| |||
МЕДЛАЙН.РУ
|
|||
|
Фундаментальные исследования • Патологическая анатомия
Том: 22 Статья: « 14 » Страницы:. 192-229 Опубликована в журнале: 15 марта 2021 г. English version Флуоресценция в онкологииИвашкина М.Д., Миронович А.А., Юдаева А.Д., Смирнов И.В.,
под редакцией д.м.н. Митрофановой Л.Б. Образовательный центр Сириус, Сочи Моско́вский госуда́рственный университе́т и́мени М. В. Ломоно́сова, ФГБУ «НМИЦ им. В.А. Алмазова»
Резюме
В настоящее время во всeм мире ведутся работы по созданию новых эффективных и безопасных вариантов диагностики и лечения рака, среди которых флюоресцентная диагностика и фотодинамическая терапия занимают одно из лидирующих мест. Основная проблема и задача онкологов это правильный выбор фотосенсибилизаторов и методов их введения. В данном литературном обзоре представлены разрабатываемые, исследуемые и применяемые в клинической практике флюорохромы и фотосенсибилизаторы для флюоресцентной диагностики и фотодинамической терапии опухолей. Ключевые слова интраоперационная флуоресцентная навигация, опухоли, флуорохромы, фотодинамическая терапия (статья в формате PDF. Для просмотра необходим Adobe Acrobat Reader) открыть статью в новом окне Список литературы 1. Hernot S., van Manen L., Debie P., et al. Latest developments in molecular tracers for fluorescence image-guided cancer surgery // The Lancet Oncology. - 2019. - Vol. 20. - 7. - P. e354-e367. doi: 10.1016/S1470-2045(19)30317-1 2. Dazhuang X., Lei L., Chengchao C., et al. Advances and perspectives in near-infrared fluorescent organic probes for surgical oncology // Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology. - 2020. - Vol. 12. - 5. - P. E1635. https://doi.org/10.1002/wnan.1635 3. Juarranz A., Jaen P., Sanz-Rodriguez F., Cuevas J., Gonzalez S. Photodynamic therapy of cancer: basic principles and applications. applications // Clinical and Translational Oncology. - 2008. - Vol. 10. - 3. - P. 148-154. doi: 10.1007/s12094-008-0172-2 4. Tampa M., Sarbu M., Matei C. et al. Photodynamic therapy: a hot topic in dermato-oncology. // Oncology letters. - 2019. - Vol. 17. - 5. - P. 4085-4093. doi: 10.3892/ol.2019.9939 5. Kwiatkowskia S., Knapb B., Przystupski D., et al. Photodynamic therapy-mechanisms, photosensitizers and combinations // Biomedicine & Pharmacotherapy. - 2018. - Vol. 106. - P. 1098-1107. doi: 10.1016/j.biopha.2018.07.049 6. Peterson J.D. Non-Invasive Quantitative In Vivo Imaging of Atherosclerosis Disease Progression and Treatment Response in ApoE Deficient Mice using Fluorescence Molecular Tomography and NIR Fluorescent Pre-clinical Imaging Agents. [Электронный ресурс] // PerkinElmer, Inc - URL: https://www.perkinelmer.com/lab-solutions/resources/docs/APP_009971_01%20Atherosclerosis_ProSense750_FMT.pdf 7. Shen Y., Sun Y., Yan R., et al Rational engineering of semiconductor QDs enabling remarkable O-1(2) production for tumor-targeted photodynamic therapy // Biomaterials. - 2017. - Vol. 148. - P. 31-40. doi: 10.1016/j.biomaterials.2017.09.026 8. Te Velde E.A., Veerman Th., Subramaniam V., Ruers Th. The use of fluorescent dyes and probes in surgical oncology // European Journal of Surgical Oncology (EJSO). - 2010. - Vol. 36. - 1. - P. 6-15. doi:10.1016/j.ejso.2009.10.014 9. Alander J.T., Kaartinen