FSBI «State scientific-research test Institute of military medicine»
of Defense Ministry of the Russian Federation,
195043, Saint Petersburg, Russia
Brief summary
Information materials on the search and development of antivirus peptides against pathogens of dangerous feral herd viral infections relevant to the Russian Federation, have been analysed. By now, the antiviral activity of naturally occurring peptides (host defence peptides, HDPs) and their synthetic or recombinant analogues has been studied. From group of HDPs, lactoferrins (human, bovine), defensins (DEFA1B, HBD-3, RC-1), and cathelicidins (LL-37, protegrin-1, GF-17, BMAP-18, mCRAMP, ModoCath5) were assessed. From insect venoms (bees, wasps, spiders, scorpions), the peptides mellitin, cecropin, mastoparan, Latarcin (Ltc 1), Av-LCTX-An1a, and others were isolated and studied. Some snakes venoms were sources of such effective virus inhibitors as cathelicidins ZY13 and Hc-CATH, as well as dimeric peptide (p-BthTX-I)2K. Active antiviral peptides dermaseptins, brevinins, magainins I, II were detected in skin secretions. Fish, shellfish, fungi, bacteria, plant peptides (Tilapia hepcidin, Pom-1, plectazine, lantipeptides, Kalata B1) have been studied. There have been revealed the peptides which showed inhibitory activity towards tick-borne and Japanese encephalitis, West Nile fever, Crimean-Congo hemorrhagic fever, Dengue fever viruses, and Hantaviruses, under experimental conditions. The most active antivirus peptides include virucidal ones (mastoparan, Yodha, MP7-NH2); host cell entry blockers (lactoferrins, peptides DN59, WN53, WN83); non-structural viral proteins’ inhibitors (An1a, DS-01, RC-1, plectazine, Ltc 1); organism natural resistance stimulators (hepcidins, peptides Smp76, rSmp76).
Key words
antivirus peptides; Crimean-Congo hemorrhagic fever; Yellow fever; tick-borne encephalitis; dengue fever; West Nile fever; host defence peptides; hantavirus infection; Japanese encephalitis
2. Maleckaya O.V., Volinkina A.S., Shaposhnikova L.I., i dr. Krimskaya gemorragicheskaya lihoradka v mire. Epidemiologicheskaya i epizootologicheskaya sityaciya v Rossiiskoi Federacii v 2023 g. i prognoz na 2024 g. Problemi osobo opasnih infekcii. 2024; 1: 30-36. https://doi.org/10.21055/0370-1069-2024-1-30-36
3. Nikitin A.Ya., Andaev E.I., Tolmacheva M.I., i dr. Epidemiologicheskaya sityaciya po kleshevomy virysnomy encefality v Rossiiskoi Federacii v 2014-2023 g. i kratkosrochnii prognoz zabolevaemosti na 2024 g. Problemi osobo opasnih infekcii. 2024; 1: 48-58. https://doi.org/10.21055/0370-1069-2024-1-48-58
4. Pytinceva E.V., Ydovichenko S.K., Nikitin D.N., i dr. Lihoradka Zapadnogo Nila: analiz epidemiologicheskoi sityacii v Rossiiskoi Federacii v 2023 g., prognoz na 2024 g. Problemi osobo opasnih infekcii. 2024; 1: 89-101. https://doi.org/10.21055/0370-1069-2024-1-89-101
5. Savickaya T.A., Ivanova A.V., Zybova A.A., i dr. Hantavirysnie bolezni: obzor epidemiologicheskoi sityacii v mire. Analiz epidemiologicheskoi sityacii po gemorragicheskoi lihoradke s pochechnim sindromom v Rossiiskoi Federacii v 2023 g. i prognoz na 2024 g. Problemi osobo opasnih infekcii. 2024; 1: 113-124. https://doi.org/10.21055/0370-1069-2024-1-113-124
