banner medline tsn
МЕДЛАЙН.РУ
Содержание журнала

Архив

Редакция
Учредители

Федеральное государственное бюджетное учреждение науки
Институт теоретической и экспериментальной биофизики
Российской академии наук


ООО "ИЦ КОМКОН"


ФГБУН "Институт токсикологии" ФМБА России

Адрес редакции и реквизиты

192012, Санкт-Петербург, ул.Бабушкина, д.82 к.2, литера А, кв.378

Свидетельство о регистрации электронного периодического издания ЭЛ № ФС 77-37726 от 13.10.2009
Выдано - Роскомнадзор

ISSN 1999-6314


Клиническая медицина » Терапия • Эндокринология

Том: 19
Статья: « 84 »
Страницы:. 1178-1203
Опубликована в журнале: 29 ноября 2018 г.

English version

Когнитивные осложнения у больныx с сахарным диабетом: современные аспекты патогенеза и лечения

Салухов В.В., Ромашевский Б.В.

ФГБВОУ ВО "Военно-медицинская академия имени С.М. Кирова" МО РФ,
г. Санкт-Петербург, ул. Академика Лебедева, д. 6


Резюме
Сахарный диабет является независимым факторов риска развития когнитивных нару-шений. Возникновение когнитивных нарушений у больных диабетом связано с острой и хронической гипергликемией, инсулинорезистентностью, гиперинсулинемией, диа-бетическим кетоацидозом и гипогликемическими событиями. В настоящем обзоре освещены механизмы развития КН у больных СД, которые включают сочетания сосудистых заболеваний, окислительного стресса, нейровоспале-ния, митохондриальной дисфункции, апоптоза, снижения нейротрофических факторов, активацию ацетилхолинэстеразы (AChE), изменения нейротрансмиттеров, накопления амилоида β и фосфорилирования тау, нейродегенерации. Ряд экспериментальных и клинических исследований подтверждают наличие общих механизмов в патогенезе СД и когнитивных нарушений, что предполагает ис-пользование антидиабетических препаратов в профилактике и лечении этих заболева-ний. Представлены результаты исследований по влиянию антидиабетических препара-тов с нейропротекторным действием на когнитивную функцию у больных СД и нейро-дегеративными заболеваниями.


Ключевые слова
Сахарный диабет, когнитивные нарушения, клинические исследования, патогенез, ан-тидиабетические препараты



(статья в формате PDF. Для просмотра необходим Adobe Acrobat Reader)



открыть статью в новом окне

Список литературы

1. Cox DJ, Kovatchev BP, Gonder-Frederick LA, et al. Relationships between hypergly-cemia and cognitive performance among adults with type 1 and type 2 diabetes. Diabe-tes Care. 2005;28(1):71-77.


2. Vincent C, Hall PA. Executive function in adults with type 2 diabetes: a meta-analytic review. Psychosom Med. 2015;77(6):631-642.





3. Biessels GJ, Staekenborg S, Brunner E, Brayne C, Schel- tens P. Risk of dementia in diabetes mellitus: a systematic review. Lancet Neurol. 2006;5(1):64-74.


4. 4. Ott A, Stolk RP, Van harskamp F, Pols HA, Hofman A, Breteler MM. Diabetes mellitus and the risk of dementia: The Rotterdam Study. Neurology. 1999;53(9):1937-42.


5. Curb JD, Rodriguez BL, Abbott RD, et al. Longitudinal association of vascular and Alzheimer?s dementias, diabetes, and glucose tolerance. Neurology. 1999;52(5):971-975.


6. Емелин, А.Ю. Сосудистые когнитивные нарушения / А.Ю. Емелин, В.Ю. Лоб-зин, И.С. Железняк, И.В. Бойков. - СПб.: 2016. - 80 с.


7. 11. Laws SM, Gaskin S, Woodfield A, et al. Insulin resistance is associated with re-ductions in specific cognitive domains and increases in CSF tau in cognitively normal adults. Sci Rep. 2017 Aug 29;7(1):9766.


