![]() | |||
МЕДЛАЙН.РУ
|
|||
|
Фундаментальные исследования •
Том: 26 Статья: « 12 » Страницы:. 304-345 Опубликована в журнале: 1 июля 2025 г. English version ![]() Распознавание сигналов кворум-сенсинга бактерий G-белок сопряженными рецепторами клеток человека при врожденном иммунном ответе (Обзор литературы)Лалетин В.С.1,2
ФГБОУ ВО «Иркутский государственный медицинский университет» Минздрава России, 664003, Российская Федерация, г. Иркутск, ул. Красного восстания, д.1. ФГБОУ ВО «Санкт-Петербургский государственный педиатрический медицинский университет» Минздрава России, 194100, Российская Федерация, г. Санкт-Петербург, ул. Литовская, д.2 e-mail: laletin.vs@yandex.ru
Резюме
Биопленки образуются при развитии большинства бактериальных инфекционных заболеваний. Образование биопленок регулируется системами бактериального кворум-сенсинга, позволяющим бактериям синхронно координировать экспрессию генов. Регуляторами кворум-сенсинга являются мобильные сигнальные молекулы межклеточного действия, синтезируемые бактериальными клетками. При достижении определенного порогового уровня концентрации сигнальных молекул происходит одновременная активация образования биопленок и факторов вирулентности всей популяцией бактериальных клеток. Химическая природа сигнальных молекул кворум-сенсинга бактерий разнообразна. Грамотрицательные бактерии используют в качестве сигналов низкомолекулярные вещества различной структуры, такие как ацил-гомосериновые лактоны и 2-алкил-4-хинолоны. Грамположительные бактерии секретируют преимущественно пептидные сигнальные молекулы. Сигналы кворум-сенсинга способны воспринимать не только бактериальные клетки, но и клетки других организмов, в том числе клетки организма человека. Исследования последних лет показали, что G-белок сопряженные рецепторы T2R- и MRGPR-семейств играют ключевую роль в распознавании сигнальных молекул кворум-сенсинга. Эти рецепторы экспрессируются клетками человека, принимающими участие во врожденном иммунном ответе. Рецепторы первого семейства, T2R рецепторы горького вкуса, изначально обнаруженные в клетках 2 типа вкусовых луковиц, экспрессируются многими клетками, в том числе макрофагами, моноцитами, нейтрофилами, естественными киллерами и эпителиальными клетками различной локализации. Представитель второго семейства, MRGPRX2 рецептор, экспрессируется тучными клетками, базофилами и эозинофилами. Активация этих рецепторов сигнальными молекулами кворум-сенсинга бактерий приводит к мобилизации внутриклеточного кальция и функциональному ответу клеток-мишеней. Описан ряд эффектов активации T2R рецепторов сигнальными молекулами кворум-сенсинга. Активация T2R рецепторов макрофагов сопровождается активацией NO-синтазы, образованием NO и активацией фагоцитоза. Активация T2R рецепторов нейтрофилов вызывает хемотаксис, фагоцитоз и экспрессию CD11b. Клетки ресничного эпителия дыхательных путей при активации T2R рецепторов отвечают ускорением мукоцилиарного клиренса, активацией NO-синтазы, образованием NO в бактерицидных концентрациях и элиминацией бактерий. Эпителиальные клетки десны при активации T2R рецепторов секретируют фактор некроза опухолей-α, интерлейкины-6, -8 и β-дефензин-2. Активация MRGPRX2 рецептора