banner medline tsn
 
Медико-биологический
информационный портал
для специалистов
 
Medline.ru

СОДЕРЖАНИЕ ЖУРНАЛА:
Физико-химическая биология

Клиническая медицина

Профилактическая медицина

Медико-биологические науки


АРХИВ:

Фундаментальные исследования

Организация здравохраниения

История медицины и биологии



Последние публикации

Поиск публикаций

Articles

Архив :  2000 г.  2001 г.  2002 г. 
               2003 г.  2004 г.  2005 г. 
               2006 г.  2007 г.  2008 г. 
               2009 г.  2010 г.  2011 г. 
               2012 г.  2013 г.  2014 г. 
               2015 г.  2016 г.  2017 г. 
               2018 г.  2019 г.  2020 г.  2021 г.  2022 г.  2023 г. 

Редакционная информация:
        Опубликовать статью
        Наша статистика


 РЕДАКЦИЯ:
Главный редактор

Заместители главного редактора

Члены редколлегии
Специализированные редколлегии


 УЧРЕДИТЕЛИ:
Институт теоретической и экспериментальной биофизики Российской академии наук.

ООО "ИЦ КОМКОН"

ФГБУН "Институт токсикологии" ФМБА России




Адрес редакции и реквизиты

192012, Санкт-Петербург, ул.Бабушкина, д.82 к.2, литера А, кв.378

Свидетельство о регистрации электронного периодического издания ЭЛ № ФС 77-37726 от 13.10.2009
Выдано - Роскомнадзор

ISSN 1999-6314

Российская поисковая система
Искать: 


«
Vol. 25, Art. 40 (pp. 767-808)    |    2024       
»

Genetic factors in scoliosis progression: A literature review
Vissarionov S.V.1, Khalchitsky S.E.1, Pershina P.A.1, Asadulaev M.S.1, Buslov K.G.1, Batotsyrenova E.G.2, Golinets E.M.2, Srago I.A.2, Komov Yu.V.2, Kretser T.Yu.2, Krasnikova E.N.2, Kashuro V.A.2,3,4

1H.Turner National Medical Research Center for Children's Orthopedics and Trauma Surgery, St. Petersburg, Russia
2St. Petersburg State Pediatric Medical University, St. Petersburg, Russia
3Herzen State Pedagogical University of Russia, St. Petersburg, Russia
4Saint Petersburg State University, St. Petersburg, Russia



Brief summary

Scoliosis is a multifactorial disease manifested in the population in the form of congenital or idiopathic scoliosis. Despite the differences in etiology, according to numerous studies, both types of spinal deformities have a genetic determinant that determines not only the etiological causes, but also the factors of progression. Understanding the genetic prerequisites for scoliosis progression is necessary to improve diagnostics, early assessment of the disease prognosis, and individualization of therapeutic and surgical treatment strategies. Objective. The aim of this literature review is to analyze current publications devoted to genetic factors contributing to the progression of spinal deformity in patients with congenital and idiopathic scoliosis. Materials and Methods. A systematic literature search was conducted using Pubmed, Google Scholar, Cochrane library, Web of Science, Lens.org, and elibrary databases for the period from 2000 to 2024. Inclusion criteria were: availability of full-text source, studies with at least 20 probands, published results of the study. Exclusion criteria were: lack of open access to full-text source, studies without presented results, conference abstracts, preliminary reports. Results. In preparing the literature review, 147 sources were selected that matched the keywords and the purpose of the publication. Further, 55 sources that met the inclusion criteria were selected and analyzed in detail in the text of this publication. Conclusion. Publication activity in the direction of searching for genetic determinants of deformity progression in congenital and idiopathic scoliosis has increased significantly over the last decades and nowadays seems to be a widely covered topic. However, in the direction of studying the progression, or dysplastic course of congenital scoliosis, publications have been extremely underrepresented in comparison with the study of these aspects in idiopathic scoliosis groups. Based on this analysis, it can be concluded that congenital and idiopathic scoliosis share common genetic markers such as the 16p11.2 locus, PTK7 and CHD7 genes, but have more unique genetic alterations that influence their progression. Integration of genetic testing into clinical practice can significantly improve early diagnosis and individualization of treatment.


Key words

congenital scoliosis, idiopathic scoliosis, genetics, GWAS, DISCO, progression, secondary curves.





(The article in PDF format. For preview need Adobe Acrobat Reader)



Open article in new window

Reference list

1. Mihailovskii M.V., Fomichev N.G. Hiryrgiya deformacii pozvonochnika. 2-e izd., ispr. i dop. Novosibirsk: Redactio; 2011. 592 s.