8. 12. Shukla V, Shakya AK, Perez-Pinzon MA, Dave KR. Cerebral ischemic damage in diabetes: an inflammatory perspective. J Neuroinflammation. 2017 Jan 23;14(1):21.


9. Остроумова О.Д., Суркова Е.В., Ших Е.В., и др. Когнитивные нарушения у больных сахарным диабетом 2 типа: Распространенность, патогенетические ме-ханизмы, влияние противодиабетических препаратов. Сахарный диабет. 2018;21(4):307-318.


10. Definition and diagnosis of diabetes mellitus and intermediate hyperglycemia : Report of WHO/IDF Consultation / WHO; International Diabetes Federation. - 2006. - 46 p.


11. Jacobson, A. M., Ryan, C. M., Cleary, P. A., Waberski, B. H., Weinger, K., Musen, G., et all. Diabetes Control and Complications Trial/EDIC Research Group. Biomedi-cal risk factors for decreased cognitive functioning in type 1 diabetes: An 18 year fol-low-up of the Diabetes Control and Complications Trial (DCCT) cohort. Diabetologia. 201; 54, 245-255.


12. Ryan C. M., Geckle M. O., & Orchard T. J. Cognitive efficiency declines over time in adults with Type 1 diabetes: Effects of micro- and macrovascular complications. Di-abetologia. 2003; 46, 940-948.


13. Patton N, Aslam T, Macgillivray T, Pattie A , Deary I. J, & Dhillon B. Retinal vas-cular image analysis as a potential screening tool for cerebrovascular disease: A ra-tionale based on homology between cerebral and retinal microvasculatures. Journal of Anatomy. 2005; 206, 319- 348.


14. Moran C, Beare R, Phan TG, et al. Alzheimer?s Disease Neuroimaging Initiative (ADNI). Type 2 diabetes mellitus and bio- markers of neurodegeneration. Neurology. 2015;85(13):1123-1130.





15. Curb J.D, Rodriguez B.L, Abbott R.D, et al. Longitudinal association of vascular and Alzheimer?s dementias, diabetes, and glucose tolerance. Neurology. 1999;52(5):971-975.


16. Crane P.K, Walker R, Hubbard R.A, et al. Glucose levels and risk of dementia. N Engl J Med. 2013;369(6):540-548.





17. Biessels, G.J, Luchsinger. Pathobiology of Diabetic Encephalopathy in Animal Mod-els. Diabetes and the Brain Contemporary Diabetes/ - New York: Springer, LLC, 2010. - P. 409-431


18. Brands I. Diabetes and the brain: Cognitive performance in type 1 and type 2 diabetes mellitus . - Niederlands: Gildeprint Drukkerijen B.V., 2007. - 223 p.


19. Christopher M, Duinkerken E. Neurocognitive Consequences of Diabetes. American Psychologist. 2016, Vol. 71, No. 7, 563-576.


20. Barnea-Goraly N, Raman M., Mazaika P., Marzelli M, Hershey T., Weinzimer S. A. Diabetes Research in Children Network (Direc- Net). Alterations in white matter struc-ture in young children with type 1 diabetes. Diabetes Care.2014; 37, 332-340


21. Northam E. A, Anderson P. J, Werther G. A, Warne G. L, Adler R. G, & Andrewes D. Neuropsychological complications of IDDM in children 2 years after disease onset. Diabetes Care. 1998; 21, 379-384.


22. Cato M. A, Mauras N, Ambrosino J, Bondurant A, Conrad A. L., et all. Diabetes Re-search in Children Network (DirecNet). Cognitive functioning in young children with type 1 diabetes. Journal of the International Neuropsychological Society.2014; 20, 238-247.


23. Cameron F. J., Wherrett D. K. Care of diabetes in children and adolescents: Contro-versies, changes, and consensus. The Lancet. 2015; 385, 2096-2106.