сигнальными молекулами кворум-сенсинга сопровождается дегрануляцией тучных клеток с высвобождением фактора некроза опухолей-α, простагландина D2, образованием активных форм кислорода, подавлением роста бактерий и предотвращением образования биопленок. Таким образом, наряду с каноническими паттерн-распознающими рецепторами, активация G-белок сопряженных рецепторов сигнальными молекулами кворум-сенсинга бактерий, по-видимому, представляет один из универсальных механизмов распознавания патогенов ключевыми клетками врожденного иммунного ответа. Ключевые слова кворум-сенсинг; биопленки; сигнал-трансдукторные системы; G-белок сопряженные рецепторы; фагоцитоз; цитокины; макрофаги; нейтрофилы; эпителиальные клетки; тучные клетки (статья в формате PDF. Для просмотра необходим Adobe Acrobat Reader) ![]() Список литературы 1. Kalia V.C., ed. Quorum Sensing vs Quorum Quenching: A Battle with No End in Sight. New Delhi: Springer India; 2015. doi:10.1007/978-81-322-1982-8. 2. Rai V.R., Bai J.A., eds. Trends in quorum-sensing and Quorum Quenching. New York: CRC Press. Taylor & Francis Group; 2020. 3. Balaban N., ed. Control of Biofilm Infections by Signal Manipulation. Berlin: Springer-Verlag; 2008. doi:10.1007/978-3-540-73853-4. 4. Tomasz A. Control of the competent state in Pneumococcus by a hormone-like cell product: an example for a new type of regulatory mechanism in bacteria. Nature. 1965; 208(5006):155-9. doi: 10.1038/208155a0. 5. Nealson K. H., Platt T., Hastings J. W. Cellular control of the synthesis and activity of the bacterial luminescent system. J Bacteriol. 1970; 104(1):313-22. doi:10.1128/jb.104.1.313-322.1970. 6. Fuqua W.C., Winans S.C. A LuxR-LuxI type regulatory system activates Agrobacterium Ti plasmid conjugal transfer in the presence of a plant tumor metabolite. J Bacteriol. 1994; 176(10):2796-806. doi:10.1128/jb.176.10.2796-2806.1994. 7. Tommonaro G. ed. Quorum Sensing. Molecular Mechanism and Biotechnological Application. London: Elsevier Inc; 2019. 8. Heydari S., Eftekhar F. Biofilm Formation and β-Lactamase Production in Burn Isolates of Pseudomonas aeruginosa. Jundishapur J Microbiol. 2015; 8(3):e15514. doi:10.5812/jjm.15514. 9. Dhiman S.S., ed. Quorum Sensing: Microbial Rules of Life. Washington, DC: American Chemical Society; 2020. 10. Gaida M.M., Dapunt U., Hänsch G.M. Sensing developing biofilms: the bitter receptor T2R38 on myeloid cells. Pathog Dis. 2016; 74(3):ftw004. doi:10.1093/femspd/ftw004. 11. Hänsch G.M. Host Defence against Bacterial Biofilms: “Mission Impossible”? ISRN Immunology. 2012; 2012,853123:1-17. doi:10.5402/2012/853123. 12. Kutikhin A.G., Yuzhalin A.E. Genomics of Pattern Recognition Receptors. Applications in Oncology and Cardiovascular Diseases. Basel: Springer; 2013. doi:10.1007/978-3-0348-0688-6. 13. Kravchenko V.V., Kaufmann G.F., Mathison JC et al. N-(3-oxo-acyl)homoserine lactones signal cell activation through a mechanism distinct from the canonical pathogen-associated molecular pattern recognition receptor pathways. J Biol Chem. 2006; 281(39):28822-30. doi:10.1074/jbc.M606613200. 14. Pacheco A.R., Sperandio V. Inter-kingdom signaling: chemical language between bacteria and host. Curr Opin Microbiol. 