Медико-биологический
информационный портал
для специалистов
 
БИОМЕДИЦИНСКИЙ ЖУРНАЛ Medline.ru

СОДЕРЖАНИЕ ЖУРНАЛА:
Физико-химическая биология

Клиническая медицина

Профилактическая медицина

Медико-биологические науки


АРХИВ:

Фундаментальные исследования

Организация здравохраниения

История медицины и биологии



Последние публикации

Поиск публикаций

Articles

Архив :  2000 г.  2001 г.  2002 г. 
               2003 г.  2004 г.  2005 г. 
               2006 г.  2007 г.  2008 г. 
               2009 г.  2010 г.  2011 г. 
               2012 г.  2013 г.  2014 г. 
               2015 г.  2016 г.  2017 г. 
               2018 г.  2019 г.  2020 г.  2021 г. 

Редакционная информация:
        Опубликовать статью
        Наша статистика


 РЕДАКЦИЯ:
Главный редактор

Заместители главного редактора

Члены редколлегии
Специализированные редколлегии


 УЧРЕДИТЕЛИ:
Федеральное государственное бюджетное учреждение науки
"Институт токсикологии Федерального медико-биологического агентства"
(ФГБУН ИТ ФМБА России)

Институт теоретической и экспериментальной биофизики Российской академии наук.

ООО "ИЦ КОМКОН".




Адрес редакции и реквизиты

199406, Санкт-Петербург, ул.Гаванская, д. 49, корп.2

ISSN 1999-6314

Российская поисковая система
Искать: 


«
Vol. 14, Art. 28 (pp. 295-312)    |    2013       
»

Stimulation of development of early mice embryos by the artificial sunlight supplemented with fluorescent orange-red component
Chernov A.S.1,2, Reshetnikov D.A. 1, Fakhranyrova L.I.1., Manokhin A.A.3. Davydova G.A.1,2, Selezneva I.I.1,2, Khramov R.N. 1

Institute of Theoretical and Experimental Biophysics
Pushchino State Science and Research Institute
Institute of Cell Biophysics of the Russian Academy of Sciences



Brief summary

Influence of the light xenon lamp, transformed by the screens with a layer of the europium-doped yttrium oxysulfide (artificial sunlight), on the preimplantation mouse embryos development in vitro was investigated. It was shown that the irradiation by the transformed light (TAS) with additional fluorescent components (λmax = 626nm) significantly reduces the the percentage of abnormally developed and non-viable embryos. It was shown that the maximum positive effect of the TAS occured at a 20J/сm2 dose of irradiation with the energy of fluorescent orange-red component of 0.8 J/cm2


Key words

preimplantation embryos, blastocysts, transformed sunlight, photostimulation of early development





(The article in PDF format. For preview need Adobe Acrobat Reader)



Open article in new window

Reference list

1. Mejevikina L.M., Saharova N.U., Veprincev B.N. V sb.: Problemi sohraneniya i podderjaniya geneticheskih kollekcii laboratornih jivotnih. Pyshino, 1991, S. 102-112.


2. Roberts R.M. Embryo culture conditions: what embryos like best. Endocrinology 2005, May. 146(5): 2140-1.


3. Takenaka M., Horiuchi T., Yanagimachi R. Effects of light on development of mammalian zygotes. Proc Natl Acad Sci USA 2007, 104(36): 14289-93.


4. Hegele-Hartung S., Schumacher A., Fisher B. Effects of visible light and room temperature on the ultrastructure of preimplantation rabbit embryos: a time course study. Anat Embryol 1991, 183: 559-571.


5. Oh S.J., Gong S.P., Lee, S.T. Light intensity and wavelength during embryo manipulation are important factors for maintaining viability of preimplantation embryos in vitro. Fertil. Steril 2007, 88 (4): 1150-1157.


6. Schumacher A., Fischer B. Influence of visible light and room temperature on cell proliferation in preimplantation rabbit embryos. J. Reprod. Fertil 1988, 4(1):197-204


7. Takahashi M., Saka N., Takahashi H., Kanai Y., Schultz R.M., Okano A. Assessment of DNA damage in individual hamster embryos by comet assay. Mol. Reprod. Dev 1999, 54(1): 1-7.


