Succinic acid prevents nicotine-related disorders of first-line antioxidant enzymes
on the heart and liver of chickens
Zhukova O.Iu.2, Starun А.S. 1, Efremenko Е.S. 1
1 Omsk State Medical University Lenina str., 12, Omsk , 644099, Russia
2 St. Petersburg State Pediatric Medical University Litovskaya str., 2, St. Petersburg, 194100, Russia
Brief summary
Widespread adoption of electronic nicotine delivery systems, the availability of vape liquids at home poses a threat to young children who may ingest the dangerous substance. The consequences of the nicotine exposure on the child's body are not clear, it is necessary to develop methods for the earliest possible elimination of possible disorders. Literature data allow us to draw only indirect conclusions about the possibility of application succinic acid to correct disorders caused by ingestion of nicotine-containing products.
Objective. The aim of this research is to evaluate the feasibility of using succinic acid for correcting nicotine-induced disorders at the first-line level of antioxidant system in developing organisms by an experiment with chickens.
Materials and Methods. Nicotine-containing vape liquid was administered orally to 5-day-old chickens for simulate the situation of being swallowed by a child. The test group was orally treated with two drops of 1% succinic acid solution prepared from «Marbiopharm» tablets at a dose of 2 mg/kg, 15 minutes after nicotine solution. In accordance with the idea of the endotoxicosis phases periodicity, acute intoxication was simulated for three days to registration maximum disorders in the antioxidant system. Liver and heart homogenates were prepared after decapitation. Superoxide dismutase activity, catalase and protein concentration were investigated. The data obtained were subjected to statistical processing using non-parametric analysis in the SPSS 26.
Results. Superoxide dismutase activity is 70% lower than that of chickens in the control group (p ≤ 0.001), catalase activity, on the contrary, is increased by 67.5% (p ≤ 0.001) in the liver of chickens receiving vape liquid with nicotine. In cardiac homogenates, changes in the total activity of first-line antioxidant defense enzymes have the same patterns as in the liver.
When succinic acid was administered to chickens, inhibition of superoxide dismutase activity was not observed, the catalase activity was slightly higher than the control group (by 16.2%, p = 0.001), but lower than in chickens injected only the vape liquid (by 69.4%, p ≤ 0.001).
There was also a tendency to a protein concentration increase in liver and heart tissues of chickens treated with vape fluid without subsequent succinic acid administration.
Conclusion. Oral administration of succinic acid solution to chickens prevents nicotine-induced protein accumulation, a drop in superoxide dismutase activity, and excessive catalase activation in liver and heart tissues. Our data demonstrated the potential of succinic acid application to correct disorders in developing organisms caused by swallowing vape fluid by the example of chickens. Additional experimental and clinical studies are needed to clarify more accurate mechanisms and assess the benefits and safety of taking succinic acid at the nicotine intoxication.
2. Salagai O.O., Antonov N.S., Saharova G.M. Analiz tendencii v potreblenii tabachnih i nikotinsoderjashih izdelii v Rossiiskoi Federacii po rezyltatam onlain-oprosov 2019-2023 gg. Profilakticheskaya medicina. 2023; 26(5): 7-16.
3. Stadnik N.M., Nikitina S.U., Saharova G.M., Antonov N.S., Salagai O. O. Rasprostranennost potrebleniya tabachnoi i nikotinsoderjashei prodykcii v Rossiiskoi Federacii: analiz tendencii v 2019-2022 gg. Demograficheskoe obozrenie. 2024; 11(1): 37-60.
4. Auer R., Schoeni A., Humair J.-P. et al. Electronic Nicotine-Delivery Systems for Smoking Cessation. Engl J Med. 2024; 390 (7): 601-610.
5. Goniewicz M.L., Knysak J., Gawron M., et al. Levels of selected carcinogens and toxicants in vapour from electronic cigarettes. Tob Control. 2014; 23: 133-139.
6. Cheng T. Chemical evaluation of electronic cigarettes. Tob Control. 2014; 23(2): 11-17.
8. Trtchounian A., Williams M., Talbot P. Conventional and electronic cigarettes (e-cigarettes) have different smoking characteristics. Nicotine & Tobacco Research. 2010; 12(9): 905-912.
9. Goniewicz M.L., Kuma T., Gawron M., Knysak J., Kosmider L. Nicotine Levels in Electronic Cigarettes. Nicotine & Tobacco Research. 2012; 15(1): 158-166
10. Prochaska J.J., Vogel E.A., Benowitz N. Nicotine delivery and cigarette equivalents from vaping a JUULpod. Tob Control. 2022; 31(e1): 88-93.
12. Park E.J., Min Y.G. The emerging method of suicide by electronic cigarette liquid: a case report. J Korean Med Sci. 2018; 33: 52.
13. Seo A.D., Kim D.C., Yu H.J., Kang M.J. Accidental ingestion of E-cigarette liquid nicotine in a 15-month-old child: an infant mortality case of nicotine intoxication. Korean J Pediatr. 2016; 59(12): 490-493
14. Vakkalanka J.P., Hardison L.S.Jr., Holstege C.P. Epidemiological trends in electronic cigarette exposures reported to U.S. Poison Centers. Clin Toxicol. 2014; 52: 542-548.