2. Ueno M., Takaso M., Nakazawa T., et al. A 5-year epidemiological study on the prevalence rate of idiopathic scoliosis in Tokyo: school screening of more than 250,000 children. J Orthop Sci. 2011;16:1-6. doi:10.1007/s00776-010-0009-z.


3. Ruiz G., Torres-Lugo N.J., Marrero-Ortiz P., et al. Early-onset scoliosis: a narrative review. EFORT Open Rev. 2022;7(8):599-610. doi:10.1530/EOR-22-0040.


4. Weinstein S.L. The Natural History of Adolescent Idiopathic Scoliosis. J Pediatr Orthop. 2019;39 (Suppl 1): S44-S46. doi:10.1097/BPO. 0000000000001350.


5. Vissarionov S.V., Belyanchikov S.M., Kokyshin D.N. Rezyltati korrekcii deformacii pozvonochnika transpedikylyarnimi spinalnimi sistemami y detei s idiopaticheskim skoliozom. Hiryrgiya pozvonochnika. 2013;(3):030-037. EDN QOYSKR.


6. Micallef M., Caruana R., Al-Obaidi M.N. Epidemiology of Congenital Spine Malformation. In: AlAli K.F., Hashim H.T., editors. Congenital Spine Malformations. Springer; 2024. doi:10.1007/978-3-031-59031-3_2.


7. Yan C., Jin G., Li L. Spinal scoliosis: insights into developmental mechanisms and animal models. Spine Deform. 2024. doi:10.1007/s43390-024-00941-9.


8. Mackel C.E., Jada A., Samdani A.F., et al. A comprehensive review of the diagnosis and management of congenital scoliosis. Childs Nerv Syst. 2018;34:2155-2171. doi:10.1007/s00381-018-3915-6.


9. Vissarionov S.V., Kartavenko K.A., Kokyshin D.N. Estestvennoe techenie vrojdennoi deformacii pozvonochnika y detei s izolirovannim narysheniem formirovaniya pozvonka v poyasnichnom otdele. Hiryrgiya pozvonochnika. 2018;15(1):6-17. doi:10.14531/ss2018.1.6-17.


10. Movshovich I.A. Skolioz: hiryrgicheskaya anatomiya i patogenez. M.: Medicina; 1964. 254 s.


11. Wang H., Wen W., Yao M., et al. Deciphering the genomic insights into the coexistence of congenital scoliosis and congenital anomalies of the kidney and urinary tract. Front Genet. 2024;15:1399604. doi:10.3389/fgene.2024. 1399604.


12. De Salvatore S., Ruzzini L., Longo U.G, et al. Exploring the association between specific genes and the onset of idiopathic scoliosis: a systematic review. BMC Med Genomics. 2022;15:115. doi:10.1186/s12920-022-01272-2.


13. Terhune E.A., Heyn P.C., Piper C.R., et al. Genetic variants associated with the occurrence and progression of adolescent idiopathic scoliosis: a systematic review protocol. Syst Rev. 2022;11:118. doi:10.1186/s13643-022-01991-8.


14. Sebaaly A., Daher M., Salameh B., et al. Congenital scoliosis: a narrative review and proposal of a treatment algorithm. EFORT Open Rev. 2022;7(5):318-327. doi:10.1530/EOR-21-0121.


15. Smit T.H. On growth and scoliosis. Eur Spine J. 2024;33:2439-2450. doi:10.1007/s00586-024-08276-9.


16. Vissarionov S.V., Kokyshin D.N., Filippova A.N., Hysainov N.O., Abdaliev S.S. Hiryrgicheskaya korrekciya deformacii pozvonochnika y detei s vrojdennim kifoskoliozom. Sovremennie problemi nayki i obrazovaniya. 2020;(4). doi.org/10.17513/spno.29970


17. Otomo N., Takeda K., Kawai S., et al. Bi-allelic loss of function variants of TBX6 causes a spectrum of malformation of spine and rib including congenital scoliosis and spondylocostal dysostosis. J Med Genet. 2019;56:622-628.


18. Zhang W., Yao Z., Guo R., et al. Molecular identification of T-box transcription factor 6 and prognostic assessment in patients with congenital scoliosis: A single-center study. Front Med. 2022;9:941468. doi:10.3389/fmed.2022.941468.


19. Wallin J., Wilting J., Koseki H., et al. The role of Pax-1 in axial skeleton development. Development. 1994;120(5):1109-1121.


20. Sparrow D.B., Chapman G., Smith A.J., et al. A mechanism for gene-environment interaction in the etiology of congenital scoliosis. Cell. 2012;149(2):295-306. doi:10.1016/j.cell.2012.02.054.


21. Wu Y., Zhang H., Tang M., et al. High methylation of lysine acetyltransferase 6B is associated with the Cobb angle in patients with congenital scoliosis. J Transl Med. 2020;18(1):210. doi:10.1186/s12967-020-02367-z.