24. Ryan, C. M. Searching for the origin of brain dysfunction in diabetic children: Going back to the beginning. Pediatric Diabetes. 2008; 9, 527-530.


25. Ghetti S., Lee J. K., Sims C. E., Demaster D. M., Glaser N. S. Diabetic ketoacidosis and memory dysfunction in children with type 1 diabetes. The Journal of Pediatrics. 2010; 156, 109-114.


26. Kuhad A, Bishnoi M, Tiwari V, et al. Suppression of NF-kappabeta signaling pathway by tocotrienol can prevent diabetes associated cognitive deficits. Pharmacol Biochem Behav. 2009;92(2):251-259.





27. Wang T, Fu FH, Han B, et al. Long-term but not short-term aspirin treatment attenu-ates diabetes-associated learning and memory decline in mice. Exp Clin Endocrinol Diabetes. 2011;119(1):36-40.





28. Jafari Anarkooli I, Barzegar Ganji H, Pourheidar M. The protective effects of insulin and natural honey against hippocampal cell death in streptozotocin-induced diabetic rats. J Diabetes Res. 2014;2014:491571.





29. Van Dam PS, Van Asbeck BS, Erkelens DW, et al. The role of oxidative stress in neu-ropathy and other diabetic complications. Diabetes Metab Rev. 1995;11(3):181-192.





30. El-Kossi AE, Abdellah MM, Rashad AM, et al. The effectiveness of evening primrose in glycemic control and improvement of nerve structure and function in diabetic rats. J Clin Exper Invest. 2011;2 (2):133-150.


31. Bekyarova GY, Ivanova DG, Madjova VH. Molecular mechanisms associating oxida-tive stress with endothelial dysfunction in the development of various vascular compli-cations in diabetes mellitus. Folia Med (Plovdiv). 2007;49(3-4):13-19.





32. Fishel MA, Watson GS, Montine TJ, et al. Hyperinsulinemia provokes synchronous increases in central inflammation and beta-amyloid in normal adults. Arch Neurol. 2005;62(10):1539-1544.


33. Ghetti S, Lee JK, Sims CE, et al. Diabetic ketoacidosis and memory dysfunction in children with type 1 diabetes. J Pediatr. 2010;156 (1):109-114.





34. Nett S.T, Noble J.A, Levin D.L, et al. Biomarkers and genetics of brain injury risk in diabetic ketoacidosis: A pilot study. J Pediatr Intensive Care. 2014;3:2.





35. Hamed S, Metwally K.A, Farghaly H.S, et al. Serum levels of neuron- specific enolase in children with diabetic ketoacidosis. J Child Neurol. 2017; 45(1): 265-272.


36. Cameron F.J, Scratch S.E, Nadebaum C, et al. Neurological conse- quences of diabetic ketoacidosis at initial presentation of type 1 diabetes in a prospective cohort study of children. Diabetes Care. 2014;37(6):1554-1562.


37. Glaser N, Ngo C, Anderson S, et al. Effects of hyperglycemia and effects of ketosis on cerebral perfusion, cerebral water distribution, and cerebral metabolism. Diabetes. 2012;61(7):1831-1837.


38. Blasetti A, Chiuri R.M, Tocco A.M, et al. The effect of recurrent severe hypoglycemia on cognitive performance in children with type 1 diabetes: a meta-analysis. J Child Neurol. 2011;26(11):1383-1391.


39. Hershey T, Bhargava N, Sadler M, et al. Conventional versus inten- sive diabetes ther-apy in children with type 1 diabetes: effects on memory and motor speed. Diabetes Care. 1999;22(8):1318-1324.


40. Wright R.J, Frier B.M, Deary I.J. Effects of acute insulin-induced hypoglycemia on spatial abilities in adults with type 1 diabetes. Diabetes Care. 2009;32(8):1503-1506.