2009; 12(2):192-198. doi:10.1016/j.mib.2009.01.006. 15. Karavolos M.H., Khan C.M. Multidirectional chemical signalling between Mammalian hosts, resident microbiota, and invasive pathogens: neuroendocrine hormone-induced changes in bacterial gene expression. Adv Exp Med Biol. 2014; 817:241-53. doi:10.1007/978-1-4939-0897-4_11. 16. Yong V.F.L., Soh M.M., Jaggi T.K., Mac Aogáin M., Chotirmall S.H. The Microbial Endocrinology of Pseudomonas aeruginosa: Inflammatory and Immune Perspectives. Arch Immunol Ther Exp (Warsz). 2018; 66(5):329-339. doi:10.1007/s00005-018-0510-1. 17. Liu S., Feng X., Zhang H., Li P., et al. Decoding bacterial communication: Intracellular signal transduction, quorum sensing, and cross-kingdom interactions. Microbiol Res. 2025; 292:127995. doi:10.1016/j.micres.2024.127995. 18. Pundir P., Liu R., Vasavda C., Serhan N., et al. A Connective Tissue Mast-Cell-Specific Receptor Detects Bacterial Quorum-Sensing Molecules and Mediates Antibacterial Immunity. Cell Host Microbe. 2019; 26(1):114-122.e8. doi:10.1016/j.chom.2019.06.003. 19. Kouakou Y.I., Lee R.J. Interkingdom Detection of Bacterial Quorum-Sensing Molecules by Mammalian Taste Receptors. Microorganisms. 2023; 11(5):1295. doi:10.3390/microorganisms11051295. 20. Freund J.R., Mansfield C.J., Doghramji L.J. Adappa N.D., et al. Activation of airway epithelial bitter taste receptors by Pseudomonas aeruginosa quinolones modulates calcium, cyclic-AMP, and nitric oxide signaling. J Biol Chem. 2018; 293(25):9824-9840. doi:10.1074/jbc.RA117.001005. 21. Xue A.Y., Di Pizio A., Levit A., Yarnitzky T., et al. Independent Evolution of Strychnine Recognition by Bitter Taste Receptor Subtypes. Front Mol Biosci. 2018; 5:9. doi:10.3389/fmolb.2018.00009. 22. Cao C., Roth B.L. The structure, function, and pharmacology of MRGPRs. Trends Pharmacol Sci. 2023; 44(4):237-251. doi:10.1016/j.tips.2023.02.002. 23. Adler E., Hoon M. A., Mueller K. L., Chandrashekar J., et al. A novel family of mammalian taste receptors. Cell. 2000; 100:693-702. doi:10.1016/S0092-8674(00)80705-9. 24. Miller Z.A., Carey R.M., Lee R.J. A deadly taste: linking bitter taste receptors and apoptosis. Apoptosis. 2025; 30(3-4):674-692. doi:10.1007/s10495-025-02091-3. 25. Gopallawa I., Freund J.R., Lee R.J. Bitter taste receptors stimulate phagocytosis in human macrophages through calcium, nitric oxide, and cyclic-GMP signaling. Cell Mol Life Sci. 2021; 78(1):271-286. doi:10.1007/s00018-020-03494-y. 26. Bloxham C.J., Hulme K.D., Fierro F., Fercher C., et al. Cardiac human bitter taste receptors contain naturally occurring variants that alter function. Biochem Pharmacol. 2024; 219:115932. doi:10.1016/j.bcp.2023.115932. 27. Xu J., Cao J., Iguchi N., Riethmacher D., et al. Functional characterization of bitter-taste receptors expressed in mammalian testis. Mol Hum Reprod. 2013; 19(1):17-28. doi:10.1093/molehr/gas040. 28. Voigt A., Hübner S., Döring L., Perlach N., et al. Cre-Mediated Recombination in Tas2r131 Cells-A Unique Way to Explore Bitter Taste Receptor Function Inside and Outside of the Taste System. Chem Senses. 2015; 40(9):627-639. doi:10.1093/chemse/bjv049. 