I., Laakso A. et al. A Review of indocyanine green fluorescent imaging in surgery // International Journal of Biomedical Imaging. - 2012. - Vol. 2012. - P. 940585. doi: 10.1155/2012/940585 10. Ogata F., Azuma R., Kikuchi M. et al. Novel lymphography using indocyanine green dye for near-infrared fluorescence labeling // Annals of plastic surgery. - 2007. - Vol. 58. - 6. - P. 652- 655. doi: 10.1097/01.sap.0000250896.42800.a2 11. Motomura K., Inaji H., Komoike Y. et al. Sentinel node biopsy guided by indocyanin green dye in breast cancer patients // Japanese Journal of Clinical Oncology. - 1999. - Vol. 29. - 12. - P. 604- 607. doi: 10.1093/jjco/29.12.604 12. Kitai T., Inomoto T., Miwa M., Shikayama T. Fluorescence navigation with indocyanine green for detecting sentinel lymph nodes in breast cancer // Breast cancer. - 2005. - Vol. 12. - 3. - P. 211-215. doi: 10.2325/jbcs.12.211. 13.Ohnishi S., Lomnes S.J., Laurence R.G. et al. Organic alternatives to quantum dots for intraoperative near-infrared fluorescent sentinel lymph node mapping // Molecular Imaging. - 2005. - Vol. 4. - 3. - P. 172-181. doi.org/10.1162/15353500200505127 14. Klein Jan G.H., van Werkhoven E., van den Berg N.S. et al. The best of both worlds: a hybrid approach for optimal pre-and intraoperative identification of sentinel lymph nodes // European journal of nuclear medicine and molecular imaging. - 2018. - Vol. 45. - 11. - P. 1915-1925. doi: 10.1007/s00259-018-4028-x 15. Unkart J.T., Chen S.L., Wapnir I.L., Gonzalez J.E., Harootunian A., Wallace A.M. Intraoperative tumor detection using a ratiometric activatable fluorescent peptide: a first-in-human phase 1 study //Annals of surgical oncology. - 2017. - Vol. 24. - 11. - P. 3167-3173. doi: 10.1245/s10434-017-5991-3 16. Shen Y., Sun Y., Yan R., et al. Rational engineering of semiconductor QDs enabling remarkable 1O2 production for tumor-targeted photodynamic therapy // Biomaterials. - 2017. - Vol. 148. - P. 31- 40. doi: 10.1016/j.biomaterials.2017.09.026 17. Zhang Z., Li H., Liu Q. et al. Metabolic imaging of tumors using intrinsic and extrinsic fluorescent markers // Biosensors and Bioelectronics. - 2004. - Vol. 20. - 3. - P. 643-650. doi: 10.1016/j.bios.2004.03.034. 18. Сheng Z., Levi J., Xiong Z., Gheysens O., Keren S., Chen X., Gambhir S.S. Near-infrared fluorescent deoxyglucose analogue for tumor optical imaging in cell culture and living mice // Bioconjugate chemistry. - 2006. - Vol. 17. - 3. - P. 662-669. doi:10.1021/bc050345c 19. Josephson L., Mahmood U., Wunderbaldinger P. et al. Pan and Sentinel Lymph Node Visualization Using a Near-Infrared Fluorescent Probe // Molecular imaging. - 2003. - Vol. 2. - 1. - P. 18-23. doi: 10.1162/153535003765276255 20. Figueiredo J.-L., Alencar H., Weissleder R., Mahmood U. Near infrared thoracoscopy of tumoral protease activity for improved detection of peripheral lung cancer // International journal of cancer. - 2006. - Vol. 118. - 11. - P. 2672-2677. doi:10.1002/ijc.21713 21. Jaffer F.A, Libby P., Weissleder R. Molecular imaging of cardiovascular disease // Circulation. - 2007. - Vol. 116. - 9. - P. 1052-1061. https://doi.org/10.1161/CIRCULATIONAHA.106.647164 22. Choi Y., Weissleder R., Tung C.H. Selective antitumor effect of novel protease-mediated photodynamic agent // Cancer research. - 2006. - Vol. 66. - 14. - P. 7225-7229. doi: 10.1158/0008-5472.CAN-06-0448. 