banner medline tsn
 
Медико-биологический
информационный портал
для специалистов
 
Medline.ru

СОДЕРЖАНИЕ ЖУРНАЛА:
Физико-химическая биология

Клиническая медицина

Профилактическая медицина

Медико-биологические науки


АРХИВ:

Фундаментальные исследования

Организация здравохраниения

История медицины и биологии



Последние публикации

Поиск публикаций

Articles

Архив :  2000 г.  2001 г.  2002 г. 
               2003 г.  2004 г.  2005 г. 
               2006 г.  2007 г.  2008 г. 
               2009 г.  2010 г.  2011 г. 
               2012 г.  2013 г.  2014 г. 
               2015 г.  2016 г.  2017 г. 
               2018 г.  2019 г.  2020 г.  2021 г.  2022 г.  2023 г. 

Редакционная информация:
        Опубликовать статью
        Наша статистика


 РЕДАКЦИЯ:
Главный редактор

Заместители главного редактора

Члены редколлегии
Специализированные редколлегии


 УЧРЕДИТЕЛИ:
Институт теоретической и экспериментальной биофизики Российской академии наук.

ООО "ИЦ КОМКОН"

ФГБУН "Институт токсикологии" ФМБА России




Адрес редакции и реквизиты

192012, Санкт-Петербург, ул.Бабушкина, д.82 к.2, литера А, кв.378

Свидетельство о регистрации электронного периодического издания ЭЛ № ФС 77-37726 от 13.10.2009
Выдано - Роскомнадзор

ISSN 1999-6314

Российская поисковая система
Искать: 


«
Vol. 26, Art. 2 (pp. 25-38)    |    2025       
»

Study of platelet activation status depending on the apparatus used in harvesting
Kasyanov A.D.1, Grishina G.V.1, Golovanova I.S.1, Kim E.V.1, Lastochkina D.V.1, Smirnova O.A.1, Matvienko O.Y.1, Bessmeltsev S.S.1,2

1Russian Research Institute of Hematology and Transfusiology, St. Petersburg, Russia
2Federal State Budgetary Institution of Higher Education "North-Western State Medical University named after I.I. Mechnikov" of the Ministry of Health of the Russian Federation



Brief summary

Introduction. The formation of microparticles (MPs) (microvesicles) is an inherent manifestation of cellular activity and occurs both “in vivo” and “in vitro”. Among all microparticles found in blood, platelet microparticles (PMPs) are the most abundant. PMPs may pose a pathophysiologic threat or benefit to the cellular environment when interacting with the circulatory system. There is also growing evidence that production of PMPs is triggered by the time of donation, separation into components, and storage of blood. The aim of the work. To investigate the activation status of platelet concentrates depending on the instrumentation used during procurement. Materials and Methods. The activation status by platelet microparticles of 56 apheresis platelet concentrates prepared using Trima Accel (“Terumo VST”, USA) and MCS+ (Haemonetics Corporation, USA) cytapheresis machines for storage time was investigated. Results and discussion. The data of the study indicate a significant increase in platelet microparticle content by the end of the storage period, more pronounced when using the Trima Accel separator. Conclusion. Assessment of platelet concentrate activation status by the level of microparticles content will improve the quality and efficiency of transfusion therapy.


Key words

platelet concentrate, microparticle, cytapheresis, flow cytometry, cytofluorimeter.





(The article in PDF format. For preview need Adobe Acrobat Reader)



Open article in new window

Reference list

1. Simak J., Gelderman M.P. Cell membrane microparticles in blood and blood products: potentially pathogenic agents and diagnostic markers. Transfusion Medicine Reviews. 2006; 20: 1-26.


2. Goubran H.A., Burnouf T., Stakiw J., Seghatchian J. Platelet microparticle: a sensitive physiological “fine tuning” balancing factor in health and disease. Transfusion and Apheresis Science. 2015; 52: 12-18.


3. Burnouf T., Chou M-L., Goubran H., et al. An overview of the role of microparticles/microvesicles in blood components: are they clinically beneficial or harmful? Transfusion and Apheresis Science. 2015; 53: 137-45.


4. Cognasse F., Hamzeh-Cognasse H., Laradi S. et al. The role of microparticles in inflammation and transfusion: a concise review. Transfusion and Apheresis Science. 2015; 53: 159-167.


5. Flaumenhaft R. Formation and fate of platelet microparticles. Blood Cells, Molecules, and Diseases. 2006; 36: 182-187.


6. Keuren J.F., Magdeleyns E.J., Govers-Riemslag J.W. et al. Effects of storage-induced platelet microparticles on the initiation and propagation phase of blood coagulation. British Journal of Haematology. 2006; 134: 307-313.


