Changes of vessel diameter and of retinal and choroidal thickness in patients with new coronavirus infection
Turgel V.A.1, Tultseva S.N.1
1 Federal State Budgetary Educational Institution of Higher Education “Academician I.P. Pavlov First St. Petersburg State Medical University” of the Ministry of Healthcare of the Russian Federation. Russia, 197022, Saint-Petersburg, Lev Tolstoy str., 6-8
Brief summary
This review of literature is dedicated to ophthalmic signs of the new coronavirus infection. It is known that the main clinical manifestation of COVID-19 is a systemic endotheliitis caused both by primary viral action and a secondary autoimmune answer. The retina and the choroid occupy the leading positions in vascular density among all the tissues of the human body. At the same time, they are the only structures accessible to in vivo visualization and to non-invasive investigation of the structure and microcirculation. The detection of “ophthalmic markers” of the systemic inflammation in COVID-19, dynamic assessment of these changes will allow enlarging the insight into the pathogenesis and features of the clinical course of the infectious disease. During the acute period of COVID-19, among such markers are subsumed: diffuse and local decrease in vascular density and perfusion in the macular area, increase of the peripapillary vessel diameter, increase of the choroidal thickness in the subfoveolar area, as well as increase of the avascular zone surface area. As markers of the late period are considered: retinal thinning on the account of RNFL and ganglion cells, increase of the avascular zone surface area, which could progress during 12 months after the patient’s clinical recovery.
1. Quercioli C, Bosco R, Bova G, Mandò M, De Marco MF, Dei S, Gusinu R, Messina G. Evaluating the effect of COVID-19 incidence on Emergency Departments admissions. Results from a retrospective study in Central Italy during the first year of pandemic. Ann Ig. 2023; 35(5):572-585.
doi: 10.7416/ai.2023.2570.
2. Poorolajal J. The global pandemics are getting more frequent and severe. J Res Health Sci. 2021; 18;21(1):e00502.
4. Siddiqui S, Alhamdi HWS, Alghamdi HA. Recent Chronology of COVID-19 Pandemic. Front Public Health. 2022; 10:778037.
doi: 10.3389/fpubh.2022.778037.
5. Semenzato L, Botton J, Le Vu S, Jabagi MJ, et al. Protection of COVID-19 Vaccination Against Hospitalization During the Era of Omicron BA.4 and BA.5 Predominance: A Nationwide Case-Control Study Based on the French National Health Data System. Open Forum Infect Dis. 2023; 10(10):ofad460.
doi: 10.1093/ofid/ofad460.
6. Shirokova A.N., Semenova T.N. Vozdeistvie COVID-19 na hronicheskyu neinfekcionnyu patologiu. Universum: medicina i farmakologiya. - 2024. - № 5 - S. 110-118.
8. Mendelson M, Nel J, Blumberg L, Madhi SA, Dryden M, Stevens W, Venter FWD. Long-COVID: An evolving problem with an extensive impact. S Afr Med J. 2020; 111(1):10-12.
doi: 10.7196/SAMJ.2020.v111i11.15433.
9. Brantl V, Schworm B, Weber G, et al. Long-term ocular damage after recovery from COVID-19: lack of evidence at three months. BMC Ophthalmol. 2021; 21(1):421.
doi: 10.1186/s12886-021-02179-9.
10. Zaidi AK, Dehgani-Mobaraki P. Long Covid. Prog Mol Biol Transl Sci 2024; 202:113-125.
11. Lopez-Leon S, Wegman-Ostrosky T, Perelman C, Sepulveda R, Rebolledo PA, Cuapio A, Villapol S. More than 50 Long-term effects of COVID-19: a systematic review and meta-analysis. Sci Rep. 2021; 11(1):16144.
doi: 10.1038/s41598-021-95565-8.
12. Fernández-de-Las-Peñas C, Pellicer-Valero OJ, Navarro-Pardo E, Palacios-Ceña D, Florencio LL, Guijarro C, Martín-Guerrero JD. Symptoms Experienced at the Acute Phase of SARS-CoV-2 Infection as Risk Factor of Long-term Post-COVID Symptoms: The LONG-COVID-EXP-CM Multicenter Study. Int J Infect Dis. 2022; 116:241-244.
doi: 10.1016/j.ijid.2022.01.007.
13. Pismo Minzdrava Rossii ot 30.01.2023 N 31-2/I/2-1287 «O formirovanii i ekonomicheskom obosnovanii territorialnih programm gosydarstvennih garantii besplatnogo okazaniya grajdanam medicinskoi pomoshi na 2023 - 2025 godi». URL: https://www.consultant.ru/document/cons_doc_LAW_438795/ (data obrasheniya 21.04.2024).