23. Leary S., Blatt J.E., Cohen A.R. et al. A phase II/III randomized, blinded study of tozuleristide for fluorescence imaging detection during neurosurgical resection of pediatric primary central nervous system (CNS) tumors: PNOC012 (Pacific Pediatric Neuro-oncology Consortium) // Journal of Clinical Oncology. - 2020. - Vol. 38. - 15. suppl. - P. TPS2575. 24. Dintzis S.M., Hansen S., Harrington K.M. et al. Real-time visualization of breast carcinoma in pathology specimens from patients receiving fluorescent tumor-marking agent tozuleristide // Archives of pathology & laboratory medicine. - 2019. - Vol. 143. - 9. - P. 1076-1083. doi:10.5858/ arpa.2018-0197-OA. 25. Lyons S.A., O'Neal J., Sontheimer H. Chlorotoxin, a scorpion‐derived peptide, specifically binds to gliomas and tumors of neuroectodermal origin // Glia. - 2002. - Vol. 39. - ?. 2. - P. 162-173. doi: 10.1002/glia.10083. 26. Fidel J., Kennedy K., Dernell W. et al. Preclinical validation of the utility of BLZ-100 in providing fluorescence contrast for imaging spontaneous solid tumors // Cancer research. - 2015. - Vol. 75. - ?. 20. - P. 4283-4291. doi: 10.1158/0008-5472.CAN-15-0471 27. Deshane J., Garner C.C., Sontheimer H. Chlorotoxin inhibits glioma cell invasion via matrix metalloproteinase-2 // Journal of biological chemistry. - 2003. - Vol. 278. - 6. - P. 4135-4144. doi: 10.1074/jbc.M205662200 28. Veiseh M., Gabikian P., Bahrami S.B. et al. Tumor paint: a chlorotoxin: Cy5. 5 bioconjugate for intraoperative visualization of cancer foci // Cancer research. - 2007. - Vol. 67. - 14. - P. 6882-6888. doi: 10.1158/0008-5472.CAN-06-3948 29. Kesavan K., Ratliff J., Johnson E.W. et al. Annexin A2 is a molecular target for TM601, a peptide with tumor-targeting and anti-angiogenic effects // Journal of Biological Chemistry. - 2010. - Vol. 285. - 7. - P. 4366-4374. doi:10.1074/jbc.m109.066092 30 Liu Z., Wang F., Chen X. Integrin αvβ3‐targeted cancer therapy // Drug development research. - 2008. - Vol. 69. - 6. - P. 329-339. doi: 10.1002/ddr.20265 31. Huang C., Chu C., Wang X. et al. Ultra-high loading of sinoporphyrin sodium in ferritin for single-wave motivated photothermal and photodynamic co-therapy // Biomaterials science. - 2017. - Vol. 5. - 8. - P. 1512-1516. doi:10.1039/c7bm00302a 32. Wang W., Ke S., Wu Q. et al. Near-infrared optical imaging of integrin alphavbeta3 in human tumor xenografts // Molecular Imaging. - 2004. - Vol. 3. - 4. - P. 343-351. doi: 10.1162/1535350042973481 33. Chen X., Conti P.S., Moats R.A. In vivo near-infrared fluorescence imaging of integrin αvβ3 in brain tumor xenografts // Cancer research. - 2004. - Vol. 64. - 21. - P. 8009-8014. doi:10.1158/0008-5472.can-04-1956 34. Cai W., Shin D.-W., Chen K. et al. Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects // Nano letters. - 2006. - Vol. 6. - 4. - P. 669-676. doi:10.1021/nl052405t 35. Wu Y. , Cai W., Chen X. Near-infrared fluorescence imaging of tumor integrin α v β 3 expression with Cy7-labeled RGD multimers // Molecular Imaging and Biology. - 2006. - Vol. 8. - 4. - P. 226-236. doi: 10.1007/s11307-006-0041-8 36. Тахира А. «Волшебные пули»: моноклональные антитела в онкологии. [Электронный ресурс] // Провизор. - 2005. - 17. - URL: www.provisor.com.ua/archive/2005/N17/art_19.php 37. Wang J., Yong W.H., Sun Y. et al. Receptor-targeted quantum dots: fluorescent probes for brain tumor diagnosis // Journal of Biomedical Optics. - 2007. - Vol. 12. - 4. - P. 044021. doi:10.1117/1.2764463 38. Miller S.E., Tummers W.S., Teraphongphom N. et al. First-in-human intraoperative near-infrared fluorescence imaging of glioblastoma using cetuximab-IRDye800 // Journal of neuro-oncology. - 2018. - Vol. 139. - 1. - P. 135-143. doi: 10.1007/s11060-018-2854-0. 39. Gao R.W., Teraphongphom N.T., van den Berg N.S. et al. Determination of tumor margins with surgical specimen mapping using near-infrared fluorescence // Cancer research. - 2018. - Vol. 78. - 17. - P. 5144-5154. doi: 10.1158/0008-5472.CAN-18-0878 40. Gao R.W., Teraphongphom N., de Boer E. et al. Safety of panitumumab-IRDye800CW and cetuximab-IRDye800CW for Fluorescence-Guided Surgical Navigation in Head and Neck Cancers // Theranostics. - 2018. - Vol. 8. - 9. - P. 2488-2495. doi:10.2967/jnumed.118.222810. 41. Gao M., Su H., Lin G., Li S. et al. Targeted imaging of EGFR overexpressed cancer cells by brightly fluorescent nanoparticles conjugated with cetuximab // Nanoscale. - 2016. - Vol. 8. - 32. - P. 15027-15032. doi:10.1039/c6nr04439e 42. Aerts H.J.W.L., Dubois L., Hackeng T. M. et al. Development and evaluation of a cetuximab-based imaging probe to target EGFR and EGFRvIII // Radiotherapy and oncology. - 2007. - Vol. 83. - 3. - P. 326-332. doi:10.1016/j.radonc.2007.04.030 43. Gleysteen J.P., Newman J.R., Chhieng D. et al. Fluorescent labeled anti‐EGFR antibody for identification of regional and distant metastasis in a preclinical xenograft model // Head & neck. - 2008. - Vol. 30. - 6. - P. 782-789. doi:10.1002/hed.20782 44. Hilger I., Leistner Y., Berndt A. et al. Near-infrared fluorescence imaging of HER-2 protein over-expression in tumour cells // European radiology. - 2004. - Vol. 14. - 6. - P. 1124-1129. doi:10.1007/s00330-004-2257-9 45. Koyama Y., Hama Y., Urano Y. et al. Spectral fluorescence molecular imaging of lung metastases targeting HER2/neu // Clinical cancer research. - 2007. - Vol. 13. - 10. - P. 2936-2945. doi:10.1158/1078-0432.ccr-06-2240 46. Hassan M., Riley J., Chernomordik V. Fluorescence Lifetime Imaging System for In Vivo Studies //Molecular Imaging. - 2007. - Vol. 6. - 4. - P. 229-236. doi:10.2310/7290.2007.00019 47. Lee S.B., Hassan M., Fisher R. Affibody molecules for in vivo characterization of HER2-positive tumors by near-infrared imaging // Clinical Cancer Research. - 2008. - Vol. 14. - 12. - P. 3840-3849. doi:10.1158/1078-0432.ccr-07-4076 48. Hoogstins C.E., Tummers Q.R.J.G, Gaarenstroom K.N. et al. A novel tumor-specific agent for intraoperative near-infrared fluorescence imaging: a translational study in healthy volunteers and patients with ovarian cancer // Clinical Cancer Research. - 2016. - Vol. 22. - 12. - P. 2929-2938. doi: 10.1158/1078-0432 49.Tummers Q.R.J.G., Hoogstins C.E., Gaarenstroom K.N. et al. Intraoperative imaging of folate receptor alpha positive ovarian and breast cancer using the tumor specific agent EC17 // Oncotarget. - 2016. - Vol. 7. - 22. - P. 32144-32155. doi: 10.18632/oncotarget.8282 50. Scaranti M., Cojocaru E., Banerjee S., Banerji U. Exploiting the folate receptor α in oncology // Nat Rev Clin Oncol. - 2020. Vol.17. - 6. - P. 349-359. doi: 10.1038/s41571-020-0339-5. Epub 2020 Mar 9. PMID: 32152484. 