15. Hughes A., Hendrickson R.G. An epidemiologic and clinical description of e- cigarette toxicity. Clin Toxicol. 2019; 57: 287-293.
16. Ang E., Tuthill D., Thompson J. E-cigarette liquid ingestion: a fast growing accidental issue in children Archives of Disease in Childhood. Arch Dis Child. 2018; 103(11): 1091.
17. Maessen G.C., Wijnhoven A.M., Neijzen R.L. et al. Nicotine intoxication by e-cigarette liquids: a study of case reports and pathophysiology. Clin Toxicol (Phila). 2020; 58(1): 1-8.
20. Hussein J., Farkas S., MacKinnon Y. et al. Nicotine doseconcentration relationship and pregnancy outcomes in rat: Biologic plausibility and implications for future research. Toxicol Appl Pharmacol. 2007; 218(1): 1-10
21. Devi A.R., Sengupta M., Barman D.M., Choudhury Y. Oral Nicotine Induces Oxidative Stress and Inflammation but Does Not Subvert Tumor Suppressor and DNA Repair Responses in Mice. Indian J Clin Biochem. 2021; 36(3): 296-303.
22. Meng T.T., Wang W., Meng F.L. et al. Nicotine Causes Mitochondrial Dynamics Imbalance and Apoptosis Through ROS Mediated Mitophagy Impairment in Cardiomyocytes. Front Physiol. 2021; 12: 650055.
23. Mignini I., Galasso L., Piccirilli G. et al. Interplay of Oxidative Stress, Gut Microbiota, and Nicotine in Metabolic-Associated Steatotic Liver Disease (MASLD). Antioxidants (Basel). 2024; 13(12): 1532.
24. Centner A.M., Bhide P.G., Salazar G. Nicotine in Senescence and Atherosclerosis. Cells. 2020; 9 (4): 1035.
25. Adkison S.E., O'Connor R.J., Bansal-Travers M., et al. Electronic nicotine delivery systems: international tobacco control four-country survey. Am J Prev Med. 2013; 44: 207-215.
26. Nagy S., Abdool A., Rocco O. et al. The Impacts of Vaping on the Cardiovascular System: A Systematic Review of Case Reports. Cureus. 2025; 17(1): 77780.
28. Zarubina I.V., Lukk M.V., Shabanov P.D. Antihypoxic and Antioxidant Effects of Exogenous Succinic Acid and Aminothiol Succinate-Containing Antihypoxants. Bulletin of Experimental Biology and Medicine. 2012; 153(3): 336-339.
29. Sádecká J., Polonský J. Determination of organic acids in tobacco by capillary isotachophoresis. Journal of Chromatography A. 2003; 988 (1): 161-165
30. Doson R., Elliot D., Elliot Y., Djons K. Spravochnik biohimika. M.: Mir; 1991.
31. Mongirdiene A., Viejeliene D., Kyrshvetene L. Vozdeistvie nikotina i smol, nahodyashihsya v tabachnom dime, na processi aterogeneza. Kardiologiya. 2012; 52(9): 87-93.
32. Batocirenova E.G., Kashyro V.A., Minaeva L.V. i dr. Signalnaya fynkciya aktivnih form kisloroda pri intoksikacii tiopentalom natriya. Izvestiya Samarskogo naychnogo centra Rossiiskoi akademii nayk. 2014; 16 (5-4): 1376-1379.
33. Muthukumaran S., Sudheer A.R., Menon V.P., Nalini N. Protective effect of quercetin on nicotine-induced prooxidant and antioxidant imbalance and DNA damage in Wistar rats. Toxicology. 2008; 243(1-2): 207-215.
35. Boveris A., Oshino N., Chance B. The cellular production of hydrogen peroxide. Biochem J. 1972; 128 (3): 617-630.
36. Rosenbruch M., Kniepen J., Weishaupt C. The early chick embryo as a model to evaluate cardiovascular effects of adrenaline and nicotine. Toxicology in Vitro. 1993; 7(4): 541-545.
37. Krotova O.E., Yrban G.A., Mashtikov S.S. i dr. Primenenie yantarnoi kisloti v kormlenii ciplyat-broilerov. V kn.: Materiali Mejdynarodnoi naychnoi konferencii «Sovershenstvovanie regionalnih porodnih resyrsov myasnogo skota i povishenie ih geneticheskogo potenciala v celyah narashivaniya proizvodstva visokokachestvennoi otechestvennoi govyadini». Elista: Kalmickii gosydarstvennii yniversitet imeni B.B. Gorodovikova; 2020: 155-160.
38. Bonitenko E.U., Kashyro V.A., Basharin V.A. Voprosi modelirovaniya v eksperimentalnoi toksikologii i medicine. Biomodeli nylevogo poryadka. Medicina tryda i promishlennaya ekologiya. 2022. 62(11): 718-732.