41. Dore G.A, Elias M.F, Robbins M.A, et al. Presence of the APOE epsilon4 allele modi- fies the relationship between type 2 diabetes and cognitive performance: The Maine-Syracuse Study. Diabetologia. 2009;52:2551-60.





42. Patel A, MacMahon S, Chalmers J, et al. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med. 2008;358:2560- 72.


43. Zhang Z, Lovato J, Battapady H, et al. Effect of hypoglycemia on brain structure in people with type 2 diabetes: Epidemiological analysis of the ACCORD- MIND MRI trial. Diabetes Care. 2014;37:3279-85.


44. Whitmer RA, Karter AJ, Yaffe K, et al. Hypoglycemic episodes and risk of dementia in older patients with type 2 diabetes mellitus. JAMA. 2009;301(15):1565-1572.


45. Bruce DG, Davis WA, Casey GP, et al. Severe hypoglycaemia and cognitive impair-ment in older patients with diabetes: The Fremantle Diabetes Study. Diabetologia. 2009;52:1808-15.


46. Tatar M, Bartke A, Antebi A. The endocrine regulation


of aging by insulin-like sig-nals. Science. 2003;


299: 1346-51.





47. Costello DA, Claret M, Al-Qassab H, et al. Brain deletion of insulin receptor substrate 2 disrupts hippocampal synaptic plasticity and metaplasticity. PLoS One. 2012;7(2):e31124.


48. Bauduceau B, Doucet J, Lefloch JP, Verny C. Cardiovascular events and geriatric scale scores in elderly (70 years old and above) type 2 diabetic patients at inclusion in the GERODIAB c hort. Diabetes Care. 2014;37(1):304-11.


49. Derakhshan F, Toth C. Insulin and the brain. Curr Diabetes Rev. 2013;9(2):102-16.


50. Kleinridders A, Ferris HA, Cai W, Kahn CR. Insulin Action in Brain Regulates Sys-temic Metabolism and Brain Function. Diabetes. 2014;63(7):2232-2243.


51. Chiang, M.C.; Cheng, Y.C.; Chen, S.J.; Yen, C.H.; Huang, R.N. Metformin activation of AMPK-dependent pathways is neuroprotective in human neural stem cells against Amyloid-beta-induced mitochondrial dysfunction. Exp. Cell Res. 2016, 347, 322-331.





52. Kickstein, E.; Krauss, S.; Thornhill, P. et al. Biguanide metformin acts on tau phos-phorylation via mTOR/protein phosphatase 2A (PP2A) signaling. Proc. Natl. Acad. Sci. USA 2010, 107, 21830-21835.





53. Li, J.; Deng, J.; Sheng, W.; Zuo, Z. Metformin attenuates Alzheimer?s disease-like neuropathology in obese, leptin-resistant mice. Pharmacol. Biochem. Behav. 2012, 101, 564-574.


54. Hsu, C.C.; Wahlqvist, M.L.; Lee, M.S.; Tsai, H.N. Incidence of dementia is increased in type 2 diabetes and


reduced by the use of sulfonylureas and metformin. J. Alz-heimer?s Dis. JAD 2011, 24, 485-493.


55. Luchsinger,J.A.;Perez,T.;Chang,H.;Mehta,P.;Steffener,J.;Pradabhan,G.;Ichise,M.;Manly,J.;Devanand,D.P.;


Bagiella, E. Metformin in Amnestic Mild Cognitive Impair-ment: Results of a Pilot Randomized Placebo Controlled


Clinical Trial. J. Alz-heimer?s Dis. JAD 2016, 51, 501-514.





56. Herath, P.M.; Cherbuin, N.; Eramudugolla, R.; Anstey, K.J. The Effect of Diabetes Medication on Cognitive Function: Evidence from the PATH Through Life Study. Bi-oMed Res. Int. 2016, 2016, 720-84.