14. Martono, Fatmawati F, Mulyanti S. Risk Factors Associated with the Severity of COVID-19. Malays J Med Sci. 2023; 30(3):84-92.
doi: 10.21315/mjms2023.30.3.7.
15. Feng Y, Ling Y, Bai T, et al. COVID-19 with Different Severities: A Multicenter Study of Clinical Features. Am J Respir Crit Care Med. 2020; 201(11):1380-1388.
doi: 10.1164/rccm.202002-0445OC.
16. Wilk-Sledziewska K, Sielatycki PJ, Uscinska N, et al. The Impact of Cardiovascular Risk Factors on the Course of COVID-19. J Clin Med. 2022; 11(8):2250.
doi: 10.3390/jcm11082250.
17. Chenchula S, Sharma S, Tripathi M, et al. Prevalence of overweight and obesity and their effect on COVID-19 severity and hospitalization among younger than 50 years versus older than 50 years population: A systematic review and meta-analysis. Obes Rev. 2023; 24(11):e13616.
doi: 10.1111/obr.13616.
18. Zhang Q, Chen CZ, Swaroop M, et al. Heparan sulfate assists SARS-CoV-2 in cell entry and can be targeted by approved drugs in vitro. bioRxiv Update in: Cell Discov. 2020;6(1):80.
doi: 10.1038/s41421-020-00222-5.
19. Pijls BG, Jolani S, Atherley A, Derckx RT, et al. Demographic risk factors for COVID-19 infection, severity, ICU admission and death: a meta-analysis of 59 studies. BMJ Open. 2021; 11(1):e044640.
doi: 10.1136/bmjopen-2020-044640.
20. Martínez-Salazar B, Holwerda M, Stüdle C, et al. COVID-19 and the Vasculature: Current Aspects and Long-Term Consequences. Front Cell Dev Biol. 2022; 10:824851.
doi: 10.3389/fcell.2022.824851.
21. Pelisek J, Reutersberg B, Greber UF, Zimmermann A. Vascular dysfunction in COVID-19 patients: update on SARS-CoV-2 infection of endothelial cells and the role of long non-coding RNAs. Clin Sci (Lond). 2022; 136(21):1571-1590.
doi: 10.1042/CS20220235.
22. Xu SW, Ilyas I, Weng JP. Endothelial dysfunction in COVID-19: an overview of evidence, biomarkers, mechanisms and potential therapies. Acta Pharmacol Sin. 2023; 44(4):695-709.
doi: 10.1038/s41401-022-00998-0.
23. Torices S, Motta C, da Rosa B, Marcos A, et al. SARS-CoV-2 infection of human brain microvascular endothelial cells leads to inflammatory activation through NF-κB non-canonical pathway and mitochondrial remodeling. Viruses. 2023; 15(3):745.
doi: 10.3390/v15030745.
24. du Preez HN, Aldous C, Hayden MR, Kruger HG, Lin J. Pathogenesis of COVID-19 described through the lens of an undersulfated and degraded epithelial and endothelial glycocalyx. FASEB J. 2022; 36(1):e22052.
doi: 10.1096/fj.202101100RR.
25. Najjar S, Najjar A, Chong DJ, et al. Central nervous system complications associated with SARS-CoV-2 infection: integrative concepts of pathophysiology and case reports. J Neuroinflammation. 2020; 17(1):231. doi: 10.1186/s12974-020-01896-0.
26. Pattanaik A, Bhandarkar B S, Lodha L, Marate S. SARS-CoV-2 and the nervous system: current perspectives. Arch Virol. 2023; 168(6):171.
doi: 10.1007/s00705-023-05801-x.
27. Acharya S, Diamond M, Anwar S, Glaser A, Tyagi P. Unique case of central retinal artery occlusion secondary to COVID-19 disease. IDCases. 2020;21:e00867.
doi: 10.1016/j.idcr.2020.e00867.
28. Park HS, Kim S, Lee CS, Byeon SH, et al. Retinal vascular occlusion risks during the COVID-19 pandemic and after SARS-CoV-2 infection. Sci Rep. 2023;13(1):16851.
doi: 10.1038/s41598-023-44199-z.
29. Latigan K.L., Latigan D.A., Dybnov K.E., i dr. Klinicheskii slychai okkluzii centralnoi arterii setchatki na fone perenesennoi pnevmonii, vizvannoi SARS-CoV-2 (COVID-19). Acta Biomedica Scientifica. - 2021. - T. 1, № 6. - S. 12-14.
30. Invernizzi A, Pellegrini M, Messenio D, et al. Impending Central Retinal Vein Occlusion in a Patient with Coronavirus Disease 2019 (COVID-19). Ocul Immunol Inflamm. 2020; 28(8):1290-1292.
doi: 10.1080/09273948.2020.1807023.