8. Oh S.J., Gong S.P., Lee, S.T. Light intensity and wavelength during embryo manipulation are important factors for maintaining viability of preimplantation embryos in vitro. Fertil. Steril 2007, 88(4): 1150-1157.


9. Umaoka Y., Noda Y., Nakayama T., Narimoto K., Mori T., Iritani A. Effect of visual light on in vitro embryonic development in the hamster. Theriogenology 1992, 38(6): 1043-1054.


10. Nakayama T., Noda Y., Goto Y., Mori T. Effects of visible light and other environmental factors on the production of oxygen radicals by hamster embryos. Theriogenology 1994, 41(2): 499-510.


11. Schumacher A., Fischer B. Influence of visible light and room temperature on cell proliferation in preimplantation rabbit embryos. J. Reprod. Fertil 1988, 4 (1): 197-204/


12. Fujihara NA, Hiraki KRN, Marques MM. Irradiation at 780 nm Increases Proliferation Rate of Osteoblasts Independently of Dexamethasone Presence. Lasers Surg Med 2006, 38: 332–336.


13. Tuby H, Maltz L, Oron U. Low-Level Laser Irradiation (LLLI) Promotes Proliferation of Mesenchymal and Cardiac Stem Cells in Culture. Lasers Surg Med 2007, 39: 373–378.


14. Erdle BJ, Brouxhon S, Kaplan M, Vanbuskirk J, Pentland AP. Effects of continuous-wave (670-nm) red light on wound healing. Dermatol Surg 2008, 34(3): 320-5.


15. Ablon G. Combination 830-nm and 633-nm light-emitting diode phototherapy shows promise in the treatment of recalcitrant psoriasis: preliminary findings. Photomed Laser Surg 2010, 28(1): 141-6.


16. Malinovskaya S.L., Drugova O.V., Monich V.A., Mukhina I.V. Effect of low-intensity luminescent radiation on recovery of heart function in postischemic period. Bull Exp Biol Med 1999, (9): 920-921.


17. Malinovskaya S.L., Monich V.A., Artifeksova A.A. Effect of low-intensity laser irradiation and wideband red light on experimentally ischemized myocardium. Bull Exp Biol Med 2008, 145(5): 573-5


18. Knyazeva T.A., Badtieva V.A., Zybkova S.M. Lazeroterapiya y bolnih gipertonicheskoi boleznu v sochetanii s koronarnoi nedostatochnostu. Voprosi kyrortologii, fizioterapii i lechebnoi fizicheskoi kyltyri 1996, (2): 3-5.


19. Stadler I, Evans R, Kolb B, Naim JO, Narayan V, Buehner N, Lanzafame RJ. In vitro effects of low-level laser irradiation at 660 nm on peripheral blood lymphocytes. Lasers Surg Med 2000, (27): 255–261.


20. Khadra M, Lyngstadaas SP, Haanæs HR, Mustafa K. Determining optimal dose of laser therapy for attachment and proliferation of human oral fibroblasts cultured on titanium implant material. J Biomed Mater Res 2005, 73A: 55–62.


21. Pourzarandian A, Watanabe H, Ruwanpura S, Aoki A, Ishikawa I. Effect of low level Er:YAG laser irradiation on cultured human gingival fibroblasts. J Periodontol 2005, 76: 187–193.


22. Hawkins D, Abrahamse H. Effect of multiple exposures of low-level laser therapy on the cellular responses of wounded human skin fibroblasts. Photomed Laser Surg 2006, 24(6): 705–714.


23. Grossman N, Schneid N, Reuveni H, Halevy S, Lubart R. 780 nm low power diode laser irradiation stimulates proliferation of keratinocyte cultures: involvement of reactive oxygen species. Lasers Surg Med 1998, 22: 212–218.


24. Stein A, Benayahu D, Maltz L, Oron U. Low-level laser irradiation promotes proliferation and differentiation of human osteoblasts in vitro. Photomed Laser Surg 2005. 23(2): 161–166.


25. Fujihara NA, Hiraki KRN, Marques MM. Irradiation at 780 nm Increases Proliferation Rate of Osteoblasts Independently of Dexamethasone Presence. Lasers Surg Med 2006 (38): 332–336


26. Schindl A., Merwald H., Schindl L., Kaun C., Wojta J. Direct stimulatory effect of low-intensity 670 nm laser irradiation on human endothelial cell proliferation. Br J Dermatol 2003, 148(2): 334–336.


