Potentially pandemic pathogens in focus of research of dual-use technologies
Myasnikova I.A., Chepur S.V.
Federal State Budgetary Institution "State Research and Testing Institute of Military Medicine" of the Ministry of Defense of the Russian Federation
Brief summary
This article discusses issues related to a new direction of biological gain-of-function (GOF) research. These studies are conducted to understand the possibility of the emergence of new infectious agents in nature. Such experiments include genetic engineering techniques, the use of which allows increasing the virulence of pathogens. This is the next step in the application of genetic engineering associated with the design and construction of unique biological systems with “programmed” functions and properties, which provides new opportunities for the development of vaccines, diagnostics, and therapeutics. At the same time, the data presented in the article indicate a real threat to public health from such experiments. Efforts to study and predict the natural evolution and emergence of pathogenic microorganisms by deliberately creating agents with enhanced disease-causing properties in the laboratory are of the greatest concern, but gain-of-function studies must be assessed for their effectiveness in the fight against potentially pandemic infectious agents.
1. Chan J.F., To K.K., Tse H., Jin D.Y., Yuen K.Y. Interspecies transmission and emergence of novel viruses: lessons from bats and birds. Trends Microbiol. 2013; 21(10): 544-555. doi:10.1016/j.tim.2013.05.005.
2. Measles. World Health Organization. Updated December 5, 2023. Available at: https://www.who.int/news-room/fact-sheets/detail/measles (data obrasheniya 19.01.2024).
3. Branda F., Ciccozzi M., Angeletti S., et al. Zoonotic paramyxoviruses: evolution, ecology, and public health strategies in a changing world. Viruses. 2024; 16 (11): 1688. doi:10.3390/v16111688.
4. Kitchen A., Shackelton L.A., Holmes E.C. Family level phylogenies reveal modes of macroevolution in RNA viruses. Proc Natl Acad Sci USA. 2011; 108 (1): 238-243. doi:10.1073/pnas.1011090108.
5. Masters P.S. The molecular biology of coronaviruses. Adv Virus Res. 2006; 66: 193-292. doi:10.1016/S0065-3527(06)66005-3.
6. Peiris J.S., Lai S.T., Poon L.L., et al. Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet. 2003; 361 (9366): 1319-1325. doi:10.1016/S0140-6736(03)13077-2.
7. Wang M., Yan M., Xu H., et al. SARS-CoV infection in a restaurant from palm civet. Emerg Infect Dis. 2005; 11 (12): 1860-1865. doi:10.3201/eid1112.041293.
8. Li W., Shi Z., Yu M., et al. Bats are natural reservoirs of SARS-like coronaviruses. Science. 2005; 310 (5748): 676-679. doi:10.1126/science.1118391.
9. Zaki A.M., van Boheemen S., Bestebroer T.M., Osterhaus A.D., Fouchier R.A. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med. 2012; 367 (19): 1814-1820. doi:10.1056/NEJMoa1211721.
10. Middle East respiratory syndrome coronavirus (MERS-CoV). World Health Organization. Updated March 11, 2023. Available at https://www.who.int/news-room/fact-sheets/detail/middle-east-respiratory-syndrome-coronavirus-(mers-cov) data obrasheniya 19.01.2024).
11. Ithete N.L., Stoffberg S., Corman V.M., et al. Close relative of human Middle East respiratory syndrome coronavirus in bat, South Africa. Emerg Infect Dis. 2013; 19 (10): 1697-1699. doi:10.3201/eid1910.130946.
12. Jackson R.J., Ramsay A.J., Christensen C.D., Beaton S., Hall D.F., Ramshaw I.A. Expression of mouse interleukin-4 by a recombinant ectromelia virus suppresses cytolytic lymphocyte responses and overcomes genetic resistance to mousepox. J. Virol. 2001; 75 (3): 1205-1210. doi:10.1128/JVI.75.3.1205-1210.2001.
13. Lowen A.C., Mubareka S., Tumpey T.M., García-Sastre A., Palese P. The guinea pig as a transmission model for human influenza viruses. Proc Natl Acad Sci USA. 2006; 103 (26): 9988-9992. doi:10.1073/pnas.0604157103.
14. Leung N.H.L. Transmissibility and transmission of respiratory viruses. Nat Rev Microbiol. 2021; 19 (8): 528-545. doi:10.1038/s41579-021-00535-6.