7. Nantakomol D., Imwong M., Mas-Oodi S. et al. Increase membrane vesiculation in essential hypertension. Laboratory Medicine. 2012; 43: 6-9.


8. Viera A.J., Mooberry M., Key N.S. Microparticles in cardiovascular disease pathophysiology and outcomes. Journal of the American Society of Hypertension. 2012; 6: 243-252.


9. Alijotas-Reig J., Palacio-Garcia C., Llurba E., Vilardell-Tarres M. Cellderived microparticles and vascular pregnancy complications: a systematic and comprehensive review. Fertility and Sterility. 2013; 99: 441-449.


10. Maslanka K., Uhrynowska M., Lopacz P. et al. Analysis of leucocyte antibodies, cytokines, lysophospholipids and cell microparticles in blood components implicated in post-transfusion reactions with dyspnoea. Vox Sanguinis. 2015; 108: 27-36.


11. Soop A., Hallstrom L., Frostell C. et al. Effect of lipopolysaccharide administration on the number, phenotype and content of nuclear molecules in blood microparticles of normal human subjects. Scandinavian Journal of Immunology. 2013; 78: 205-213.


12. Tripodi A., Branchi A., Chantarangkul V. et al. Hypercoagulability in patients with type 2 diabetes mellitus detected by a thrombin generation assay. Journal of Thrombosis and Thrombolysis. 2011; 31: 165-172.


13. Chamouard P., Desprez D., Hugel B. et al. Circulating cell-derived microparticles in Crohn’s disease. Digestive Diseases and Sciences. 2005; 50: 574-580.


14. Woei-A-Jin F.J., van der Starre W.E., Tesselaar M.E. et al. Procoagulant tissue factor activity on microparticles is associated with disease severity and bacteremia in febrile urinary tract infections. Thrombosis Research. 2014; 133: 799-803.


15. Woth G., Tokes-Fuzesi M., Magyarlaki T. et al. Activated platelet-derived microparticle numbers are elevated in patients with severe fungal (Candida albicans) sepsis. Annals of Clinical Biochemistry. 2012; 49: 554-560.


16. Pisetsky D., Ullal A.J., Gauley J., Ning T.C. Microparticles as mediators and biomarkers of rheumatic disease. Rheumatology. 2012; 51: 1737-1746.


17. Pelletier F., Garnache-Ottou .F, Angelot F. et al. Increased levels of circulating endothelial-derived microparticles and small-size platelet-derived microparticles in psoriasis. The Journal of Investigative Dermatology. 2011; 131: 1573-1576.


18. Duarte D., Taveira-Gomes T., Sokhatska O. et al. Increased circulating platelet microparticles as a potential biomarker in asthma. Allergy. 2013; 68: 1073-1075.


19. Laresche C., Pelletier F., Sokhatska O. et al. Increased levels of circulating microparticles are associated with increased procoagulant activity in patients with cutaneous malignant melanoma. The Journal of Investigative Dermatology. 2014; 134: 176-182.


20. Johnson L., Schubert P., Tan S. et al. Extended storage and glucose exhaustion are associated with apoptotic changes in platelets stored in additive solution. Transfusion. 2015; 56(2): 360-368.


21. Ayers L., Kohler M., Harrison P. et al. Measurement of circulating cell-derived microparticles by flow cytometry: sources of variability within the assay. Thrombosis Research. 2011; 127(4): 370-377.


22. Christersson C., Johnell M., Siegbahn A. Evaluation of microparticles in whole blood by multicolour flow cytometry assay. The Scandinavian Journal of Clinical and Laboratory Investigation. 2013; 73(3): 229-239.


23. Freyssinet J.M., Dignat-George F. More on: measuring circulating cell-derived microparticles. Journal of Thrombosis and Haemostasis. 2005; 3(3): 613-614.


24. Millar D., Murphy L., Labrie A., Maurer-Spurej E. Routine Screening Method for Microparticles in Platelet Transfusions. Journal of Visualized Experiments. 2018; 31(131): 56893.


25. Schiffer C.A., Anderson K. C., Bennett C. L. et al. Platelet transfusion for patients with cancer: clinical practice guidelines of the American Society of Clinical Oncology. Journal of Clinical Oncology. 2001; 19(5): 1519 - 1538.


26. Getz T.M., Montgomery R.K., Bynum J.A. et al. Storage of platelets at 4∘C in platelet additive solutions prevents aggregate formation and preserves platelet functional responses. Transfusion. 2016; 56(6): 1320 - 1328.





Журнал основан 16 ноября 2000г.
Выдано Министерством РФ по делам печати, телерадиовещания и средств массовых коммуникаций
(c) Перепечатка материалов сайта Medline.Ru возможна только с письменного разрешения редакции

Размещение рекламы

Rambler's Top100