51. Harlaar N.J., Koller M., de Jongh S.J. et al. Molecular fluorescence-guided surgery of peritoneal carcinomatosis of colorectal origin: a single-centre feasibility study // Lancet Gastroenterol Hepatol. - 2016. - Vol.1. - P. 283-90. DOI: 10.1016/S2468-1253(16)30082-6] 52. Boogerd L.S..F, Hoogstins C.E.S., Schaap D.P. et al. Safety and effectiveness of SGM-101, a fluorescent antibody targeting carcinoembryonic antigen, for intraoperative detection of colorectal cancer: a dose-escalation pilot study // The Lancet Gastroenterology & Hepatology. - 2018. - Vol. 3. - 3. - P. 181-191. doi: 10.1016/s2468-1253(17)30395-3 53. Hoogstins C.E.S., Boogerd L.S.F., Sibinga Mulder B.G. et al. Image-guided surgery in patients with pancreatic cancer: first results of a clinical trial using SGM-101, a novel carcinoembryonic antigen-targeting, near-infrared fluorescent agent // Annals of surgical oncology. - 2018. - Vol. 25. - 11. - P. 3350-3357. doi: 10.1245/s10434-018-6655-7 54. McDonald P., Dedhar S. Carbonic anhydrase IX (CAIX) as a mediator of hypoxia-induced stress response in cancer cells // Carbonic Anhydrase: Mechanism, Regulation, Links to Disease, and Industrial Applications. - 2014. - P. 255-269. doi: 10.1007/978-94-007-7359-2_13 55. Hekman M.C., Rijpkema M., Muselaerset C.H. et al. Tumor-targeted Dual-modality Imaging to Improve Intraoperative Visualization of Clear Cell Renal Cell Carcinoma: A First in Man Study // Theranostics. - 2018. - Vol. 8. - 8. - P. 2161-2170. doi: 10.7150/thno.23335 56. Zhang J., Li D., Lang L. et al. 68Ga-NOTA-Aca-BBN (7-14) PET/CT in healthy volunteers and glioma patients // Journal of Nuclear Medicine. - 2016. - Vol. 57. - 1. - P. 9-14. doi: 10.2967/jnumed.115.165316 57. Li D., Zhang J., Chi C. et al. First-in-human Study of PET and Optical Dual-Modality Image-Guided Surgery in Glioblastoma Using 68 Ga-IRDye800CW-BBN // Theranostics. - 2018. - Vol. 8. - 9. - P. 2508-2520. doi: 10.7150/thno.25599 58. Carneiro F., Muniz Junqueira M., Carneiro M. et al. Anti EpCAM antibodies for detection of metastatic carcinoma in effusions and peritoneal wash // Oncology Letters. - 2019. - Vol. 18. - 2. - P. 2019-2024. doi:10.3892/ol.2019.10468 59. Feng L., Zhu J., Wang Z. Biological Functionalization of Conjugated Polymer Nanoparticles for Targeted Imaging and Photodynamic Killing of Tumor Cells // ACS Applied Materials & Interfaces. - 2016. - Vol. 8. - 30. - P. 19364-19370. doi:10.1021/acsami.6b06642 60. Hou J.T., Ko K.P., Shi H. et al. PLK1-targeted fluorescent tumor imaging with high signalto-background ratio // ACS Sensors. - 2017. - Vol. 2. - 10. - P. 1512-1516. doi:10.1021/acssensors.7b00544] 61. Sharma A., Kim E.J., Shi H. et al. Development of a theranostic prodrug for colon cancer therapy by combining ligand-targeted delivery and enzyme-stimulated activation // Biomaterials. - 2018. - Vol.155. - P. 145-151. DOI: 10.1016/j.biomaterials.2017.11.019 62. Kurbegovic S., Juhl K., Chen H. et al.). Molecular targeted NIR-II probe for image-guided brain tumor surgery // Bioconjugate Chemistry. - 2018. - Vol. 29. - 11. - P. 3833-3840. DOI: 10.1021/acs.bioconjchem.8b00669 63. Zhang J., Jiang C., Longo J.P.F. et al. An updated overview on the development of new photosensitizers for anticancer photodynamic therapy // Acta Pharm. Sinica B. - 2018. - Vol. 8. - 2. - P. 137-146. doi10.1016/j.apsb.2017.09.003. 