; Mattson, M.P. Fasting: Molecular mechanisms and clinical applications // Cell. Metab. - 2014. - Vol. 19. - P. 181-192. 284. Kim, S.; Kim, B.; Park, S.-K. Selenocysteine mimics the e_ect of dietary restriction on lifespan via SKN-1 and retards age-associated pathophysiological changes in Caenorhabditis elegans // Mol. Med. Rep. - 2018. - Vol. 18. - P. 5389-5398. | ||
|