The role of retinal imaging in neurodegenerative diseases. Part 2. Multiple sclerosis
Kolesnikova E.T.1, Tultseva S.N.2
1 Federal State Budgetary Educational Institution of Higher Education «Izhevsk State Medical Academy» of the Ministry of Healthcare of Russian Federation. Russia, Udmurt Republic, Izhevsk, Kommunarov street, 281
2 Federal State Budgetary Educational Institution of Higher Education “Academician I.P. Pavlov First St. Petersburg State Medical University” of the Ministry of Healthcare of Russian Federation. Russia, 197022,
Saint-Petersburg, Lva Tolstogo street, 6-8
Brief summary
The aim of this review was to systematically examine the role of optical coherence tomography (OCT) and OCT angiography (OCTA) in assessing neurodegenerative changes of the retina and optic nerve in patients with multiple sclerosis (MS), as well as to analyze their correlation with clinical and neurological parameters. Particular attention was paid to the potential use of retinal parameters, such as the thickness of the retinal nerve fiber layer (RNFL) and ganglion cell complex (GCC), as biomarkers of neurodegeneration, and to evaluate the impact of baseline immunomodulatory therapy on the rate of retinal atrophy.
Literature review showed that even in the absence of clinical manifestations of optic neuritis, MS patients exhibit significant thinning of the RNFL (on average by 7.08 μm compared to the control group) and GCC. In patients with a history of optic neuritis, these changes were even more pronounced (a decrease in RNFL thickness by 20.38 μm). It was established that RNFL thickness correlates with the EDSS scale and the volume of gray and white matter in the brain. It was also found that drugs such as natalizumab and anti-CD20 antibodies demonstrate the highest neuroprotective efficacy, reducing the rate of GCC atrophy to 0.09-0.1% per year. Importantly, OCTA revealed a decrease in vessel density and perfusion in the area of the optic nerve, which may serve as an early marker of microcirculatory disturbances in MS.
The review emphasizes the importance of integrating OCT and OCTA into clinical practice for early diagnosis, monitoring, and assessment of therapeutic response in MS patients, especially through the use of quantitative retinal parameters.
1. Compston A., Coles A. Multiple sclerosis. The Lancet. 2008; 372: 1502-17. doi:10.1016/S0140-6736(08)61620-7
2. Rejdak K., Jackson S., Giovannoni G. Multiple sclerosis: a practical overview for clinicians. British Medical Bulletin. 2010; 95: 79-104. doi:10.1093/bmb/ldq017
3. Costello F. The Afferent Visual Pathway: Designing a Structural-Functional Paradigm of Multiple Sclerosis. ISRN Neurology. 2013; 2013: 1-17. doi:10.1155/2013/134858
4. Oliva Ramirez A., Keenan A., Kalau O., et al. Prevalence and burden of multiple sclerosis-related fatigue: a systematic literature review. BMC Neurol. 2021; 21: 468. doi:10.1186/s12883-021-02396-1
5. The Clinical Profile of Optic Neuritis: Experience of the Optic Neuritis Treatment Trial. Arch Ophthalmol. 1991; 109: 1673. doi:10.1001/archopht.1991.01080120057025
6. Beck R.W., Cleary P.A., Anderson M.M., et al. A Randomized, Controlled Trial of Corticosteroids in the Treatment of Acute Optic Neuritis. N Engl J Med. 1992; 326: 581-8. doi:10.1056/NEJM199202273260901