29. Singh N., Cunnington R.H., Bhagirath A., Vaishampayan A., et al. Bitter taste receptor T2R14-Gαi coupling mediates innate immune responses to microbial quorum sensing molecules in cystic fibrosis. iScience. 2024; 27(12):111286. doi:10.1016/j.isci.2024.111286. 30. Carey R.M., Hariri B.M., Adappa N.D., Palmer J.N., et al. HSP90 Modulates T2R Bitter Taste Receptor Nitric Oxide Production and Innate Immune Responses in Human Airway Epithelial Cells and Macrophages. Cells. 2022; 11(9):1478. doi:10.3390/cells11091478. 31. Singh N., Ulmer B., Medapati M.R., Zhang C., et al. Bitter Taste Receptor T2R14 and Autophagy Flux in Gingival Epithelial Cells. Cells. 2024; 13(6):531. doi:10.3390/cells13060531. 32. Tran H.T.T., Herz C., Ruf P., Stetter R., et al. Human T2R38 Bitter Taste Receptor Expression in Resting and Activated Lymphocytes. Front Immunol. 2018; 9:2949. doi:10.3389/fimmu.2018.02949. 33. Malki A., Fiedler J., Fricke K., Ballweg I., et al. Class I odorant receptors, TAS1R and TAS2R taste receptors, are markers for subpopulations of circulating leukocytes. J Leukoc Biol. 2015; 97(3):533-545. doi:10.1189/jlb.2A0714-331RR. 34. Chandrashekar J., Mueller K.L., Hoon M.A., Adler E., et al. T2Rs function as bitter taste receptors. Cell. 2000; 100(6):703-711. doi:10.1016/s0092-8674(00)80706-0. 35. Ueda T., Ugawa S., Yamamura H., Imaizumi Y., et al. Functional interaction between T2R taste receptors and G-protein alpha subunits expressed in taste receptor cells. J Neurosci. 2003; 23(19):7376-7380. doi:10.1523/JNEUROSCI.23-19-07376.2003. 36. Ozeck M., Brust P., Xu H., Servant G. Receptors for bitter, sweet and umami taste couple to inhibitory G protein signaling pathways. Eur J Pharmacol. 2004; 489(3):139-149. doi:10.1016/j.ejphar.2004.03.004. 37. Kim D., Woo J.A., Geffken E., An, S.S., et al. Coupling of Airway Smooth Muscle Bitter Taste Receptors to Intracellular Signaling and Relaxation Is via G(αi1,2,3). Am J Respir Cell Mol Biol. 2017; 56(6):762-771. doi:10.1165/rcmb.2016-0373OC. 38. Wong G.T., Gannon K.S., Margolskee R.F. Transduction of bitter and sweet taste by gustducin. Nature. 1996; 381(6585):796-800. doi:10.1038/381796a0. 39. Talmon M., Pollastro F., Fresu L.G. The Complex Journey of the Calcium Regulation Downstream of TAS2R Activation. Cells. 2022; 11(22):3638. doi:10.3390/cells11223638. 40. Carey R.M., Lee R.J. Taste Receptors in Upper Airway Innate Immunity. Nutrients. 2019; 11(9):2017. doi:10.3390/nu11092017. 41. McMahon D.B., Kuek L.E., Johnson M.E., Johnson P.O., et al. The bitter end: T2R bitter receptor agonists elevate nuclear calcium and induce apoptosis in non-ciliated airway epithelial cells. Cell Calcium. 2022; 101:102499. doi:10.1016/j.ceca.2021.102499. 42. Lee R.J., Xiong G., Kofonow J.M., Chen B., et al. T2R38 taste receptor polymorphisms underlie susceptibility to upper respiratory infection. J Clin Invest. 2012; 122(11):4145-4159. doi:10.1172/JCI64240. 43. Lee R.J., Cohen N.A. Role of the bitter taste receptor T2R38 in upper respiratory infection and chronic rhinosinusitis. Curr Opin Allergy Clin Immunol. 2015; 15(1):14-20. doi:10.1097/ACI.0000000000000120. 