15. Shinomiya N., Shinomiya M., Uwamino Y., et al. Reconsidering the need for gain-of-function research on enhanced potential pandemic pathogens in the post-COVID-19 era. Front Bioeng Biotechnol. 2022; 10: 966586. doi:10.3389/fbioe.2022.966586.
16. Gillum D.R., Van R.A., Bernier R., Kormos B., Gronvall G.K. Bridging biosafety and biosecurity gaps: DURC and ePPP policy insights from US institutions. Front Bioeng Biotechnol. 2024; 12: 1476527. doi:10.3389/fbioe.2024.1476527.
17. Herfst S., Schrauwen E.J., Linster M., et al. Airborne transmission of influenza A/H5N1 virus between ferrets. Science. 2012; 336 (6088): 1534-1541. doi:10.1126/science.1213362.
18. Jackson R.J., Ramsay A.J., Christensen C.D., Beaton S., Hall D.F., Ramshaw I.A. Expression of mouse interleukin-4 by a recombinant ectromelia virus suppresses cytolytic lymphocyte responses and overcomes genetic resistance to mousepox. J Virol. 2001; 75 (3): 1205-1210. doi:10.1128/JVI.75.3.1205-1210.2001.
19. Cello J., Paul A.V., Wimmer E. Chemical synthesis of poliovirus cDNA: generation of infectious virus in the absence of natural template. Science. 2002; 297 (5583): 1016-1018. doi:10.1126/science.1072266.
20. Tumpey T.M., Basler C.F., Aguilar P.V., et al. Characterization of the reconstructed 1918 Spanish influenza pandemic virus. Science. 2005; 310 (5745): 77-80. doi:10.1126/science.1119392.
21. Palese P., Roizman B. Genetic engineering of viruses and of virus vectors: a preface. Proc Natl Acad Sci USA. 1996; 93 (21): 11287.
22. Palese P., Muster T., Zheng H., O'Neill R., García-Sastre A. Negative-strand RNA viruses: genetic engineering and applications. Proc Natl Acad Sci USA. 1996; 93 (21): 11354-11358.
23. Imai M., Watanabe T., Hatta M., et al. Experimental adaptation of an influenza H5 HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferrets. Nature. 2012; 486 (7403): 420-428. doi:10.1038/nature10831.
24. Kahn L.H. Can biosecurity be embedded into the culture of the life sciences? Biosecur Bioterror. 2012;10 (2):241-246. doi:10.1089/bsp.2012.0014.
25. Patterson A.P., Tabak L.A., Fauci A.S., Collins F.S., Howard S.
A framework for decisions about research with HPAI H5N1 viruses. Science. 2013; 339 (6123): 1036-1037. doi:10.1126/science.1235520.
26. Driouich J.S., Moureau G., Touret F., et al. Reverse genetics of RNA viruses: ISA-based approach to control viral population diversity without modifying virus phenotype. Viruses. 2019; 11 (7): 666. doi:10.3390/v11070666.
27. Merkylov V.A., Lebedev V.N., Plehanova T.M., i dr. Ispolzovanie metodov obratnoi genetiki dlya polycheniya rekombinantnih shtammov virysa grippa, prigodnih v kachestve jivih attenyirovannih vakcin. Jyrnal mikrobiologii, epidemiologii i immynobiologii. 2009; 2: 111-117.
28. Smolonogina T.A., Isakova-Sivak I.N., Kotomina T.S., i dr. Konstryirovanie vektornoi vakcini na osnove holodo-adaptirovannogo virysa grippa dlya zashiti ot bakterialnoi infekcii, vizivaemoi streptokokkami gryppi V. Molekylyarnaya genetika, mikrobiologiya i virysologiya. 2019; 37 (1): 25-34.
29. Sylgina T.V., Imatdinov I.R. Rekombinantnii virys kori kak platforma dlya sozdaniya vektornih vakcin. VIII mejdynarodnaya naychno-prakticheskaya konferenciya molodih ychenih: biofizikov, biotehnologov, molekylyarnih biologov i virysologov. 2021; 2021: 228-229.
30. Cai R., Li Y., He S., et al. Development of reverse genetics system for Getah virus and characterization of rescued strains. Vet Res. 2025; 56 (1): 80. doi:10.1186/s13567-025-01421-0.