7. Ramagopalan S.V., Dobson R., Meier U.C., et al. Multiple sclerosis: risk factors, prodromes, and potential causal pathways. The Lancet Neurology. 2010; 9: 727-39. doi:10.1016/S1474-4422(10)70094-6
8. Yuan S., Xiong Y., Larsson S.C. An atlas on risk factors for multiple sclerosis: a Mendelian randomization study. J Neurol. 2021; 268: 114-24. doi:10.1007/s00415-020-10119-8
9. Racke M.K. The potassium channel KIR4.1—a potential autoantigen in MS. Nat Rev Neurol. 2012; 8: 595-6. doi:10.1038/nrneurol.2012.193
10. Tollar J., Nagy F., Toth B.E., et al. Exercise Effects on Multiple Sclerosis Quality of Life and Clinical-Motor Symptoms. Medicine & Science in Sports & Exercise. 2020; 52: 1007-14. doi:10.1249/MSS.0000000000002228
11. Ghasemi N., Razavi S., Nikzad E. Multiple Sclerosis: Pathogenesis, Symptoms, Diagnoses and Cell-Based Therapy. Cell J. 2017; 19: 1-10. doi:10.22074/cellj.2016.4867
12. Hickman S.J., Raoof N., McLean R.J., et al. Vision and multiple sclerosis. Multiple Sclerosis and Related Disorders. Mult Scler Relat Disord. 2014; 3: 3-16. doi:10.1016/j.msard.2013.04.004
14. Loma I., Heyman R. Multiple Sclerosis: Pathogenesis and Treatment. CN. 2011; 9: 409-16. doi:10.2174/157015911796557911
15. Sorensen T.L., Frederiksen J.L., Bronnum-Hansen H., et al. Optic neuritis as onset manifestation of multiple sclerosis: A nationwide, long-term survey. Neurology. 1999; 53: 473-473. doi:10.1212/WNL.53.3.473
16. Costello F., Burton J.M. An approach to optic neuritis: the initial presentation. Expert Review of Ophthalmology. 2013; 8: 539-51. doi:10.1586/17469899.2013.854704
17. High- and Low-Risk Profiles for the Development of Multiple Sclerosis Within 10 Years After Optic Neuritis: Experience of the Optic Neuritis Treatment Trial. Arch Ophthalmol. 2003; 121: 944. doi:10.1001/archopht.121.7.944
18. Thompson A.J., Banwell B.L., Barkhof F., et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. The Lancet Neurology. 2018; 17: 162-73. doi:10.1016/S1474-4422(17)30470-2
19. Van Der Vuurst De Vries R.M., Mescheriakova J.Y., Wong Y.Y.M., et al. Application of the 2017 Revised McDonald Criteria for Multiple Sclerosis to Patients With a Typical Clinically Isolated Syndrome. JAMA Neurol. 2018; 75: 1392. doi:10.1001/jamaneurol.2018.2160
20. Kurtzke J.F. Rating neurologic impairment in multiple sclerosis: An expanded disability status scale (EDSS). Neurology. 1983; 33: 1444-1444. doi:10.1212/WNL.33.11.1444
21. Füvesi J. Az Expanded Disability Status Scale használata és a motoros képességek vizsgálata sclerosis multiplexes betegekben. Ideggyogy Sz. 2019; 72: 317-23. doi:10.18071/isz.72.0317
22. Sousa V.D., Rojjanasrirat W. Translation, adaptation and validation of instruments or scales for use in cross‐cultural health care research: a clear and user‐friendly guideline. Evaluation Clinical Practice. 2011; 17: 268-74. doi:10.1111/j.1365-2753.2010.01434.x
23. Skov A., Skov T., Frederiksen J. Oligoclonal bands predict multiple sclerosis after optic neuritis: a literature survey. Mult Scler. 2011; 17: 404-10. doi:10.1177/1352458510391340
24. Arrambide G., Tintore M., Espejo C., et al. The value of oligoclonal bands in the multiple sclerosis diagnostic criteria. Brain. 2018; 141: 1075-84. doi:10.1093/brain/awy006