6. Wagner E., Shin A., Tukhanova N., et al. First Indications of Omsk Haemorrhagic Fever Virus beyond Russia. Viruses. 2022; 14(4): 754. https://doi.org/10.33Sophyin90/v14040754
7. Udin M.A., Stepanov A.V., Bogacheva A.S., i dr. Perspektivnie podhodi k preodoleniu antibiotikorezistentnosti // Medlain.ry. 2024, T. 25, №4. S. 49-70
8. Orlova A.B., Nikiforov A.S., Ivanov I.M., Ryipo V.S. Cposobi himicheskoi modifikacii peptidov dlya povisheniya ih peroralnoi biodostypnosti (Obzor literatyri) // Medlain.ry. 2023. T. 24, №75. S. 1097-1110
9. Gysak T.I., Ystinova T.M., Vengerovich N.G. Liposomalnaya sistema kak perspektivnaya forma dlya ingalyacionnogo vvedeniya lekarstvennih sredstv (Obzor literatyri) // Medlain.ry. 2023. T.24, № 87. S. 1275-1295
10. Lyksha V.V., Astafeva O.V., Udina N.S., i dr. Rol nizkomolekylyarnih toksinov jivotnogo proishojdeniya v kachestve platformi dlya razrabotki lekarstvennih sredstv (Obzor) // Medlain.ry. 2023. T. 24, №55. S. 739-759
11. Ahmed A., Siman-Tov G., Hall G., et al. Human Antimicrobial Peptides as Therapeutics for Viral Infections. Viruses. 2019; 11(8): 704. https://doi: 10.3390/v11080704
12. Saini K., Kaur P., Malik N., et al. Antimicrobial peptides: A promising tool to combat multidrug resistance in SARS CoV2 er. Microbiol Res. 2022; 265: 127206. https://doi.org/10.1016/j.micres.2022.127206
13. Urmi U.L., Vijay A.K., Kuppusamy R., et al. A review of the antiviral activity of cationic antimicrobial peptides. Peptides. 2023; 166: 171024. https://doi: 10.1016/j.peptides.2023.171024
14. Zupin L., Santos-Silva C.A.D., Al Mughrbi A.R.H., et al. Bioactive Antimicrobial Peptides: A New Weapon to Counteract Zoonosis. Microorganisms. 2022; 10(8): 1591. https://doi: 10.3390/microorganisms10081591
15. Vashenko V.I., Vilyaninov V.N., Shabanov P.D. Protivomikrobnoe i protivovirysnoe deistvie defensinov cheloveka: patogeneticheskoe znachenie i perspektivi primeneniya v lekarstvennoi terapii. Obzori po klinicheskoi farmakologii i lekarstvennoi terapii. 2016; 14 (2): 3-37. https://doi:10.17816/RCF1423-37
17. Li S., Zhu A., Ren K., et al. DEFA1B inhibits ZIKV replication and retards cell cycle progression through interaction with ORC1. Life Sci. 2020; 263: 118564. https://doi: 10.1016/j.lfs.2020.118564
18. Carvalho C.A.M., Casseb S.M.M., Gonçalves R.B., et al. Bovine lactoferrin activity against Chikungunya and Zika viruses. J Gen Virol. 2017; 98(7): 1749-1754. https://doi: 10.1099/jgv.0.000849
19. Vilas Boas L.C.P., Campos M.L., Berlanda R.L.A., et al. Antiviral peptides as promising therapeutic drugs. Cell. Mol. Life Sci. 2019; 76: 3525-3542. https://doi.org/10.1007/s00018-019-03138-w
20. . Pahar B., Madonna S., Das A., et al. Immunomodulatory Role of the Antimicrobial LL-37 Peptide in Autoimmune Diseases and Viral Infections. Vaccines. 2020; 8(3): 517. https://doi.org/10.3390/vaccines8030517
21. Cho H.S., Yum J., Larivière A., et al. Opossum Cathelicidins Exhibit Antimicrobial Activity Against a Broad Spectrum of Pathogens Including West Nile Virus. Front Immunol. 2020; 11: 347. https://doi: 10.3389/fimmu.2020.00347
22. Wang J., Jiang B., Wang K., et al. A cathelicidin antimicrobial peptide from Hydrophis cyanocinctus inhibits Zika virus infection by downregulating expression of a viral entry factor. Biol Chem. 2022; 298(10): 102471. https://doi:10.1016/j.jbc.2022.102471