31. Walinjkar JA, Makhija SC, Sharma HR, Morekar SR, Natarajan S. Central retinal vein occlusion with COVID-19 infection as the presumptive etiology. Indian J Ophthalmol. 2020; 68(11):2572-2574.
doi: 10.4103/ijo.IJO_2575_20.
32. Ashkenazy N, Patel NA, Sridhar J, Yannuzzi NA, et al. Hemi- and Central Retinal Vein Occlusion Associated with COVID-19 Infection in Young Patients without Known Risk Factors. Ophthalmol Retina. 2022; 6(6):520-530.
doi: 10.1016/j.oret.2022.02.004.
33. Virgo J, Mohamed M. Paracentral acute middle maculopathy and acute macular neuroretinopathy following SARS-CoV-2 infection. Eye (Lond). 2020; 34(12):2352-2353.
doi: 10.1038/s41433-020-1069-8.
34. Gascon P, Briantais A, Bertrand E, et al. Covid-19-Associated Retinopathy: A Case Report. Ocul Immunol Inflamm. 2020; 28(8):1293-1297.
doi: 10.1080/09273948.2020.1825751.
35. Vu TA, Schillerstrom M, Mancha S, Sponsel WE. COVID-19 Related Acute Macular Neuroretinopathy (AMN): A Case Series. Int Med Case Rep J. 2023; 16:491-496.
doi: 10.2147/IMCRJ.S416492.
36. David JA, Fivgas GD. Acute macular neuroretinopathy associated with COVID-19 infection. Am J Ophthalmol Case Rep. 2024; 24:101232.
doi: 10.1016/j.ajoc.2021.101232.
37. Dutta Majumder P, Agarwal A. Acute Macular Neuroretinopathy and Paracentral Acute Middle Maculopathy during SARS-CoV-2 Infection and Vaccination. Vaccines (Basel). 2023; 11(2):474.
doi: 10.3390/vaccines11020474.
38. Olguín-Manríquez F, Cernichiaro-Espinosa L, Olguín-Manríquez A, et al. Unilateral acute posterior multifocal placoid pigment epitheliopathy in a convalescent COVID-19 patient. Int J Retina Vitreous. 2021; 7(1):41.
doi: 10.1186/s40942-021-00312-w.
39. Sitaula S, Poudel A, Gajurel BP. Non-arteritic anterior ischemic optic neuropathy in COVID-19 infection - A case report. Am J Ophthalmol Case Rep. 2022; 27:101684.
doi: 10.1016/j.ajoc.2022.101684.
40. Tarcha R, Ghazal A, Al-Darwish L, Abdoh H, Kudsi M. Optic neuritis after mRNA COVID-19 vaccination: a case report. Clin Case Rep. 2023 Nov 25;11(11):e8263.
doi: 10.1002/ccr3.8263.
41. Bansal R, Markan A, Gautam N, et al. Retinal Involvement in COVID-19: Results From a Prospective Retina Screening Program in the Acute and Convalescent Phase. Front Med (Lausanne). 2021; 8:681942.
doi: 10.3389/fmed.2021.681942.
42. Marinho PM, Marcos AAA, Romano AC, Nascimento H, Belfort R Jr. Retinal findings in patients with COVID-19. Lancet. 2020; 395(10237):1610.
doi: 10.1016/S0140-6736(20)31014-X.
43. Landecho MF, Yuste JR, Gándara E, Sunsundegui P, Quiroga J, Alcaide AB, García-Layana A. COVID-19 retinal microangiopathy as an in vivo biomarker of systemic vascular disease? J Intern Med. 2021; 289(1):116-120.
doi: 10.1111/joim.13156.
44. Teo KY, Invernizzi A, Staurenghi G, Cheung CMG. COVID-19-Related Retinal Micro-vasculopathy - A Review of Current Evidence. Am J Ophthalmol. 2022; 235:98-110.
doi: 10.1016/j.ajo.2021.09.019.
45. Jidigam VK, Singh R, Batoki JC, et al. Histopathological assessments reveal retinal vascular changes, inflammation, and gliosis in patients with lethal COVID-19. Graefes Arch Clin Exp Ophthalmol. 2022; 260(4):1275-1288.
doi: 10.1007/s00417-021-05460-1.
46. Turker IC, Dogan CU, Dirim AB, et al. Evaluation of early and late COVID-19-induced vascular changes with OCTA. Can J Ophthalmol. 2022; 57(4):236-241.
doi: 10.1016/j.jcjo.2021.05.001.
47. Sumer F, Subasi S. Effects of COVID-19 on Retinal and Choroidal Thickness by Optical Coherence Tomography. J Glaucoma. 2023; 32(7):569-574.
doi: 10.1097/IJG.0000000000002204.