25. Klawiter E.C. Current and New Directions in MRI in Multiple Sclerosis: Continuum. Neurology. 2013; 19: 1058-73. doi:10.1212/01.CON.0000433283.00221.37
26. Pihl-Jensen G., Frederiksen J.L. The value of magnetic resonance imaging of the optic nerve for the diagnosis of multiple sclerosis in patients with optic neuritis. J Neurol. 2025; 272: 131. doi:10.1007/s00415-024-12801-7
27. Mahmoudi N., Renne J., Konen F.F., et al. Added value of optic nerve lesions for multiple sclerosis diagnostic criteria. J Neurol. 2025; 272: 358. doi:10.1007/s00415-025-13036-w
28. Aumann S., Donner S., Fischer J., et al. Optical Coherence Tomography (OCT): Principle and Technical Realization [Internet]. In: Bille JF, editor. High Resolution Imaging in Microscopy and Ophthalmology. Cham: Springer International Publishing; 2019. page 59-85.doi:10.1007/978-3-030-16638-0_3
29. Fercher A.F., Drexler W., Hitzenberger C.K., et al. Optical coherence tomography - principles and applications. Rep. Prog. Phys. 2003; 66: 239-303. doi:10.1088/0034-4885/66/2/204
30. Bruhov V.V., Krotenkova I.A., Morozova S.N., Krotenkova M.V. Standartizaciya MRT-issledovanii pri rasseyannom skleroze. Jyrnal nevrologii i psihiatrii im. S.S. Korsakova. Specvipyski. 2016; 116: 27. doi:10.17116/jnevro201611610227-34
31. Ikuta F., Zimmerman H.M. Distribution of plaques in seventy autopsy cases of multiple sclerosis in the United States. Neurology. 1976; 26: 26-8. doi:10.1212/WNL.26.6_Part_2.26
32. Toussaint D., Perier O., Verstappen A., et al. Clinicopathological study of the visual pathways, eyes, and cerebral hemispheres in 32 cases of disseminated sclerosis. J Clin Neuroophthalmol. 1983; 3: 211-20.
33. Pulicken M., Gordon-Lipkin E., Balcer L.J., et al. Optical coherence tomography and disease subtype in multiple sclerosis. Neurology. 2007; 69: 2085-92. doi:10.1212/01.wnl.0000294876.49861.dc
34. Fisher J., Jacobs D., Markowitz C., et al. Relation of Visual Function to Retinal Nerve Fiber Layer Thickness in Multiple Sclerosis. Ophthalmology. 2006; 113: 324-32. doi:10.1016/j.ophtha.2005.10.040
35. Mehmood A., Ali W., Song S., et al. Optical coherence tomography monitoring and diagnosing retinal changes in multiple sclerosis. Brain and Behavior. 2021; 11: e2302. doi:10.1002/brb3.2302
36. Toledo J., Sepulcre J., Salinas-Alaman A., et al. Retinal nerve fiber layer atrophy is associated with physical and cognitive disability in multiple sclerosis. Mult Scler. 2008; 14: 906-12. doi:10.1177/1352458508090221
37. Siger M., Dzięgielewski K., Jasek L., et al. Optical coherence tomography in multiple sclerosis: Thickness of the retinal nerve fiber layer as a potential measure of axonal loss and brain atrophy. J Neurol. 2008; 255: 1555-60. doi:10.1007/s00415-008-0985-5
38. Stolowy N., Gutmann L., Lüpke M., et al. OCT-Based Retina Assessment Reflects Visual Impairment in Multiple Sclerosis. Invest. Ophthalmol. Vis. Sci. 2025; 66: 39. doi:10.1167/iovs.66.2.39
39. Quinn T.A., Dutt M., Shindler K.S. Optic Neuritis and Retinal Ganglion Cell Loss in a Chronic Murine Model of Multiple Sclerosis. Front. Neur. 2011; 2. doi:10.3389/fneur.2011.00050
40. Alonso R., Gonzalez-Moron D., Garcea O. Optical coherence tomography as a biomarker of neurodegeneration in multiple sclerosis: A review. Multiple Sclerosis and Related Disorders. 2018; 22: 77-82. doi:10.1016/j.msard.2018.03.007