57. Moore, E.M.; Mander, A.G.; Ames, D.; Kotowicz, M.A.; Carne, R.P.; Brodaty, H.; Woodward, M.; Boundy, K.; Ellis, K.A.; Bush, A.I.; et al. Increased risk of cognitive impairment in patients with diabetes is associated with metformin. Diabetes Care 2013, 36, 2981-2987.





58. Luchsinger,J.A.;Ma,Y.;Christophi,C.A.;Florez,H.;Golden,S.H.;Hazuda,H.;Crandall,J.;Venditti,E.;


Watson, K.; Jeffries, S.; et al. Metformin, Lifestyle Intervention, and Cognition in the Diabetes Prevention


Program Outcomes Study. Diabetes Care 2017, 40, 958-965.


59. Fu H, Xie W, Curtis B, SchusterD.I dentifying factor sassociated with hypoglycemia-related hospitalizations among elderly patients with T2DM in the US: a novel approach using influential variable analysis. Curr Med Res Opin. 2014 Sep;30(9):1787-93.


60. Orkaby AR, Cho K, Cormack J, Gagnon DR, Driver JA. Metformin vs sulfonylurea use and risk of dementia in US veterans aged ≥65 years with diabetes. Neurology. 2017 Oct 31;89(18):1877-1885.


61. Landreth, G. Therapeutic use of agonists of the nuclear receptor PPARgamma in Alz-heimer?s disease.


Curr. Alzheimer Res. 2007, 4, 159-164.





62. Heneka, M.T.; Sastre, M.; Dumitrescu-Ozimek, L.; Hanke, A.; Dewachter, I.; Kuiperi, C.; O?Banion, K.;


Klockgether, T.; Van Leuven, F.; Landreth, G.E. Acute treatment with the PPARgamma agonist pioglitazone and ibuprofen reduces glial inflammation and Abeta1-42 levels in APPV717I transgenic mice. Brain J. Neurol. 2005, 128, 1442-1453.





63. Fernandez-Martos, C.M.; Atkinson, R.A.K.; Chuah, M.I.; King, A.E.; Vickers, J.C. Combination treatment with leptin and pioglitazone in a mouse model of Alzheimer?s disease. Alzheimer?s Dement. 2017, 3, 92-106.





64. Geldmacher,D.S.;Fritsch,T.;McClendon,M.J.;Landreth,G.A. Randomized pilot clinical trial of the safety of pioglitazone in treatment of patients with Alzheimer disease. Arch. Neurol. 2011, 68, 45-50.


65. Femminella,G.D.;Bencivenga,L.;Petraglia,L.;Visaggi,L.;Gioia,L.;Grieco,F.V.;deLucia,C.;Komici,K.;


Corbi, G.; Edison, P.; et al. Antidiabetic Drugs in Alzheimer?s Dis-ease: Mechanisms of Action and Future Perspectives. J. Diabetes Res. 2017, 2017, 7420796.





66. Drucker,D.J.;Sherman,S.I.;Gorelick,F.S.;Bergenstal,R.M.;Sherwin,R.S.;Buse,J.B. In-cretin-based therapies for the treatment of type 2 diabetes: Evaluation of the risks and benefits. Diabetes Care. 2010, 33, 428-433.





67. Cai H.Y.; Wang, Z.J.; Holscher, C.; Yuan, L.; Zhang, J.; Sun, P.; Li, J.; Yang, W.; Wu, M.N.; Qi, J.S. Lixisenatide attenuates the detrimental effects of amyloid beta pro-tein on spatial working memory and hippocampal neurons in rats. Behav. Brain Res. 2017, 318, 28-35.





68. Hansen, H.H.; Barkholt, P.; Fabricius, K.; Jelsing, J.; Terwel, D.; Pyke, C.; Knudsen, L.B.; Vrang, N. The GLP-1 receptor agonist liraglutide reduces pathology-specific tau phosphorylation and improves motor function in a transgenic hTauP301L mouse model of tauopathy. Brain Res. 2016, 1634, 158-170.





