информационный портал
для специалистов

Физико-химическая биология

Клиническая медицина

Профилактическая медицина

Медико-биологические науки


Фундаментальные исследования

Организация здравохраниения

История медицины и биологии

Последние публикации

Поиск публикаций


Архив :  2000 г.  2001 г.  2002 г. 
               2003 г.  2004 г.  2005 г. 
               2006 г.  2007 г.  2008 г. 
               2009 г.  2010 г.  2011 г. 
               2012 г.  2013 г.  2014 г. 
               2015 г.  2016 г.  2017 г. 
               2018 г.  2019 г.  2020 г.  2021 г.  2022 г.  2023 г. 

Редакционная информация:
        Опубликовать статью
        Наша статистика

Главный редактор

Заместители главного редактора

Члены редколлегии
Специализированные редколлегии

Институт теоретической и экспериментальной биофизики Российской академии наук.


ФГБУН "Институт токсикологии" ФМБА России

Адрес редакции и реквизиты

192012, Санкт-Петербург, ул.Бабушкина, д.82 к.2, литера А, кв.378

Свидетельство о регистрации электронного периодического издания ЭЛ № ФС 77-37726 от 13.10.2009
Выдано - Роскомнадзор

ISSN 1999-6314

Российская поисковая система

Vol. 24, Art. 7 (pp. 82-95)    |    2023       

Comparative clinical and morphological study of the brain in various gliomas in association with epilepsy and inflammation
Mitrofanova L.B., Sokolov I.A., Vorobieva O.M., Sterkhova K.A., Ulitin A.Yu.

Almazov National Medical Research Centre

Brief summary

Epilepsy (E) is one of the most common neurological diseases. One of the factors of its development is inflammation, which is also associated with glial tumors, whose cells are capable of synthesizing a number of substances that modulate the activity of the inflammatory response [Galvão RP, Zong H., 2013]. Objective: to evaluate the contribution of inflammation to the development of cerebral gliomas and epilepsy Materials and methods: surgical material of 13 oligodendrogliomas (ODG) (of which 13 with E), 16 astrocytomas (A) Grade 2-4 (of which 12 with E and 4 without), 8 glioblastomas (GLB; of 3 of them with E and 5 without) and areas of the substance of the temporal lobe of 3 patients with focal cortical dysplasia IIb. A histological, immunohistochemical study was performed with antibodies to IDH1(R132H), Ki-67, p53, CXCR4, MHC1, CD3, CD16, CD68, CD117 and FISH in order to search for 1p19q codeletion. The tissue of the tumor and its perifocal zone (the zone of epileptic activity determined by electrocorticography) was studied. The average ratio of the number of cells (in %) with the expression of CD3, CD16, CD68, CD117 to the total number of cells in the field of view at x200 in 10 fields of view in each zone was determined. Results. The relative number of CD3+T-lymphocytes was statistically significantly lower in gliomas with IDH1 mutation (p=0.01), and the relative number of CD16+NK (p=0.04; 13 - 45 CD16+NK per field of view) and CD68+macrophages (p=0.01; 10-30 CD68+ cells per field of view) - significantly more in tumors compared to group E without them. In High-Grade gliomas, CD16+NK was significantly higher (30-55 in the field of view at x200) than in Low-Grade gliomas (p=0.002). Statistically significant in ODG Grade 2 there was a greater number of activated CD3+T-lymphocytes (8-29 per field of view; p=0.03) than in A Grade 2 and CD68+ macrophages (p=0.04) compared with High -Grade-gliomas. Significant correlations were found between the number of CD16+, CD68+cells and Ki-67 (r=0.49 and r=0.47, respectively), the number of CD16+ and CD68+cells (r=0.69), CD16+, CD68+ and CD3+cells (r=0.36 and r=0.52, respectively) in tumors. A significant correlation was also found between Grade of glioma and the number of CD68+cells (r=0.61). No significant difference was found in the number of inflammatory cells in tumors and in the peritumoral zone, and there was no correlation between the number of inflammatory cells and the presence of E, between the number of CD117+ telocytes (in %) and E. We found a dense network of intertwining elongated cells with long processes that expressed CD117 in the perifocal zone of ODG, A and GLB (in 62, 50, 50% of cases, respectively). Сonclusion Our study showed a greater dependence of the amount and composition of the inflammatory infiltrate on the tumor, the degree of its anaplasia (Grade) and proliferative activity, and not on the presence of E. A large number of CD16-positive NK cells in High-Grade gliomas, their significant correlation with the number of CD68+ microglia/macrophages and Ki-67 opens the way to personalized immunotherapy based on natural killer cells. We did not find a correlation between the number of CD117+ telocytes and E. Apparently, the main function of these cells in the tumor is regeneration. However, the electrophysiological properties of telocytes and the 3D structure of scars indicate the possibility of inducing epileptic activity.

Key words

epilepsy, gliomas, inflammation, immunohistochemical study

(The article in PDF format. For preview need Adobe Acrobat Reader)

Open article in new window

Reference list

1. Thijs RD, Surges R, O'Brien TJ, Sander JW. Epilepsy in adults. Lancet. 2019;393(10172):689 - 701

2. Chen DY, Chen CC, Crawford JR, Wang SGJ. Tumor-related epilepsy: epidemiology, pathogenesis and management. Neurooncol. 2018;139(1):13 - 21.

