1Nanoporus LLC
2Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences
3JSC «BioChemMack Diagnostics»
Brief summary
. High-resolution typing of the human leukocyte antigen (HLA) locus is an important diagnostic procedure required for organ transplantation and hematopoietic stem cell transplantation (HSCT). The latter is required for the treatment of a number of malignant and non-malignant diseases. The introduction of platforms that allow high-resolution HLA typing is an important biomedical task.
Objective of the study: to perform HLA typing of patients using a high-throughput nanopore sequencing method.
Materials and methods. The DNA of two patients, isolated and purified by standard methods, was amplified using a reagent kit for 11-locus multiplex amplification of HLA genes, the resulting libraries were sequenced using a “Nanoporus” nanopore sequencer.
Results and conclusion. We performed HLA typing of two patients using rapid and high-throughput nanopore sequencing on the new Nanoporus platform and demonstrated its good applicability for this objective. We also identified a putative new allele for HLA-B in the DNA sample of one of the two patients.
1. Bettinotti M.P. Evolution of HLA testing for hematopoietic stem cell transplantation: Importance of the candidate’s antibody profile for donor selection. Human Immunology. 2022; 83: 721-9.
2. Kolb H.J. Graft-versus-leukemia effects of transplantation and donor lymphocytes. Blood. 2008; 112: 4371-83.
3. Kanate A.S., Majhail N.S., Savani B.N., Bredeson C., Champlin R.E., Crawford S., Giralt S.A., LeMaistre C.F., Marks D.I., Omel J.L. Indications for hematopoietic cell transplantation and immune effector cell therapy: guidelines from the American Society for Transplantation and Cellular Therapy. Biology of Blood and Marrow Transplantation. 2020; 26: 1247-56.
4. Duarte R.F., Labopin M., Bader P., Basak G.W., Bonini C., Chabannon C., Corbacioglu S., Dreger P., Dufour C., Gennery A.R. Indications for haematopoietic stem cell transplantation for haematological diseases, solid tumours and immune disorders: current practice in Europe, 2019. Bone marrow transplantation. 2019; 54: 1525-52.
5. Zhang X-h., Chen J., Han M-Z., Huang H., Jiang E.-l., Jiang M, Lai Y-r., Liu D-h., Liu Q-F., Liu T. The consensus from The Chinese Society of Hematology on indications, conditioning regimens and donor selection for allogeneic hematopoietic stem cell transplantation: 2021 update. Journal of hematology & oncology. 2021; 14: 1-20.
6. Horton R., Wilming L., Rand V., Lovering R.C., Bruford E.A., Khodiyar V.K., Lush M.J., Povey S., Talbot Jr. C.C., Wright M.W. Gene map of the extended human MHC. Nature Reviews Genetics. 2004; 5: 889-99.
7. Kelly A., Trowsdale J.. Introduction: MHC/KIR and governance of specificity. Immunogenetics. 2017; 69: 481-8.
8. Spencer C.T., Bezbradica J.S., Ramos M.G., Arico C.D., Conant S.B., Gilchuk P., Gray J.J., Zheng M., Niu X., Hildebrand W. Viral infection causes a shift in the self peptide repertoire presented by human MHC class I molecules. PROTEOMICS-Clinical Applications. 2015; 9: 1035-52.
9. Starr T.K., Jameson S.C., Hogquist K.A. Positive and negative selection of T cells. Annual review of immunology. 2003; 21: 139-76.
10. Jenkins M.K., Moon J.J. The role of naive T cell precursor frequency and recruitment in dictating immune response magnitude. The Journal of Immunology. 2012; 188: 4135-40.
11. Anfossi N., André P., Guia S., Falk C.S., Roetynck S., Stewart C.A., Breso V., Frassati C., Reviron D., Middleton D. Human NK cell education by inhibitory receptors for MHC class I. Immunity. 2006; 25: 331-42.
12. Hilton H.G., Parham P. Missing or altered self: human NK cell receptors that recognize HLA-C. Immunogenetics. 2017; 69: 567-79.
13. Bettinotti M.P., Ferriola D., Duke J.L., Mosbruger T.L., Tairis N., Jennings L., Kalman L.V., Monos D.. Characterization of 108 Genomic DNA Reference Materials for 11 Human Leukocyte Antigen Loci: A GeT-RM Collaborative Project. The Journal of Molecular Diagnostics. 2018; 20: 703-15.
14. Marsh S.G., Albert E., Bodmer W., Bontrop R., Dupont B., Erlich H., Fernández-Viña M., Geraghty D., Holdsworth R., Hurley C. Nomenclature for factors of the HLA system, 2010. Tissue antigens. 2010; 75: 291.