23. Ramírez-Rendón D., Guzmán-Chávez F., García-Ausencio C., et al.
The untapped potential of actinobacterial lanthipeptides as therapeutic agents. Molecular Biology Reports. 2023; 50: 10605-10616. https://doi.org/10.1007/s11033-023-08880-w
24. Agarwal G., Gabrani R. Antiviral Peptides: Identification and Validation. Int J Pept Res Ther. 2021; 27: 149-168 https://doi.org/10.1007/s10989-020-10072-0
25. González García M., Rodríguez A., Alba A., et al. New Antibacterial Peptides from the Freshwater Mollusk Pomacea poeyana (Pilsbry, 1927). Biomolecules. 2020; 10(11): 1473 https://doi: 10.3390/biom10111473
26. Sumon T.A., Hussain M.A., Hasan M., et al. Antiviral peptides from aquatic organisms: Functionality and potential inhibitory effect on SARS-CoV-2. Aquaculture. 2021; 541: 736783. https://doi: 10.1016/j.aquaculture.2021.736783
27. Lee S.H., Kim E.H., O'Neal J.T., et al. The amphibian peptide Yodha is virucidal for Zika and dengue viruses. Sci Rep. 2021; 11(1): 602. https://doi:10.1038/s41598-020-80596-4
28. Loffredo M. R., Nencioni L., Mangoni M. L., et al. Antimicrobial peptides for novel antiviral strategies in the current post-COVID-19 pandemic. Peptide Science. 2023. https://doi.org/10.1002/psc.3534
29. Santana C.J.C, Magalhães A.C.M., Prías-Márquez C.A., et al. Biological Properties of a Novel Multifunctional Host Defense Peptide from the Skin Secretion of the Chaco Tree Frog, Boana raniceps. Biomolecules. 2020; 10(5): 790. https://doi:10.3390/biom10050790
30. Ji Z., Li F, Xia Z., et al. The Scorpion Venom Peptide Smp76 Inhibits Viral Infection by Regulating Type-I Interferon Response. Virologica Sinica. 2018; 33: 545-556. https://doi:10.1007/s12250-018-0068-4
31. Lima W.G., Maia C.Q., de Carvalho T.S., et al. Animal venoms as a source of antiviral peptides active against arboviruses: a systematic review. Arch Virol. 2022; 167(9): 1763-1772. https://doi:10.1007/s00705-022-05494-8
32. Panya A., Sawasdee N., Songprakhon P., et al. A Synthetic Bioactive Peptide Derived from the Asian Medicinal Plant Acacia catechu Binds to Dengue Virus and Inhibits Cell Entry. Viruses. 2020; 12(11): 1267. https://doi:10.3390/v12111267
33. Utkin Y, Siniavin A, Kasheverov I., et al. Antiviral Effects of Animal Toxins: Is There a Way to Drugs? Int J Molec Sci. 2022; 23(7): 3634. https://doi.org/10.3390/ijms23073634
34. Chen L., Liu Y., Wang S., et al. Antiviral activity of peptide inhibitors derived from the protein E stem against Japanese encephalitis and Zika viruses. Antiviral Res. 2017; 141: 140-149. https://doi: 10.1016/j.antiviral.2017.02.009
35. Costin J.M, Jenwitheesuk E, Lok S.M., et al. Structural optimization and de novo design of dengue virus entry inhibitory peptides. PLoS Negl Trop Dis. 2010; 4(6): 721 https://doi:10.1371/journal.pntd.0000721.
36. Isa D.M., Chin S.P., Chong W.L., et al. Dynamics and binding interactions of peptide inhibitors of dengue virus entry. Biol. Phys. 2019; 45(1): 63-76. https://doi:10.1007/s10867-018-9515-6
37. Akaberi D., Båhlström A., Chinthakindi P.K., et al. Targeting the NS2B-NS3 protease of tickborne encephalitis virus with pan-flaviviral protease inhibitors. Antiviral Research. 2021; 190. https://doi:10.1016/j.antiviral.2021.105074
38. Braun N.J., Quek J.P., Huber S., et al. Structure-Based Macrocyclization of Substrate Analogue NS2B-NS3 Protease Inhibitors of Zika, West Nile and Dengue viruses. ChemMedChem. 2020; 15(15): 1439-1452. https://doi:10.1002/cmdc.202000237
39. Lee YJ, Shirkey JD, Park J., et al. An Overview of Antiviral Peptides and Rational Biodesign Considerations. Biodes Res. 2022; 17: 2022. https://doi:10.34133/2022/9898241