44. Carey R.M., Palmer J.N., Adappa N.D., Lee R.J. Loss of CFTR function is associated with reduced bitter taste receptor-stimulated nitric oxide innate immune responses in nasal epithelial cells and macrophages. Front Immunol. 2023; 14:1096242. doi:10.3389/fimmu.2023.1096242. 45. Young D., Waitches G., Birchmeier C., Fasano O., et al. Isolation and characterization of a new cellular oncogene encoding a protein with multiple potential transmembrane domains. Cell. 1986; 45(5):711-719. doi:10.1016/0092-8674(86)90785-3. 46. Dong X., Han S., Zylka M.J., Simon M.I., et al. A diverse family of GPCRs expressed in specific subsets of nociceptive sensory neurons. Cell. 2001; 106(5):619-632. doi:10.1016/s0092-8674(01)00483-4. 47. Roy S., Chompunud Na Ayudhya C., Thapaliya M., Deepak V., et al. Multifaceted MRGPRX2: New insight into the role of mast cells in health and disease. J Allergy Clin Immunol. 2021; 148(2):293-308. doi:10.1016/j.jaci.2021.03.049. 48. Tatemoto K., Nozaki Y., Tsuda R., Konno S., et al. Immunoglobulin E-independent activation of mast cell is mediated by Mrg receptors. Biochem Biophys Res Commun. 2006; 349(4):1322-1328. doi:10.1016/j.bbrc.2006.08.177. 49. Dwyer D.F., Barrett N.A., Austen K.F. Immunological Genome Project C. Expression profiling of constitutive mast cells reveals a unique identity within the immune system. Nat Immunol. 2016; 17(7):878-887. doi:10.1038/ni.3445. 50. Baldo B.A. MRGPRX2, drug pseudoallergies, inflammatory diseases, mechanisms and distinguishing MRGPRX2- and IgE/FcεRI-mediated events. Br J Clin Pharmacol. 2023; 89(11):3232-3246. doi:10.1111/bcp.15845. 51. Kolkhir P., Ali H., Babina M., Ebo D., et al. MRGPRX2 in drug allergy: What we know and what we do not know. J Allergy Clin Immunol. 2023; 151(2):410-412. doi:10.1016/j.jaci.2022.09.004. 52. Plum T., Wang X., Rettel M., Krijgsveld J., et al. Human Mast Cell Proteome Reveals Unique Lineage, Putative Functions, and Structural Basis for Cell Ablation. Immunity. 2020; 52(2):404-416.e5. doi:10.1016/j.immuni.2020.01.012. 53. Wedi B., Gehring M., Kapp A. The pseudoallergen receptor MRGPRX2 on peripheral blood basophils and eosinophils: Expression and function. Allergy. 2020; 75(9):2229-2242. doi:10.1111/all.14213. 54. Macphee C.H., Dong X., Peng Q., Paone D.V., et al. Pharmacological blockade of the mast cell MRGPRX2 receptor supports investigation of its relevance in skin disorders. Front Immunol. 2024; 15:1433982. doi:10.3389/fimmu.2024.1433982. 55. Cao C., Kang H.J., Singh I., Chen H., et al. Structure, function and pharmacology of human itch GPCRs. Nature. 2021; 600(7887):170-175. doi:10.1038/s41586-021-04126-6. 56. Falzone M.E., MacKinnon R. Gβγ activates PIP2 hydrolysis by recruiting and orienting PLCβ on the membrane surface. Proc Natl Acad Sci U S A. 2023; 120(20):e2301121120. doi:10.1073/pnas.2301121120. 57. Subramanian H., Gupta K., Guo Q., Price R., et al. Mas-related gene X2 (MrgX2) is a novel G protein-coupled receptor for the antimicrobial peptide LL-37 in human mast cells: resistance to receptor phosphorylation, desensitization, and internalization. J Biol Chem. 2011; 286(52):44739-44749. doi:10.1074/jbc.M111.277152. 58. Mascarenhas N.L., Wang Z., Chang Y.L., Di Nardo A. TRPV4 Mediates Mast Cell Activation in Cathelicidin-Induced Rosacea Inflammation. J Invest Dermatol. 