3. Vezzani A, French J, Bartfai T, Baram TZ. The role of inflammation in epilepsy. Nat Rev Neurol. 2011;7(1):31-40

4. Galvão RP, Zong H. Inflammation and Gliomagenesis: Bi-Directional Communication at Early and Late Stages of Tumor Progression. Curr Pathobiol Rep. 2013;1(1):19-28.

5. Louis DN, Perry A, Wesseling P, Brat DJ, et al. The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. Neuro Oncol. 2021;23(8):1231-1251.

6. Li W, Graeber MB. The molecular profile of microglia under the influence of glioma. Neuro Oncol. 2012;14(8):958-78.

7. Kerber M, Reiss Y, Wickersheim A, et al. Flt-1 signaling in macrophages promotes glioma growth in vivo. Cancer Res. 2008;68(18):7342-7351.

8. Zhai H, Heppner FL, Tsirka SE. Microglia/macrophages promote glioma progression. Glia. 2011;59(3):472-485.

9. Martinez FO, Sica A, Mantovani A, Locati M. Macrophage activation and polarization. Front Biosci. 2008;13:453-461.

10. Hosseinalizadeh H, Habibi Roudkenar M, Mohammadi Roushandeh A, et al. Natural killer cell immunotherapy in glioblastoma. Discov Onc. 2022;13:113.

11. Lehman N, Kowalska W, Zarobkiewicz M, Mazurek M, et al. Anti-Inflammatory Features of Monocyte Subsets in Glioma Patients. Int J Mol Sci. 2023;24(3):1879.

12. Mostafa H, Pala A, Högel J, et al. Immune phenotypes predict survival in patients with glioblastoma multiforme. J Hematol Oncol. 2016;9(1):77.

13. González-Tablas Pimenta M, Otero Á, Arandia Guzman DA, Pascual-Argente D, et al. Tumor cell and immune cell profiles in primary human glioblastoma: Impact on patient outcome. Brain Pathol. 2021;31(2):365-380.

14. Kärre K. Natural killer cell recognition of missing self. Nature Immunology. 2008;9(5): 477-480.

15. Rock KL, Reits E, Neefjes J. Present Yourself! By MHC Class I and MHC Class II Molecules. Trends in Immunology. 2016;37(11):724-737.

16. Mitrofanova LB, Bobkov DE, Oganesyan MG, Karpyshev AV, i dr. Issledovanie elektrofiziologicheskih svoistv telocitov atrioventrikylyarnogo yzla i perifokalnoi zoni sinysnogo yzla y cheloveka i svini. Rossiiskii kardiologicheskii jyrnal. 2020;25(12):3927.

17. Popescu BO, Gherghiceanu M, Kostin S, Ceafalan L, Popescu LM. Telocytes in meninges and choroid plexus. Neurosci Lett. 2012;516:265-69.

18. Mitrofanova LB, Hazratov AO, Krasnoshlik PV, Vorobeva OM, i dr. Morfologicheskoe issledovanie telocitov v razlichnih otdelah golovnogo mozga vzroslogo cheloveka. Medline.ru Rossiiskii biomedicinskii jyrnal. 2018;19:281-306.

19. Mitrofanova L, Hazratov A, Galkovsky B, Gorshkov A, et al. Morphological and immunophenotypic characterization of perivascular interstitial cells in human glioma: Telocytes, pericytes, and mixed immunophenotypes. Oncotarget. 2020;11:322-346.

20. Kirichenko EU, Skachkov SN, Ermakov AM. Stryktyra i fynkcii shelevih kontaktov i sostavlyaushih ih konneksinov v CNS mlekopitaushih. Biologicheskie membrani: Jyrnal membrannoi i kletochnoi biologii. 2021;38(2):83-97.

21. Jefferys JG. Advances in understanding basic mechanisms of epilepsy and seizures. Seizure. 2010;19(10):638-46.

22. Kessi M, Peng J, Duan H, He H, et al. The Contribution of HCN Channelopathies in Different Epileptic Syndromes, Mechanisms, Modulators, and Potential Treatment Targets: A Systematic Review. Front Mol Neurosci. 2022;15:807202

23. Vay SU, Flitsch LJ, Rabenstein M, Monière H, et al. The impact of hyperpolarization-activated cyclic nucleotide-gated (HCN) and voltage-gated potassium KCNQ/Kv7 channels on primary microglia function. J Neuroinflammation. 2020;17(1):100.

24. Kharouf Q, Phillips AM, Bleakley LE, et al. The hyperpolarization-activated cyclic nucleotide-gated 4 channel as a potential anti-seizure drug target. Br J Pharmacol. 2020; 177:3712-3729.

Свидетельство о регистрации сетевого электронного научного издания N 077 от 29.11.2006
Журнал основан 16 ноября 2000г.
Выдано Министерством РФ по делам печати, телерадиовещания и средств массовых коммуникаций
(c) Перепечатка материалов сайта Medline.Ru возможна только с письменного разрешения редакции

Размещение рекламы

Rambler's Top100