banner medline tsn
 
Медико-биологический
информационный портал
для специалистов
 
Medline.ru

СОДЕРЖАНИЕ ЖУРНАЛА:
Физико-химическая биология

Клиническая медицина

Профилактическая медицина

Медико-биологические науки


АРХИВ:

Фундаментальные исследования

Организация здравохраниения

История медицины и биологии



Последние публикации

Поиск публикаций

Articles

Архив :  2000 г.  2001 г.  2002 г. 
               2003 г.  2004 г.  2005 г. 
               2006 г.  2007 г.  2008 г. 
               2009 г.  2010 г.  2011 г. 
               2012 г.  2013 г.  2014 г. 
               2015 г.  2016 г.  2017 г. 
               2018 г.  2019 г.  2020 г.  2021 г.  2022 г.  2023 г. 

Редакционная информация:
        Опубликовать статью
        Наша статистика


 РЕДАКЦИЯ:
Главный редактор

Заместители главного редактора

Члены редколлегии
Специализированные редколлегии


 УЧРЕДИТЕЛИ:
Институт теоретической и экспериментальной биофизики Российской академии наук.

ООО "ИЦ КОМКОН"

ФГБУН "Институт токсикологии" ФМБА России




Адрес редакции и реквизиты

192012, Санкт-Петербург, ул.Бабушкина, д.82 к.2, литера А, кв.378

Свидетельство о регистрации электронного периодического издания ЭЛ № ФС 77-37726 от 13.10.2009
Выдано - Роскомнадзор

ISSN 1999-6314

Российская поисковая система
Искать: 


«
Vol. 24, Art. 75 (pp. 1097-1110)    |    2023       
»

Methods for chemical modification of peptides to increase their oral bioavailability (Literature review)
Orlova A.B., Nikiforov A.S., Ivanov I.M., Ruipo V.S.

FSBI «State Research Testing Institute of Military Medicine» of the Ministry of Defense of the Russian Federation



Brief summary

The review considers the problem of oral administration of peptides, as well as approaches to increasing their bioavailability through chemical modification aimed at optimizing the physicochemical and pharmacological properties. The following strategies are considered as applied strategies: changing the initial structure of the peptide, introducing lipophilic and non-proteinogenic amino acids, including a number of D- and N-methylated amino acid residues. The possibilities of cyclization of peptide structures using various approaches have also been demonstrated, such as cyclization of the main chain or «head to tail» (N-terminus to C-terminus), side chain to side chain, side chain to the end, cyclization to form a disulfide or thioether bonds. As examples of orally available peptides were considered: a peptide developed for the treatment of autoimmune diseases; a modified derivative of the peptide antibiotic griselymycin; a synthetic analogue of vasopressin - desmopressin, as well as an immunosuppressant cyclosporine and a modified clam-derived cyclic peptide.


Key words

peptides, oral bioavailability, chemical modification





(The article in PDF format. For preview need Adobe Acrobat Reader)



Open article in new window

Reference list

1. Erak M., Bellmann-Sickert K., Els-Heindl S. et al. Peptide chemistry toolbox-Transforming natural peptides into peptide therapeutics. Bioorganic & medicinal chemistry. 2018; 26(10): 2759-2765.


2. Verma S., Goand U.K., Husain A. et al. Challenges of peptide and protein drug delivery by oral route: Current strategies to improve the bioavailability. Drug development research. 2021; 82(7): 927-944.


3. Woodley J.F. Enzymatic barriers for GI peptide and protein delivery. Critical reviews in therapeutic drug carrier systems. 1994; 11(2-3): 61-95.


4. Patel G., Misra A. Oral delivery of proteins and peptides: concepts and applications. Challenges in delivery of therapeutic genomics and proteomics. 2011: 481-529.


5. Griffin B. T., O?Driscoll C. M. Opportunities and challenges for oral delivery of hydrophobic versus hydrophilic peptide and protein-like drugs using lipid-based technologies. Therapeutic delivery. 2011; 2(12): 1633-1653.


6. Brandsch M., Knütter I., Bosse‐Doenecke E. Pharmaceutical and pharmacological importance of peptide transporters. Journal of Pharmacy and Pharmacology. 2008; 60(5): 543-585.


7. Stolnik S., Shakesheff K. Formulations for delivery of therapeutic proteins. Biotechnology letters. 2009; 31: 1-11.


8. Dubey S.K., Parab S., Dabholkar N. et al. Oral peptide delivery: Challenges and the way ahead. Drug discovery today. 2021; 26(4): 931-950.