41. Trip S.A., Schlottmann P.G., Jones S.J., et al. Retinal nerve fiber layer axonal loss and visual dysfunction in optic neuritis. Ann Neurol. 2005; 58: 383-91. doi:10.1002/ana.20575
42. Petzold A., De Boer J.F., Schippling S., et al. Optical coherence tomography in multiple sclerosis: a systematic review and meta-analysis. The Lancet Neurology. 2010; 9: 921-32. doi:10.1016/S1474-4422(10)70168-X
43. Pro M.J., Pons M.E., Liebmann J.M., et al. Imaging of the optic disc and retinal nerve fiber layer in acute optic neuritis. Journal of the Neurological Sciences. 2006; 250: 114-9. doi:10.1016/j.jns.2006.08.012
44. Cheng H., Laron M., Schiffman J.S., et al. The Relationship between Visual Field and Retinal Nerve Fiber Layer Measurements in Patients with Multiple Sclerosis. Invest. Ophthalmol. Vis. Sci. 2007; 48: 5798. doi:10.1167/iovs.07-0738
45. Gundogan F.C., Demirkaya S., Sobaci G. Is Optical Coherence Tomography Really a New Biomarker Candidate in Multiple Sclerosis?-A Structural and Functional Evaluation. Invest. Ophthalmol. Vis. Sci. 2007; 48: 5773. doi:10.1167/iovs.07-0834
46. Jeanjean L., Castelnovo G., Carlander B., et al. Étude de la perte axonale optique en tomographie en cohérence optique (OCT) chez 15 patients atteints de sclérose en plaques et comparaison avec une population de témoins appariés. Revue Neurologique. 2008; 164: 927-34. doi:10.1016/j.neurol.2008.03.008
47. Tkachenko N.V., Belehova S.G., Kolesnikova E.T., Tyrgel V.A., Semenuta V.V. Analiz dannih opticheskoi kogerentnoi tomografii diska zritelnogo nerva i setchatki makylyarnoi zoni y pacientov s rasseyannim sklerozom. Oftalmologicheskie vedomosti. 2022; 15: 15-28. doi:10.17816/OV105639
48. Gad A.H.E., Abd El Hamid N.A., El-Mofty R.M.A.M., et al. Optical coherence tomography and optical coherence tomography angiography in multiple sclerosis. Egypt J Neurol Psychiatry Neurosurg. 2023; 59: 133. doi:10.1186/s41983-023-00734-3
49. Mirmosayyeb O., Yazdan Panah M., Mokary Y., et al. Optical coherence tomography (OCT) measurements and disability in multiple sclerosis (MS): A systematic review and meta-analysis. Journal of the Neurological Sciences. 2023; 454: 120847. doi:10.1016/j.jns.2023.120847
50. Casserly C., Seyman E.E., Alcaide‐Leon P., et al. Spinal Cord Atrophy in Multiple Sclerosis: A Systematic Review and Meta‐Analysis. Journal of Neuroimaging. 2018; 28: 556-86. doi:10.1111/jon.12553
51. Lanzillo R., Cennamo G., Criscuolo C., et al. Optical coherence tomography angiography retinal vascular network assessment in multiple sclerosis. Mult Scler. 2018; 24: 1706-14. doi:10.1177/1352458517729463
52. De Carlo T.E., Romano A., Waheed N.K., et al. A review of optical coherence tomography angiography (OCTA). Int J Retin Vitr. 2015; 1: 5. doi:10.1186/s40942-015-0005-8
53. Courtie E., Kirkpatrick J.R.M., Taylor M., et al. Optical coherence tomography angiography analysis methods: a systematic review and meta-analysis. Sci Rep. 2024; 14: 9643. doi:10.1038/s41598-024-54306-3
54. Wang X., Jia Y., Spain R., et al. Optical coherence tomography angiography of optic nerve head and parafovea in multiple sclerosis. Br J Ophthalmol. 2014; 98: 1368-73. doi:10.1136/bjophthalmol-2013-304547