15. Nunes E., Heslop H., Fernandez-Vina M., Taves C., Wagenknecht D.R., Eisenbrey A.B., Fischer G., Poulton K., Wacker K., Hurley C.K. Definitions of histocompatibility typing terms. Blood, The Journal of the American Society of Hematology. 2011; 118: e180-e3.
16. Howard C.A., Fernandez-Vina M.A., Appelbaum F.R., Confer D.L., Devine S.M., Horowitz M.M., Mendizabal A., Laport G.G., Pasquini M.C., Spellman S.R. Recommendations for donor human leukocyte antigen assessment and matching for allogeneic stem cell transplantation: consensus opinion of the Blood and Marrow Transplant Clinical Trials Network (BMT CTN). Biology of Blood and Marrow Transplantation. 2015; 21: 4-7.
17. Latham K., Little A-M., Madrigal J.A. An overview of HLA typing for hematopoietic stem cell transplantation. Bone Marrow and Stem Cell Transplantation. 2014: 73-85.
18. Duke J., Lind C., Mackiewicz K., Ferriola D., Papazoglou A., Gasiewski A., Heron S., Huynh A., McLaughlin L., Rogers M. Determining performance characteristics of an NGS‐based HLA typing method for clinical applications. Hla. 2016; 87: 141-52.
19. Liu L., Li Y., Li S., Hu N., He Y., Pong R., Lin D., Lu L., Law M. Comparison of next-generation sequencing systems. J Biomed Biotechnol. 2012; 2012: 251364.
20. Chen P., Sun Z., Wang J., Liu X., Bai Y., Chen J., Liu A., Qiao F., Chen Y, Yuan C., Sha J., Zhang J., Xu L.Q. Portable nanopore-sequencing technology: Trends in development and applications. Front Microbiol. 2023; 14: 1043967.
21. van Dijk E.L., Jaszczyszyn Y., Naquin D., Thermes C.. The Third Revolution in Sequencing Technology. Trends Genet. 2018; 34: 666-81.
22. Eapen M., Rubinstein P., Zhang M.J., Stevens C., Kurtzberg J., Scaradavou A., Loberiza F.R., Champlin R.E., Klein J.P., Horowitz M.M., Wagner J.E. Outcomes of transplantation of unrelated donor umbilical cord blood and bone marrow in children with acute leukaemia: a comparison study. Lancet. 2007; 369: 1947-54.
23. Lee S.J., Klein J., Haagenson M., Baxter-Lowe L.A., Confer D.L., Eapen M., Fernandez-Vina M., Flomenberg N., Horowitz M., Hurley C.K., Noreen H., Oudshoorn M., Petersdorf E. High-resolution donor-recipient HLA matching contributes to the success of unrelated donor marrow transplantation. Blood. 2007; 110: 4576-83.
24. Gao X., Bashirova A., Iversen A.K., Phair J., Goedert J.J., Buchbinder S., Hoots K., Vlahov D., Altfeld M., O'Brien S.J., Carrington M. AIDS restriction HLA allotypes target distinct intervals of HIV-1 pathogenesis. Nat Med. 2005; 11: 1290-2.
25. Lie B.A., Thorsby E. Several genes in the extended human MHC contribute to predisposition to autoimmune diseases. Curr Opin Immunol. 2005; 17: 526-31.
26. Mallal S., Nolan D., Witt C., Masel G., Martin A.M., Moore C., Sayer D., Castley A., Mamotte C., Maxwell D., James I., Christiansen F.T. Association between presence of HLA-B*5701, HLA-DR7, and HLA-DQ3 and hypersensitivity to HIV-1 reverse-transcriptase inhibitor abacavir. Lancet. 2002; 359: 727-32.
27. Erlich H. HLA DNA typing: past, present, and future. Tissue Antigens. 2012; 80: 1-11.
28. Dunn P.P. Human leucocyte antigen typing: techniques and technology, a critical appraisal. Int J Immunogenet. 2011; 38: 463-73.
29. Lange V., Böhme I., Hofmann J., Lang K., Sauter J., Schöne B., Paul P., Albrecht V., Andreas J.M., Baier D.M., Nething J., Ehninger U., Schwarzelt C. Cost-efficient high-throughput HLA typing by MiSeq amplicon sequencing. BMC Genomics. 2014; 15: 63.
30. Ozaki Y., Suzuki S., Kashiwase K., Shigenari A., Okudaira Y., Ito S., Masuya A., Azuma F., Yabe T., Morishima S., Mitsunaga S., Satake M., Ota M., et al. Cost-efficient multiplex PCR for routine genotyping of up to nine classical HLA loci in a single analytical run of multiple samples by next generation sequencing. BMC Genomics. 2015; 16: 318.