48. Gündoğan M, Vural E, Bayram N, et al. Change in retinal vessel diameter and choroidal thickness in patients with severe COVID-19: Change In Retinal Parameters In Patients With Severe COVID-19. Photodiagnosis Photodyn Ther. 2022; 37:102674.
doi: 10.1016/j.pdpdt.2021.102674.
49. Mavi Yildiz A, Ucan Gunduz G, Yalcinbayir O, Acet Ozturk NA, Avci R, Coskun F. SD-OCT assessment of macular and optic nerve alterations in patients recovered from COVID-19. Can J Ophthalmol. 2022; 57(2):75-81.
doi: 10.1016/j.jcjo.2021.06.019.
50. Cennamo G, Reibaldi M, Montorio D, et al. Optical Coherence Tomography Angiography Features in Post-COVID-19 Pneumonia Patients: A Pilot Study. Am J Ophthalmol. 2021; 227:182-190.
doi: 10.1016/j.ajo.2021.03.015.
51. González-Zamora J, Bilbao-Malavé V, Gándara E, et al. Retinal Microvascular Impairment in COVID-19 Bilateral Pneumonia Assessed by Optical Coherence Tomography Angiography. Biomedicines. 2021; 9(3):247.
doi: 10.3390/biomedicines9030247.
52. Burgos-Blasco B, Güemes-Villahoz N, Vidal-Villegas B, et al. One-Year Changes in Optic Nerve Head Parameters in Recovered COVID-19 Patients. J Neuroophthalmol. 2022; 42(4):476-482.
doi: 10.1097/WNO.0000000000001626.
53. Dağ Şeker E, Erbahçeci Timur İE. Assessment of early and long-COVID related retinal neurodegeneration with optical coherence tomography. Int Ophthalmol. 2023; 43(6):2073-2081.
doi: 10.1007/s10792-022-02607-9.
54. Turker IC, Dogan CU, Guven D, Kutucu OK, Gul C. Optical coherence tomography angiography findings in patients with COVID-19. Can J Ophthalmol. 2021; 56(2):83-87.
doi: 10.1016/j.jcjo.2020.12.021.
55. Santos AR, Lopes M, Santos T, et al. Intraretinal Microvascular Abnormalities in Eyes with Advanced Stages of Nonproliferative Diabetic Retinopathy: Comparison Between UWF-FFA, CFP, and OCTA-The RICHARD Study. Ophthalmol Ther. 2024; 13(12):3161-3173.
doi: 10.1007/s40123-024-01054-2.
56. Abrishami M, Emamverdian Z, Shoeibi N, et al. Optical coherence tomography angiography analysis of the retina in patients recovered from COVID-19: a case-control study. Can J Ophthalmol. 2021; 56(1):24-30.
doi: 10.1016/j.jcjo.2020.11.006.
57. Hazar L, Karahan M, Vural E, et al. Macular vessel density in patients recovered from COVID 19. Photodiagnosis Photodyn Ther. 2021; 34:102267.
doi: 10.1016/j.pdpdt.2021.102267.
58. Savastano A, Crincoli E, Gemelli Against Covid-Post-Acute Care Study Group. Peripapillary Retinal Vascular Involvement in Early Post-COVID-19 Patients. J Clin Med. 2020; 9(9):2895.
doi: 10.3390/jcm9092895.
59. Bilbao-Malavé V, González-Zamora J, Saenz de Viteri M, et al. Persistent Retinal Microvascular Impairment in COVID-19 Bilateral Pneumonia at 6-Months Follow-Up Assessed by Optical Coherence Tomography Angiography. Biomedicines. 2021; 9(5):502.
doi: 10.3390/biomedicines9050502.
60. Oren B, Aksoy Aydemır G, Aydemır E, et al. Quantitative assessment of retinal changes in COVID-19 patients. Clin Exp Optom. 2021; 104(6):717-722.
doi: 10.1080/08164622.2021.1916389.
61. Abdelmassih Y, Azar G, Bonnin S, et al. COVID-19 Associated Choroidopathy. J Clin Med. 2021; 10(20):4686.
doi: 10.3390/jcm10204686.
62. Bankhead P, Scholfield CN, McGeown JG, Curtis TM. Fast retinal vessel detection and measurement using wavelets and edge location refinement. PLoS One. 2012;7(3):e32435.
doi: 10.1371/journal.pone.0032435.
63. Jevnikar K, Meglič A, Lapajne L, et al. The impact of acute COVID-19 on the retinal microvasculature assessed with multimodal imaging. Graefes Arch Clin Exp Ophthalmol. 2023; 261(4):1115-1125.
doi: 10.1007/s00417-022-05887-0.
64. Aşıkgarip N, Temel E, Hızmalı L, et al. Retinal Vessel Diameter Changes in COVID-19 Infected Patients. Ocul Immunol Inflamm. 2021; 29(4):645-651.