информационный портал
для специалистов

Физико-химическая биология

Клиническая медицина

Профилактическая медицина

Медико-биологические науки


Фундаментальные исследования

Организация здравохраниения

История медицины и биологии

Последние публикации

Поиск публикаций


Архив :  2000 г.  2001 г.  2002 г. 
               2003 г.  2004 г.  2005 г. 
               2006 г.  2007 г.  2008 г. 
               2009 г.  2010 г.  2011 г. 
               2012 г.  2013 г.  2014 г. 
               2015 г.  2016 г.  2017 г. 
               2018 г.  2019 г.  2020 г.  2021 г.  2022 г.  2023 г. 

Редакционная информация:
        Опубликовать статью
        Наша статистика

Главный редактор

Заместители главного редактора

Члены редколлегии
Специализированные редколлегии

Институт теоретической и экспериментальной биофизики Российской академии наук.


ФГБУН "Институт токсикологии" ФМБА России

Адрес редакции и реквизиты

192012, Санкт-Петербург, ул.Бабушкина, д.82 к.2, литера А, кв.378

Свидетельство о регистрации электронного периодического издания ЭЛ № ФС 77-37726 от 13.10.2009
Выдано - Роскомнадзор

ISSN 1999-6314

Российская поисковая система

Vol. 24, Art. 55 (pp. 739-759)    |    2023       

The role of low molecular weight animal toxins as a platform for the development (review)
Luksha V.V., Astafyeva O.V., Yudina N.S., Tunin M.A., Chepur S.V.

State Scientific Research Testing Institute of Military Medicine of Ministry of Defense of the Russian Federation, 195043, St. Petersburg, Lesoparkovaya St., 4,
Russian Federation

Brief summary

Animal venoms, being a complex of substances of various chemical nature, represent a promising raw material for the isolation of proteins, peptides and low molecular weight compounds with various types of biological activity. Protein toxins are characteristic of ?armed? active-venomous animals, such as snakes, insects, arachnids, jellyfish and affect mainly passive-poisonous animals with ?unarmed? poisonous apparatus: amphibians, some fish, mollusks. The effects of zootoxins on animals and humans are similar. When bitten or stringed, injected toxic substances cause local burning pain, itching, swelling, pinpoint hemorrhage under the skin, discoloration of tissues, formation of ulcers, vesicles, pustules, scabs, etc. An important characteristic of zootoxins is the selective of their action, i.e. the ability to damage certain target cells without affecting others. As a result of evolution and natural selection, animal toxins have acquired a fairly wide range of pharmacological activity. At the same time, the potential for the using of zootoxins as medicines has not been fully exhausted. In this regard, studies of the pharmacological activity of toxins of animal origin remain an urgent task. The present review considers the main low molecular weight toxins of different groups of vertebrates and invertebrates. The properties and toxic effects of these components of animal venoms and the main directions of use as a platform for the development of drugs are described.

Key words

low molecular weight zootoxins, amphibian toxins, fish toxins, cnidarian toxins, insect toxins, drug discovery

(The article in PDF format. For preview need Adobe Acrobat Reader)

Open article in new window

Reference list

1. Zhang Y. Why do we study animal toxins? Dongwuxue Yanjiu. 2015; 36(4): 183-222.

2. Tambourgi D. Animal venoms/toxins and the complement system. Mol Immunol. 2014; 61(2): 153-62.

3. Food and Drug Administration FDA US. Available at: https://www.fda.gov/

4. Amphibian Species of the World. Available at: https://amphibiansoftheworld.amnhorg/Amphibia/Anura/Bufonidae

5. Xu, X. Lai R. The chemistry and biological activities of peptides from amphibian skin secretions. Chem. Rev. 2015; 115(4): 1760-846.

6. Deng L.J., Li Y. Molecular mechanisms of bufadienolides and their novel strategies for cancer treatment. Eur J Pharmacol. 2020; 887: 173379

7. Nalbantsoy A. Biological activities of skin and parotoid gland secretions of bufonid toads (Bufo bufo, Bufo verrucosissimus and Bufotes variabilis) from Turkey. 2016; 80: 298-303.

8. Rodríguez C. Toxins and pharmacologically active compounds from species of the family Bufonidae (Amphibia, Anura). Journal of ethnopharmacology. 2017; 198: 235-254.

9. Bordon K. C. F. From animal poisons and venoms to medicines: achievements, challenges and perspectives in drug discovery. Frontiers in Pharmacology. 2020; 11: 1132.

10. Diaz P., Carneiro A., Montes V. A potentially fatal aphrodisiac: cantharidin poisoning. Acta Med Port. 2020; 33(4): 284-287.

11. Zawar V., Pawar M., Singh M. An Efficacy of Cantharidin Treatment in Facial Molluscum Contariosum in Yonger Children: A Prospective Interventional Study in 67 Children. Actas Dermosifiliogr. 2021; 112(5): 481-483.

12. Leong R.L., Xing H., Braekman J.C. [et al.] Non-competitive inhibition of nicotinic acetylcholine receptors by ladybird beetle alcoloids. Neurochem Res. 2015; 40(10): 2078-2086.