55. Filippatou A., Theodorou A., Stefanou M.I., et al. Optical coherence tomography and angiography in multiple sclerosis: A systematic review and meta-analysis. Journal of the Neurological Sciences. 2025; 470: 123422. doi:10.1016/j.jns.2025.123422
56. Cennamo G., Carotenuto A., Montorio D., et al. Peripapillary Vessel Density as Early Biomarker in Multiple Sclerosis. Front. Neurol. 2020; 11: 542. doi:10.3389/fneur.2020.00542
57. Murphy O.C., Kwakyi O., Iftikhar M., et al. Alterations in the retinal vasculature occur in multiple sclerosis and exhibit novel correlations with disability and visual function measures. Mult Scler. 2020; 26: 815-28. doi:10.1177/1352458519845116
58. Hauser S.L., Cree B.A.C. Treatment of Multiple Sclerosis: A Review. The American Journal of Medicine. 2020; 133: 1380-1390.e2. doi:10.1016/j.amjmed.2020.05.049
59. Tramacere I., Virgili G., Perduca V., et al. Adverse effects of immunotherapies for multiple sclerosis: a network meta-analysis. Cochrane Database of Systematic Reviews. 2023; 2023. doi:10.1002/14651858.CD012186.pub2
60. Tugcu B., Soysal A., Kılıc M., et al. Assessment of structural and functıonal vısual outcomes ın relapsıng remittıng multıple sclerosis wıth vısual evoked potentıals and optıcal coherence tomography. Journal of the Neurological Sciences. 2013; 335: 182-5. doi:10.1016/j.jns.2013.09.027
61. Bsteh G., Hegen H., Krajnc N., et al. Retinal thinning differentiates treatment effects in relapsing multiple sclerosis below the clinical threshold. Ann Clin Transl Neurol. 2025; 12: 345-54. doi:10.1002/acn3.52279
62. Button J., Al-Louzi O., Lang A., et al. Disease-modifying therapies modulate retinal atrophy in multiple sclerosis: A retrospective study. Neurology. 2017; 88: 525-32. doi:10.1212/WNL.0000000000003582
63. Polyshin A.U., Zalyalov U.R., Gavrilenko A.N. i dr. Visokodoznaya immynosypressivnaya terapiya s aytologichnoi transplantaciei gemopoeticheskih stvolovih kletok pri rasseyannom skleroze: predvaritelnie klinicheskie rezyltati aprobacii metoda. Rossiiskii nevrologicheskii jyrnal. 2022; 27: 25-35. doi:10.30629/2658-7947-2022-27-5-25-35
64. Jafarimanesh H., Samiei S., Zakerimoghadam M., et al. The Comparative Effects of Cryotherapy and Music Therapy on Pain and Anxiety in Vascular Access Procedures: A Randomized Clinical Trial. Current Health Sciences Journal. 2024; 50: 488-97. doi:10.12865/CHSJ.50.04.03
65. Nabizadeh F., Ramezannezhad E., Kargar A., et al. Diagnostic performance of artificial intelligence in multiple sclerosis: a systematic review and meta-analysis. Neurol Sci. 2023; 44: 499-517. doi:10.1007/s10072-022-06460-7
66. Birkeldh U., Manouchehrinia A., Hietala M.A., et al. The Temporal Retinal Nerve Fiber Layer Thickness Is the Most Important Optical Coherence Tomography Estimate in Multiple Sclerosis. Front. Neurol. 2017; 8: 675. doi:10.3389/fneur.2017.00675
67. Christensen R., Jolly A., Yam C., et al. Investigating the complementary value of OCT to MRI in cognitive impairment in relapsing-remitting multiple sclerosis. Mult Scler. 2025; 31: 218-30. doi:10.1177/13524585241304356
68. Bostan M., Pirvulescu R., Tiu C., et al. OCT and OCT-A biomarkers in multiple sclerosis - review. Rom J Ophthalmol. 2023; 67: 107-10. doi:10.22336/rjo.2023.20