40. Li X., Song Y. Perspective for Drug Discovery Targeting SARS Coronavirus Methyltransferases: Function, Structure and Inhibition. Med Chem. 2024; 67(21): 18642-18655. https://doi:10.1021/acs.jmedchem.4c01749
41. Chen J.M., Fan Y.C., Lin J.W., et al. Bovine lactoferrin inhibits dengue virus infectivity by interacting with heparan sulfate, low-density lipoprotein receptor, and DC-SIGN. Int J Mol Sci. 2017; 18(9): 1957. https://doi.org/10.3390/ijms18091957
42. Chew M.F., Poh K.S., Poh C.L. Peptides as therapeutic agents for dengue virus. Int J Med Sci. 2017; 14(13): 1342-1359. https://doi:10.7150/ijms.21875
43. Hrobowski Y.M., Garry R.F., Michael S.F. Peptide inhibitors of dengue virus and West Nile virus infectivity. Virol. 2005; 2: 49. https://doi:10.1186/1743-422X-2-49
44. Huang Y.W., Lee C.T., Wang T.C., et al. The Development of Peptide-based Antimicrobial Agents against Dengue Virus. Curr Protein Pept Sci. 2018; 19(10): 998-1010. https://doi:10.2174/1389203719666180531122724
45. Sample C.J, Hudak K.E., Barefoot B.E., et al. A mastoparan-derived peptide has broad-spectrum antiviral activity against enveloped viruses. Peptides. 2013; 48: 96-105. https:// doi:10.1016/j.peptides.2013.07.014
46. Lopez-Gonzalez M.; Meza-Sanchez D.; Garcia-Cordero J., et al. Human keratinocyte cultures (HaCaT) can be infected by DENV, triggering innate immune responses that include IFNlambda and LL37. Immunobiology. 2018; 223(11): 608-617. https://doi:10.1016/j.imbio.2018.07.00
47. Monteiro J.M.C., Oliveira M.D., Dias R.S., et al. The antimicrobial peptide HS-1 inhibits dengue virus infection. Virology. 2018; 514: 79-87. https://doi:10.1016/j.virol.2017.11.009
48. Oeyen M., Meyen E., Noppen S., et al. Labyrinthopeptin A1 inhibits dengue and Zika virus infection by interfering with the viral phospholipid membrane. Virology. 2021; 562: 74-86. https://doi: 10.1016/j.virol.2021.07.003
49. Richard A.S., Zhang A., Park S.J., et al. Virion-associated phosphatidylethanolamine promotes TIM1-mediated infection by Ebola, dengue, and West Nile viruses. Proc. Natl. Acad. Sci. USA. 2015; 112: 14682-14687. https://doi:10.1073/pnas.1508095112
50. Huang H.N.; Rajanbab, V.; Pan C.Y., et al. Modulation of the immune-related gene responses to protect mice against Japanese encephalitis virus using the antimicrobial peptide, tilapia hepcidin 1-5. Biomaterials. 2011; 32(28): 6804-6814. https://doi:10.1016/j.biomaterials.2011.05.053
51. Yang D-K, Park Y-R, Kwon Y. D., et al. Antiviral effect of 18-mer-peptide (1b-4/21-C12) on Japanese encephalitis virus and Akabane virus. Korean J. Vet. Res. 2022; 62(3): 19. https://doi.org/10.14405/kjvr.20220013
52. Wei J., Hameed M., Wang X., et al. Antiviral activity of phage display-selected peptides against Japanese encephalitis virus infection in vitro and in vivo. Antivir. Res. 2020; 174: 104673. https://doi:10.1016/j.antiviral.2019.104673
53. Zu X.; Liu Y., Wang S., et al. Peptide inhibitor of Japanese encephalitis virus infection targeting envelope protein domain III. Antivir. Res. 2014; 104: 7-14. https://doi:10.1016/j.antiviral.2014.01.011
54. Zhu Y., Chen S., Lurong Q., et al. Recent Advances in Antivirals for Japanese Encephalitis Virus. Viruses. 2023; 15(5): 1033. https://doi:10.3390/v15051033
55. Han S.R., Lee S.W. Inhibition of Japanese encephalitis virus (JEV) replication by specific RNA aptamer against JEV methyltransferase. Biochem Biophys Res Commun. 2017; 483: 687-693.
56. Mears M.C., Rodriguez S.E., Schmitz K.S., et al. Design and evaluation of neutralizing and fusion inhibitory peptides to Crimean-Congo hemorrhagic fever virus. Antiviral Res. 2022; 207: 105401. https://doi:10.1016/j.antiviral.2022.105401