22. Su Z., Yang Y., Wang S., et al. The mutational landscape of ptk7 in congenital scoliosis and adolescent idiopathic scoliosis. Genes (Basel). 2021;12(11):1791. doi:10.3390/genes12111791.


23. Weinstein S.L., Dolan L.A., Wright J.G., et al. Effects of bracing in adolescents with idiopathic scoliosis. N Engl J Med. 2013;369:1512-1521.


24. Faldini C., Manzetti M., Neri S., et al. Epigenetic and genetic factors related to curve progression in adolescent idiopathic scoliosis: A systematic scoping review of the current literature. Int J Mol Sci. 2022;23(11):5914. doi:10.3390/ijms23115914.


25. Zaydman A.M., Strokova E.L., Pahomova N.Y., et al. Etiopathogenesis of adolescent idiopathic scoliosis: Review of the literature and new epigenetic hypothesis on altered neural crest cells migration in early embryogenesis as the key event. Med Hypotheses. 2021;151:110585. doi:10.1016/j.mehy. 2021.110585.


26. Sadler B., Haller G., Antunes L., et al. Distal chromosome 16p11.2 duplications containing SH2B1 in patients with scoliosis. J Med Genet. 2019;56:427-433.


27. Lau K.K.L., Law K.K.P., Kwan K.Y.H., et al. Proprioception-related gene mutations in relation to the aetiopathogenesis of idiopathic scoliosis: A scoping review. J Orthop Res. 2023;41(12):2694-2702. doi:10.1002/jor.25626.


28. Qiu Y., Mao S.H., Qian B.P., et al. A promoter polymorphism of neurotrophin 3 gene is associated with curve severity and bracing effectiveness in adolescent idiopathic scoliosis. Spine. 2012;37(2):127-133.


29. Miyake A., Kou I., Takahashi Y., et al. Identification of a susceptibility locus for severe adolescent idiopathic scoliosis on chromosome 17q24.3. PLoS One. 2013;8(9):e72802.


30. Shi B., Mao S., Xu L., et al. Quantitation analysis of PCDH10 methylation in adolescent idiopathic scoliosis using pyrosequencing study. Spine (Phila Pa 1976). 2020;45(7):E373-E378. doi:10.1097/BRS.0000000000003292.


31. Sakai L.Y., Keene D.R., Renard M., et al. FBN1: The disease-causing gene for Marfan syndrome and other genetic disorders. Gene. 2016;591(1):279-291. doi:10.1016/j.gene.2016.07.033.


32. Buchan J.G., Alvarado D.M., Haller G.E., et al. Rare variants in FBN1 and FBN2 are associated with severe adolescent idiopathic scoliosis. Hum Mol Genet. 2014;23(19):5271-5282. doi:10.1093/hmg/ddu224.


33. Andrusiewicz M., Harasymczuk P., Janusz P., et al. TIMP2 polymorphisms association with curve initiation and progression of thoracic idiopathic scoliosis in the Caucasian females. J Orthop Res. 2019;37(2):320-326. doi:10.1002/jor.24380.


34. Meng Y., Lin T., Liang S., et al. Value of DNA methylation in predicting curve progression in patients with adolescent idiopathic scoliosis. EBioMedicine. 2018;36:401-408. doi:10.1016/j.ebiom.2018.09.01.


35. Montanaro L., Parisini P., Greggi T., et al. Evidence of a linkage between matrilin-1 gene (MATN1) and idiopathic scoliosis. Scoliosis. 2006;1:21. doi:10.1186/1748-7161-1-21.


36. Chen Z., Tang N.L.S., Cao X., et al. Promoter polymorphism of matrilin-1 gene predisposes to adolescent idiopathic scoliosis in a Chinese population. Eur J Hum Genet. 2008;17(4):525-532. doi:10.1038/ejhg.2008.203.


37. Takeda K., Kou I., Otomo N., et al. A multiethnic meta-analysis defined the association of rs12946942 with severe adolescent idiopathic scoliosis. J Hum Genet. 2019;64:493-498. doi:10.1038/s10038-019-0575-7.


38. Petrosyan E., Fares J., Ahuja C.S., et al. Genetics and epigenetics of scoliosis progression. North Am Spine Soc J. 2024;5:249-260. doi:10.1016/j.xnsj.2024.03.017.


39. Shi B., Xu L., Mao S., et al. Abnormal PITX1 gene methylation in adolescent idiopathic scoliosis: a pilot study. BMC Musculoskelet Disord. 2018;19:138. doi:10.1186/s12891-018-2054-2.


40. Zhang J., Chen H., Leung R.K.K., et al. Aberrant miR-145-5p/β-catenin signal impairs osteocyte function in adolescent idiopathic scoliosis. FASEB J. 2018;32:6537-6549. doi:10.1096/fj.201800539R.