2017; 137(4):972-975. doi:10.1016/j.jid.2016.10.046. 59. Chompunud Na Ayudhya C., Roy S., Alkanfari I., Ganguly A., et al. Identification of Gain and Loss of Function Missense Variants in MRGPRX2's Transmembrane and Intracellular Domains for Mast Cell Activation by Substance P. Int J Mol Sci. 2019; 20(21):5247. doi:10.3390/ijms20215247. 60. Quan P.L., Sabaté-Brescó M., Guo Y., Martín M., et al. The Multifaceted Mas-Related G Protein-Coupled Receptor Member X2 in Allergic Diseases and Beyond. Int J Mol Sci. 2021; 22(9):4421. doi:10.3390/ijms22094421. 61. Corbière A., Loste A., Gaudenzio N. MRGPRX2 sensing of cationic compounds - A bridge between nociception and skin diseases? Exp Dermatol. 2021; 30(2):193-200. doi:10.1111/exd.14222. 62. Duraisamy K., Singh K., Kumar M., Lefranc B., et al. P17 induces chemotaxis and differentiation of monocytes via MRGPRX2-mediated mast cell-line activation. J Allergy Clin Immunol. 2022; 149(1):275-291. doi:10.1016/j.jaci.2021.04.040. 63. Grimes J., Desai S., Charter N.W., Lodge J., et al. MrgX2 is a promiscuous receptor for basic peptides causing mast cell pseudo-allergic and anaphylactoid reactions. Pharmacol Res Perspect. 2019; 7(6):e00547. doi:10.1002/prp2.547. 64. Gao J., Su X., Zhang Y., Ma X., et al. Mast cell activation induced by tamoxifen citrate via MRGPRX2 plays a potential adverse role in breast cancer treatment. Biochem Pharmacol. 2025; 233:116760. doi:10.1016/j.bcp.2025.116760. 65. Liu R., Wang J., Zhao T., Cao J., et al. Relationship between MRGPRX2 and pethidine hydrochloride- or fentanyl citrate-induced LAD2 cell degranulation. J Pharm Pharmacol. 2018; 70(12):1596-1605. doi:10.1111/jphp.13009. 66. Al Hamwi G., Alnouri M.W., Verdonck S., Leonczak P., et al. Subnanomolar MAS-related G protein-coupled receptor-X2/B2 antagonists with efficacy in human mast cells and disease models. Signal Transduct Target Ther. 2025; 10(1):128. doi:10.1038/s41392-025-02209-8. 67. Vikström E., Magnusson K.E., Pivoriunas A. The Pseudomonas aeruginosa quorum-sensing molecule N-(3-oxododecanoyl)-L-homoserine lactone stimulates phagocytic activity in human macrophages through the p38 MAPK pathway. Microbes Infect. 2005; 7:1512-1518. doi:10.1016/j.micinf.2005.05.012. 68. Zimmermann S., Wagner C., Muller W., Brenner-Weiss G., et al. Induction of neutrophil chemotaxis by the quorum-sensing molecule N-(3-oxododecanoyl)-L-homoserine lactone. Infect Immun. 2006; 74:5687-5692. doi:10.1128/IAI.01940-05. 69. Wagner C., Zimmermann S., Brenner-Weiss G., Hug F., et al. The quorum-sensing molecule N-3-oxododecanoyl homoserine lactone (3OC12-HSL) enhances the host defence by activating human polymorphonuclear neutrophils (PMN). Anal Bioanal Chem. 2007; 387:481-487. doi:10.1007/s00216-006-0698-5. 70. Karlsson T., Musse F., Magnusson K.E., Vikström E. N-Acylhomoserine lactones are potent neutrophil chemoattractants that act via calcium mobilization and actin remodeling. J Leukoc Biol. 2012; 91(1):15-26. doi:10.1189/jlb.0111034. 71. Tizzano M., Gulbransen B.D., Vandenbeuch A., Clapp T.R., et al. Nasal chemosensory cells use bitter taste signaling to detect irritants and bacterial signals. Proc Natl Acad Sci USA. 2010; 107(7):3210-3215. doi:10.1073/pnas.0911934107. 