64. Bellnier D.A., Greco W.R., Loewen G. M. et al. Clinical Pharmacokinetics of the PDT Photosensitizers Porfimer Sodium (Photofrin), 2-[1-Hexyloxyethyl]-2-Devinyl Pyropheophorbide-a (Photochlor) and 5-ALA-Induced Protoporphyrin IX // Lasers in Surgery and Medicine. - 2006. - Vol. 38. - 5. - P. 439-444. doi:10.1002/lsm.20340 65. Olson M., Ly Q., Mohs A. et al. Fluorescence Guidance in Surgical Oncology: Challenges, Opportunities, and Translation // Mol Imaging Biol. - 2019. - Vol. 21. - 2. - P. 200-218. DOI: 10.1007/s11307-018-1239-2 66. Pandey R.K., Goswami L.N., Chen Y. et al. Nature: a rich source for developing multifunctional agents. Tumor-imaging and photodynamic therapy // Lasers Surg Med. - 2006. - Vol. 38. - P. 445-467. 67. Mettath S., Shibata M., Alderfer J.L. et al. Synthesis and spectroscopic properties of novel benzochlorins derived from chlorophyll a // J Org Chem 1998. - Vol. 63. - P. 1646-1656. 68. Yoon I., Li J.Z., Shim Y.K. Advance in Photosensitizers and Light Delivery for Photodynamic Therapy // Clinical Endoscopy. - 2013. - Vol. 46. - 1. - P. 7-23. doi:10.5946/ce. 69. Zhang M., Zhang Z., Blessington D. et al. Pyropheophorbide 2-Deoxyglucosamide: A New Photosensitizer Targeting Glucose Transporters // Bioconjugate Chemistry. - 2003. - Vol. 14. - 4. - P. 709-714. doi:10.1021/bc034038n 70. Abrahamse H., Hamblin M.R. New photosensitizers for photodynamic therapy // Biochem J. - 2016. - Vol. 473. - 4. - P. 347-64. doi: 10.1042/BJ20150942. PMID: 26862179; PMCID: PMC4811612. 71. Zheng X., Morgan J., Pandey S.K., Chen Y. et al. Conjugation of 2-(1′-Hexyloxyethyl)-2-devinylpyropheophorbide-a (HPPH) to Carbohydrates Changes its Subcellular Distribution and Enhances Photodynamic Activity in Vivo// Journal of Medicinal Chemistry. - 2009. - Vol. 52. - 14. - P. 4306-4318. doi:10.1021/jm9001617. 72. Stefflova K., Li H., Chen J., Zheng G. Peptide-based pharmacomodulation of a cancer-targeted optical imaging and photodynamic therapy agent // Bioconjug Chem. - 2007. - Vol. - 18. - P. 379-388. doi 10.1021/bc0602578 73. Tarragó-Trani M.T., Jiang S., Harich K.C., Storrie B. Shiga-like Toxin Subunit B (SLTB)-Enhanced Delivery of Chlorin e6 (Ce6) Improves Cell Killing // Photochemistry and Photobiology. - 2006. - Vol. 82. - 2. - 527-37. doi:10.1562/2005-06-20-ra-583 74. Zheng G., Li H., Zhang M. et al. Low-Density Lipoprotein Reconstituted by Pyropheophorbide Cholesteryl Oleate as Target-Specific Photosensitizer // Bioconjugate Chemistry. - 2002. - Vol. 13. - 3. - P. 392-396. doi:10.1021/bc025516h 75. Chen G., Jaskula-Sztul R., Esquibel C.R., et al. Neuroendocrine tumor-targeted upconversion nanoparticle-based micelles for simultaneous nir-controlled combination chemotherapy and photodynamic therapy, and fluorescence imaging // Advanced Functional Materials. - 2017. - Vol. 27. - 8. - P. 1604671. doi: 10.1002/adfm.201604671] | ||
|