41. Ogura Y., Kou I., Takahashi Y., et al. A functional variant in MIR4300HG, the host gene of microRNA MIR4300 is associated with progression of adolescent idiopathic scoliosis. Hum Mol Genet. 2017;26:4086-4092. doi:10.1093/hmg/ddx295.


42. Wang Y., Dai Z., Wu Z., et al. Genetic variant of MIR4300HG is associated with progression of adolescent idiopathic scoliosis in a Chinese population. J Orthop Surg Res. 2021;16:311. doi:10.1186/s13018-021-02455-w.


43. Xu L., Xia C., Qin X., et al. Genetic variant of BNC2 gene is functionally associated with adolescent idiopathic scoliosis in Chinese population. Mol Genet Genomics. 2017;292(4):789-794. doi:10.1007/s00438-017-1315-3.


44. Halchickii S.E., Gracheva U.A., Pechalnova S.A., Byslov K.G., Vissarionov S.V., Batocirenova E.G., Komov U.V., Krecer T.U., Kashyro V.A. Sistemnii uvenilnii idiopaticheskii artrit i ego biomarkeri (obzor literatyri). Medline. ru. 2023; 24 (1): 176-199.


45. Dai Z., Min K., Wu Z., et al. Genetic variants can predict the outcome of brace treatment in patients with adolescent idiopathic scoliosis. Spine (Phila Pa 1976). Published online August 29, 2024. doi:10.1097/BRS. 0000000000005137.


46. Wang W., Chen T., Liu Y., et al. Predictive value of single-nucleotide polymorphisms in curve progression of adolescent idiopathic scoliosis. Eur Spine J. 2022;31:2311-2325. doi:10.1007/s00586-022-07213-y.


47. Zhou S., Qiu X.S., Zhu Z.Z., et al. A single-nucleotide polymorphism Rs708567 in the IL-17RC gene is associated with a susceptibility to and the curve severity of adolescent idiopathic scoliosis in a Chinese Han population: A case-control study. BMC Musculoskelet Disord. 2012;13:1. doi:10.1186/471-2474-13-1.


48. Wu M., Chen G., Li Y.P. TGF-β and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease. Bone Res. 2016;4:16009. doi:10.1038/boneres.2016.9.


49. Ryzhkov I.I., Borzilov E.E., Churnosov M.I., et al. Transforming growth factor beta 1 is a novel susceptibility gene for adolescent idiopathic scoliosis. Spine. 2013;38(12):E699-E704. doi:10.1097/BRS.0b013e31828de9e1.


50. Griese ER., Kenyon DB., McMahon TR.. Identifying sexual health protective factors among Northern Plains American Indian youth: An ecological approach utilizing multiple perspectives. Am Indian Alsk Native Ment Health Res. 2016;23(4):16-43. doi:10.5820/aian.2304.2016.16.


51. Moon E.S., Kim H.S., Sharma V., et al. Analysis of single nucleotide polymorphism in adolescent idiopathic scoliosis in Korea: For personalized treatment. Yonsei Med J. 2013;54:500-509. doi:10.3349/ymj.2013.54.3.500.


52. Ward K., Ogilvie J.W., Singleton M.V., et al. Validation of DNA-based prognostic testing to predict spinal curve progression in adolescent idiopathic scoliosis. Spine (Phila Pa 1976). 2010;35:E1455-64. doi:10.1097/ BRS.0b013e3181f41c99.


53. Jongmans M.C., Admiraal R.J., van der Donk K.P., et al. CHARGE syndrome: The phenotypic spectrum of mutations in the CHD7 gene. J Med Genet. 2006;43(4):306-314. doi:10.1136/jmg.2005.036061.


54. Sanlaville D., Verloes A. CHARGE syndrome: An update. Eur J Hum Genet. 2007;15:389-399. doi:10.1038/sj.ejhg.5201778.


55. Borysiak K., Janusz P., Andrusiewicz M., et al. CHD7 gene polymorphisms in female patients with idiopathic scoliosis. BMC Musculoskelet Disord. 2020;21:18. doi:10.1186/s12891-020-3100-2.


56. Pérez-Machado G., Berenguer-Pascual E., Bovea-Marco M., et al. From genetics to epigenetics to unravel the etiology of adolescent idiopathic scoliosis. Bone. 2020;140:115563. doi:10.1016/j.bone.2020.115563.





Журнал основан 16 ноября 2000г.
Выдано Министерством РФ по делам печати, телерадиовещания и средств массовых коммуникаций
(c) Перепечатка материалов сайта Medline.Ru возможна только с письменного разрешения редакции

Размещение рекламы

Rambler's Top100