72. Maurer S., Wabnitz G.H., Kahle N.A., Stegmaier S., et al. Tasting Pseudomonas aeruginosa Biofilms: Human Neutrophils Express the Bitter Receptor T2R38 as Sensor for the Quorum Sensing Molecule N-(3-Oxododecanoyl)-l-Homoserine Lactone. Front. Immunol. 2015; 6, 369. doi:10.3389/fimmu.2015.00369. 73. Lossow K., Hubner S., Roudnitzky N., Slack J.P., et al. Comprehensive analysis of mouse bitter taste receptors reveals different molecular receptive ranges for orthologous receptors in mice and humans. J Biol Chem. 2016; 291:15358-15377. doi:10.1074/jbc.M116.718544. 74. Jaggupilli A., Singh N., Jesus V.C., Duan K., et al. Characterization of the Binding Sites for Bacterial Acyl Homoserine Lactones (AHLs) on Human Bitter Taste Receptors (T2Rs). ACS Infect Dis. 2018; 4(7):1146-1156. doi: 10.1021/acsinfecdis.8b00094. 75. Peters-Golden M. Putting on the brakes: cyclic AMP as a multipronged controller of macrophage function. Sci Signal. 2009; 2(75):pe37. doi: 10.1126/scisignal.275pe37. 76. Shah A.S., Ben-Shahar Y., Moninger T.O., Kline J.N., et al. Motile cilia of human airway epithelia are chemosensory. Science. 2009; 325(5944):1131-1134. doi:10.1126/science.1173869. 77. Cohen N.A. The genetics of the bitter taste receptor T2R38 in upper airway innate immunity and implications for chronic rhinosinusitis. Laryngoscope. 2017; 127(1):44-51. doi:10.1002/lary.26198. 78. Carey R.M., Workman A.D., Yan C.H., Chen B., et al. Sinonasal T2R-mediated nitric oxide production in response to Bacillus cereus. Am J Rhinol Allergy. 2017; 31(4):211-215. doi:10.2500/ajra.2017.31.4453. 79. Carey R.M., Adappa N.D., Palmer J.N., Lee R.J. Neuropeptide Y Reduces Nasal Epithelial T2R Bitter Taste Receptor-Stimulated Nitric Oxide Production. Nutrients. 2021; 13(10):3392. doi: 10.3390/nu13103392. 80. Hariri B.M., McMahon D.B., Chen B., Freund J.R., et al. Flavones modulate respiratory epithelial innate immunity: Anti-inflammatory effects and activation of the T2R14 receptor. J Biol Chem. 2017; 292(20):8484-8497. doi:10.1074/jbc.M116.771949. 81. Medapati M.R., Singh N., Bhagirath A.Y., Duan K., et al. Bitter taste receptor T2R14 detects quorum sensing molecules from cariogenic Streptococcus mutans and mediates innate immune responses in gingival epithelial cells. FASEB J. 2021; 35(3):e21375. doi:10.1096/fj.202000208R. 82. Medapati M.R., Bhagirath A.Y., Singh N., Schroth R.J., et al. Bitter Taste Receptor T2R14 Modulates Gram-Positive Bacterial Internalization and Survival in Gingival Epithelial Cells. Int J Mol Sci. 2021; 22(18):9920. doi:10.3390/ijms22189920. 83. Kawakami T., Kasakura K. Mast Cell Eavesdropping on Bacterial Communications. Cell Host Microbe. 2019; 26(1):3-5. doi:10.1016/j.chom.2019.06.006. 84. Chompunud Na Ayudhya C., Roy S., Thapaliya M., Ali H. Roles of a Mast Cell-Specific Receptor MRGPRX2 in Host Defense and Inflammation. J Dent Res. 2020; 99(8):882-890. doi:10.1177/0022034520919107. 85. McNeil B.D., Pundir P., Meeker S., Han L., et al. Identification of a mast-cell-specific receptor crucial for pseudo-allergic drug reactions. Nature. 2015; 519(7542):237-241. doi:10.1038/nature14022. | ||
![]() |