69. Gejl, M.; Gjedde, A.; Egefjord, L.; Moller, A.; Hansen, S.B.; Vang, K.; Rodell, A.; Braendgaard, H.; Gottrup, H.; Schacht, A.; et al. In Alzheimer?s Disease, 6-Month Treatment with GLP-1 Analog Prevents Decline of Brain Glucose Metabolism: Ran-domized, Placebo-Controlled, Double-Blind Clinical Trial. Front. Aging Neurosci. 2016, 8, 108.





70. Kosaraju, J.; Gali, C.C.; Khatwal, R.B.; Dubala, A.; Chinni, S.; Holsinger, R.M.; Madhunapantula, V.S.; Muthureddy Nataraj, S.K.; Basavan, D. Saxagliptin: A dipep-tidyl peptidase-4 inhibitor ameliorates streptozotocin induced Alzheimer?s disease. Neuropharmacology 2013, 72, 291-300.





71. Kornelius, E.; Lin, C.L.; Chang, H.H.; Li, H.H.; Huang, W.N.; Yang, Y.S.; Lu, Y.L.; Peng, C.H.; Huang, C.N. DPP-4 Inhibitor Linagliptin Attenuates Abeta-induced Cyto-toxicity through Activation of AMPK in Neuronal Cells. CNS Neurosci. Ther. 2015, 21, 549-557.





72. Rizzo,M.R.;Barbieri,M.;Boccardi,V.;Angellotti,E.;Marfella,R.;Paolisso,G. Dipeptidyl peptidase-4 inhibitors have protective effect on cognitive impairment in aged diabetic patients with mild cognitive impairment. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2014, 69, 1122-1131.





73. Lin B, Koibuchi N, Hasegawa Y, et al. Glycemic control with empagliflozin, a novel selective SGLT2 inhibitor, ameliorates cardiovascular injury and cognitive dysfunction in obese and type 2 diabetic mice. Cardiovasc Diabetol. 2014 Oct 26;13:148.


74. Rizvi SM, Shakil S, Biswas D, et al. Invokana (Canagliflozin) as a dual inhibitor of acetylcholinesterase and sodium glucose co-transporter 2: advancement in Alzheimer?s disease- diabetes type 2 linkage via an enzoinformatics study. CNS Neurol Disord Drug Targets. 2014;13(3):447-51.


75. Sa-Nguanmoo P, Tanajak P, Kerdphoo S, et al. SGLT2- inhibitor and DPP-4 inhibitor improve brain function via attenuating mitochondrial dysfunction, insulin resistance, inflammation, and apoptosis in HFD-induced obese rats. Toxicol Appl Pharmacol. 2017;333:43-50. doi: 10.1016/j.taap.2017.08.005.


76. 2010;288(1-2):112- 6.


77. Kern, W.; Peters, A.; Fruehwald-Schultes, B.; Deininger, E.; Born, J.; Fehm, H.L. Im-proving influence of insulin on cognitive functions in humans. Neuroendocrinology 2001, 74, 270-280.





78. Freiherr, J.; Hallschmid, M.; Frey, W.H., 2nd; Brunner, Y.F.; Chapman, C.D.; Holscher, C.; Craft, S.;


De Felice, F.G.; Benedict, C. Intranasal insulin as a treat-ment for Alzheimer?s disease: A review of basic research and clinical evidence. CNS Drugs. 2013, 27, 505-514.


79. Craft,S.;Claxton,A.;Baker,L.D.;Hanson,A.J.;Cholerton,B.;Trittschuh,E.H.;Dahl,D.;Caulder,E.;Neth,B.; Montine, T.J.; et al. Effects of Regular and Long-Acting Insulin on Cognition and Alzheimer?s Disease Biomarkers: A Pilot Clinical Trial. J. Alz-heimer?s Dis. JAD 2017, 57, 1325-1334.