13. Rhichards D.P., Patel R.N., Duce I.R. [et al.] (-)-Adaline from the Adalia genus of ladybirds is a potent antagonist of insect and specific mammalian nicotinic acetylcholine receptors. Molecules. 2022; 27(20): 7074.

14. Lorentz M.N., Stokes A.N. Tetrodotoxin. Curr Biol. 2016; 26(19): 870-872.

15. Bucciarelli G.M. From poison to promise: the evolution of tetrodotoxin and its potential as a therapeutic. Toxins (Basel).2021; 13(8): 517.

16. Magarlamov T.Yu., Melnikova D.I. Tetrodotoxin-producing bacteria: detection, distribution and migration of the toxin in aquatic systems. Toxin in aquatic systems. 2017; 9(5): 166.

17. Bane V. Tetrodotoxin: Chemistry, toxicity, source, distribution and detection. Toxins. 2014; 6(2): 693-755.

18. Defoirdt, T. Quorum - Sensing Systems as targets for antivirulence therapy. Trends Microbiol. 2018; 26(4): 313-328.

19. Gonzalez-Cano R., Ruiz-Cantero M.C., Santos-Caballero M. [et al.] Tetrodotoxin, a potentional drug for neuropathic and cancer pain relief? Toxins (Basel). 2021; 13(7): 483.

20. Li L., Yang M., Shrestha S.K. [et al.] Kalkitoxin reduced osteoclast formation and resorption and protect against inflammatory bone loss. Int J Mol Sci. 2021; 22(5): 2303.

21. Akbar M.A., Yusof N.Y., Tahir N.I. [et al.] Biosynthesis of saxitoxin in marine dinoflagellates: an omics perspective. Mar Drugs. 2020; 18(2): 103.

22. Valachova K., Svik K., Biro C. [et al.] Skin wound healing with composite biomembranes loaded by tiopronin or captopril. J Biotechnol. 2020; 310: 49-53.

23. Kiran G.S. Sekar S., Ramasamy P. [et al.] Marine sponge microbial association: towards disclosing unique symbiotic interactions. Mar Environ Res. 2018; 140: 169-179.

24. Bian C. Recent advances on marine alkaloids from sponges. Chemistry & Biodiversity. 2020; 17(10): 186.

25. Sipkema D. Marine sponges as pharmacy. Marine biotechnology. 2005; 7(3): 142.-62.

26. Hamoda A.M., Fayed B., Ashmawy N. S. [et al.] Marine Sponge is a promising natural source of Anti-SARS-CoV-2 Scaffold, Front. Pharmacol. 2021; 13(5): 212.

27. Wang, Y., Zhang, D., Du, G. [et al.] Remdesivir in Adults with Severe COVID-19: a Randomised, Double-Blind, Placebo-Controlled, Multicentre Trial. The Lancet 395, 2020; 1569-1578

28. Smith A.B., Risatti C.A., Atasoylu O. [et al.] Design, synthesis, and biological evaluation of diminutive forms of (+)-spongistatin 1: lessons learned, J. Am. Chem. Soc. 2011; 133(5): 14042-14053.

29. Rothmeier A.S., Schneiders U.M., Weidmann R.M. [et al.] The marine compound spongistatin 1 targets pancreatic tumor progression and metastasis. Int J Cancer. 2010; 127(5): 1096-105.

30. Li Y., Zhang R., Yang Y. [et al.], Halichondrin B amide acts as tubulin binding agent to exhibit anti-tumor efficacy in hematologic cancers: Int. J. Clin. Exp. Med. 2020; 19662-19669.

31. Valdiglesias V., M. V. Prego-Faraldo, E. Pasaro, Ocadaic acid: more than a diarrhetic toxin. Mar Drugs. 2013; 11(11): 4328-49

32. D?Ambra I., Lauritano C. A Review of Toxins from Cnidaria //Marine Drugs. - 2020. - T. 18. - ?. 10. - S. 507.

33. Nisa S.A., Venu D. Jellyfish venom proteins and their pharmacological potentials: a review. Int J Biol Macromol. 2021; 176: 424-436.

34. Jouiaei M., Yanagohara A.A., Madio B. [et al.] Venom systems: A review on cnidaria toxins. Toxins (Basel). 2015; 7(6): 2251-20271

35. Bastos Junior C.L.Q., Bialves T.S., Foguesatto K. The effects of vesicle toxin from the sea anemone Bunodosoma cangicum on the behavior of a freshwater shrimp, Palaemon argentines, and shore crab, Neohelice granulata. Comp Biochem Physiol C Toxicol Pharmacol. 2021; 242: 108941

36. Jouiaei M., Yanagohara A.A., Madio B. [et al.] Venom systems: A review on cnidaria toxins. Toxins (Basel). 2015; 7(6): 2251-20271

37. Cheng D., Deng B., Tong Q. [et al.] Proteomic studies of the mechanism of cytotoxicity, induced by palytoxin of HaCaT cells. Toxins (Basel). 2022; 14(4): 269

Свидетельство о регистрации сетевого электронного научного издания N 077 от 29.11.2006
Журнал основан 16 ноября 2000г.
Выдано Министерством РФ по делам печати, телерадиовещания и средств массовых коммуникаций
(c) Перепечатка материалов сайта Medline.Ru возможна только с письменного разрешения редакции

Размещение рекламы

Rambler's Top100