27. Mirsky N, Krispel Y, Shoshany Y, Maltz L, Oron U. Promotion of angiogenesis by low energy laser irradiation. Antioxid Redox Signal 2002, 4(5): 785–790.


28. Vekshin N.A. Svetozavisimoe fosforilirovanie v mitohondriyah. Mol.biol 1991, 4: 54-59.


29. Tafur J., Mills P.J. Low-intensity therapy: exploring the role of redox mechanisms. Photomedicine and Laser surgery 2008, 26(4): 323-328.


30. Passarella S., Casamassima F., Molinari S. et al. Increase of proton electrochemical potential and ATP synthesis in rat liver mitochondria irradiated in vitro by He-Ne-laser. FEBS Lett 1994, 175: 95-99.


31. Passarella S., Perlino E., Quagliariello E. Evidence of changes induced by He-Ne-laser irradiation in the biochemical properties of rat liver mitochondria. Bioelectrochem. Bioenerg. 1993, 10: 185-198.


32. Karu TI. Mitochondrial Signaling in Mammalian Cells Activated by Red and Near-IR Radiation. Photochem Photobiol 2008, 84: 1091–1099.


33. Lavi R., Shainberg A., Friedmann H., Shneyvays V., Rickover O., Eichler M., Kaplan D., Lubart R. Low energy visible light induces reactive oxygen species generation and stimulates an increase of intracellular calcium concentration in cardiac cells. J Biol Chem 2003, 278(42): 40917-40922.


34. Sviridova–Chailahyan T.A., Fahranyrova L.I., Paskevich S., Hramov R.N., Manohin A.A., Simonova N.B., Chailahyan L.M. Fotobiomodylyaciya luminescentnim izlycheniem nm razvitiya rannih embrionov mishei, Dokladi AN, 417(5), 710-714 (2007).


35. Oliveira PC, Meireles GC, dos Santos NR, de Carvalho CM, de Souza AP, dos Santos JN, Pinheiro AL. The use of light photobiomodulation on the treatment of second-degree burns: a histological study of a rodent model. Photomed Laser Surg 2008, 26(4): 28.


36. Monich V.A., Malinovskaya S.L., Monich E.A. Monohromatizirovannii vidimii svet, kak faktor vozdeistviya na biologicheskie tkani. Nijegorodskii med. Jyrnal 1992, (1): 104-107.


37. Saczko J., Kulbaska J., Chwilkowska A., Drag-Zalesiniska M., Wysocka T., Lugowski M., Banas T. The influence of photodynamic therapy on apoptosis in human melanoma cell line. Folia Histochem Cytobiol 2005, 43(3):129-32.


38. Khramov ,R.,N, Bratkova,L.,R., Gapeyev,A.,B., Chemeris,N.,K., Schelokov,R.,N.and Sukharev,S.,A. From "safe sun" strategy toward "useful sun" one. In:Biological Effects of light 1995(M.F.Holick and A.M.Kligman eds.) W. de Gruyter, Berlin, (1996)192-194.


39. Mank M. Biologiya razvitiya mlekopitaushih. Metodi. M.: Mir, 1990. 406 s.


40. Nakayama T., Noda Y., Goto Y., Mori T. Effects of visible light and other environmental factors on the production of oxygen radicals by hamster embryos. Theriogenology 1994, 41(2): 499-510.


41. Yu W, Naim JO, McGowan M, Ippolito K, Lanzafame RJ. Photomodulation of oxidative metabolism and electron chain enzymes in rat liver mitochondria. Photochem Photobiol 1997, 66(6):866–871.


42. Schroeder P, Pohl C, Calles C, Marks C, Wild S, Krutmann J. Cellular response to infrared radiation involves retrograde mitochondrial signalling. Free Radic Biol Med 2007, 43: 128–135.



Свидетельство о регистрации сетевого электронного научного издания N 077 от 29.11.2006
Журнал основан 16 ноября 2000г.
Выдано Министерством РФ по делам печати, телерадиовещания и средств массовых коммуникаций
(c) Перепечатка материалов сайта Medline.Ru возможна только с письменного разрешения редакции

Размещение рекламы

Rambler's Top100