9. Diehl H.P., Wildey A., Prasasty V.D. et al. Organization of the intestinal mucosa and barriers to oral drug delivery. In Nanotechnology for Oral drug delivery. Academic Press.2020: 7-25.


10. Gibson G.G., Skett P. Introduction to drug metabolism. Springer. 2013.


11. London N., Movshovitz-Attias D., Schueler-Furman O. The structural basis of peptide-protein binding strategies. Structure. 2010; 18(2): 188-199.


12. Tyagi P., Subramony A. Oral Delivery of Therapeutic Peptides and Proteins. Elsevier. 2022.


13. Garton M., Nim S., Stone T.A. et al. Method to generate highly stable D-amino acid analogs of bioactive helical peptides using a mirror image of the entire PDB. Proceedings of the National Academy of Sciences. 2018; 115(7): 1505-1510.


14. Vinogradov A.A., Yin Y., Suga H. Macrocyclic peptides as drug candidates: recent progress and remaining challenges. Journal of the American Chemical Society. 2019; 141(10): 4167-4181.


15. Cabrele C., Martinek T.A., Reiser O. et al. Peptides containing β-amino acid patterns: challenges and successes in medicinal chemistry. Journal of Medicinal Chemistry. 2014; 57(23): 9718-9739.


16. Räder A.F., Reichart F., Weinmüller M. et al. Improving oral bioavailability of cyclic peptides by N-methylation. Bioorganic & medicinal chemistry. 2018; 26(10): 2766-2773.


17. Biron E., Chatterjee J., Ovadia O. et al. Improving oral bioavailability of peptides by multiple N‐methylation: somatostatin analogues. Angewandte Chemie International Edition. 2008; 47(14): 2595-2599.


18. Tugyi R., Mezö G., Fellinger E. et al. The effect of cyclization on the enzymatic degradation of herpes simplex virus glycoprotein D derived epitope peptide. Journal of Peptide Science: an Official Publication of the European Peptide Society. 2005; 11(10): 642-649.


19. Byk G., Halle D., Zeltser I. et al. Synthesis and biological activity of NK-1 selective, N-backbone cyclic analogs of the C-terminal hexapeptide of substance P. Journal of medicinal chemistry. 1996; 39(16): 3174-3178.


20. Nielsen D.S., Shepherd N.E., Xu W. et al. Orally absorbed cyclic peptides. Chemical Reviews. 2017; 117(12): 8094-8128.


21. Räder A.F., Weinmüller M., Reichart F. et al. Orally active peptides: is there a magic bullet?. Angewandte Chemie International Edition. 2018; 57(44): 14414-14438.


22. Tang F., Borchardt R.T. Characterization of the efflux transporter(s) responsible for restricting intestinal mucosa permeation of the coumarinic acid-based cyclic prodrug of the opioid peptide DADLE. Pharmaceutical research. 2002; 19(6): 787-793.


23. Daishon S., Schumacher-Klinger A., Gilon C. et al. Myristoylation Confers Oral Bioavailability and Improves the Bioactivity of c(MyD 4-4), a Cyclic Peptide Inhibitor of MyD88. Molecular pharmaceutics. 2019; 16(4): 1516-1522.


24. Kling A., Lukat P., Almeida D.V. et al. Targeting DnaN for tuberculosis therapy using novel griselimycins. Science. 2015; 348(6239): 1106-1112.


25. Price D.A., Mathiowetz, A.M., Liras S. Designing Orally Bioavailable Peptide and Peptoid Macrocycles. Practical Medicinal Chemistry with Macrocycles: Design, Synthesis, and Case Studies. 2017: 59-76.


26. Giordanetto F., Kihlberg J. Macrocyclic drugs and clinical candidates: what can medicinal chemists learn from their properties?. Journal of medicinal chemistry. 2014; 57(2): 278-295.


27. Nielsen D.S., Hoang H.N., Lohman R.J. et al. Improving on nature: making a cyclic heptapeptide orally bioavailable. Angewandte Chemie International Edition. 2014; 53(45): 12059-12063.





Журнал основан 16 ноября 2000г.
Выдано Министерством РФ по делам печати, телерадиовещания и средств массовых коммуникаций
(c) Перепечатка материалов сайта Medline.Ru возможна только с письменного разрешения редакции

Размещение рекламы

Rambler's Top100