информационный портал
для специалистов

Физико-химическая биология

Клиническая медицина

Профилактическая медицина

Медико-биологические науки


Фундаментальные исследования

Организация здравохраниения

История медицины и биологии

Последние публикации

Поиск публикаций


Архив :  2000 г.  2001 г.  2002 г. 
               2003 г.  2004 г.  2005 г. 
               2006 г.  2007 г.  2008 г. 
               2009 г.  2010 г.  2011 г. 
               2012 г.  2013 г.  2014 г. 
               2015 г.  2016 г.  2017 г. 
               2018 г.  2019 г. 

Редакционная информация:
        Опубликовать статью
        Наша статистика

Главный редактор

Заместители главного редактора

Члены редколлегии
Специализированные редколлегии

Федеральное государственное бюджетное учреждение науки
"Институт токсикологии Федерального медико-биологического агентства"

Институт теоретической и экспериментальной биофизики Российской академии наук.


Адрес редакции и реквизиты

199406, Санкт-Петербург, ул.Гаванская, д. 49, корп.2

ISSN 1999-6314

Российская поисковая система

Vol. 13, Art. 46 (pp. 566-582)    |    2012       

Nuclear regulation of mitochondrial dna biogenesis in mouse liver following X-ray irradiation
Gubina N.E.*, Evdokimovsky E.V, Ushakova T.E.

Institute of Theoretical and Experimental Biophysics RAS

Brief summary

It is widely believed now that mitochondria are the remnants of symbiotic organisms which have entered the eukaryotic cell about two billion years ago. In the course of the evolution most of mitochondrial genes, including all the genes regulating mitochondrial transcription and replication machinery, has been transferred into nucleus. By this moment great advances have been achieved in understanding the role of individual nuclear genes in the regulation of mitochondrial biogenesis. However, it is still unknown, how the whole system responds to the oxidative stress, in particular, X-ray irradiation. We have focused our investigation on a regulatory cascade chain composed of two factors, recognizing external signals (nuclear coactivator PGC-1α, nuclear corepressor RIP140), nuclear respiratory factor NRF2 and three components of mitochondrial transcription and replication machinery (Polrmt, Tfam, Tfb2m). Using quantitative real-time PCR we have estimated transcription levels of all these factors in mouse liver at different time points following X-ray irradiation at the dose of 10 Gy. Reduction in transcription levels of Polrmt and Tfb2m correlates with inhibition of mtDNA transcription, and dynamics of Tfam, NRF2, PGC-1α and RIP140 transcription levels is connected to initiation of mtDNA replication. The divergence in the dynamics of expression of Polrmt, Tfb2m and Tfam, NRF2, PGC-1α suggests that in the mouse liver under oxidative stress mtDNA transcription and replication may be regulated differentially. Probably, in radioresistant cells nuclear regulation of mitochondrial genome functions under irradiation represents an element of defense mechanism preventing synthesis of defect proteins and purifying the mtDNA pool from mutant copies.

Key words

мтДНК, мтРНК, регуляция экспрессии генов, рентгеновское облучение, печень, мыши

(The article in PDF format. For preview need Adobe Acrobat Reader)

Open article in new window

Reference list

1. Lang B.F., Gray M.W., Burger G. Mitochondrial genome evolution and the origin of eukaryotes. Annu Rev Genet 1999, 33:351–397.

2. Martin W., Herrmann R.G. Gene transfer from organelles to the nucleus: how much, what happens, and why? Plant Physiol 1998, 118:9-17.

3. Bibb M.J., Van Etten R.A., Wright C.T., Walberg M.W, Clayton D.A. Sequence and gene organization of mouse mitochondrial DNA. Cell 1981, 26:167-180.

4. Bogenhagen D.F. Biochemical isolation of mtDNA nucleoids from animal cells. Methods Mol Biol 2009, 554:3-14.

5. Wallace D.C. A mitochondrial paradigm of metabolic and degenerative diseases, aging and cancer. Annu Rev Genet 2005, 39:259-407.

6. Schleicher E., Friess U. Oxidative stress, AGE, and atherosclerosis. Kidney Int Suppl 2007, 106:17-26.

7. Scarpulla R.C. Transcriptional paradigms in mammalian mitochondrial biogenesis and function. Physiol Rev 2008, 88:611–638.

8. Gleyzer N., Vercauteren K., Scarpulla R.C. Control of Mitochondrial Transcription Specificity Factors (TFB1M and TFB2M) by Nuclear Respiratory Factors (NRF-1 and NRF-2) and PGC-1 Family Coactivators. Mol Cell Biol 2005, 25:1354–1366.

9. Virbasius J.V., Scarpulla R.C. Activation of the human mitochondrial transcription factor A gene by nuclear respiratory factors: A potential regulatory link between nuclear and mitochondrial gene expression in organelle biogenesis. Proc Natl Acad Sci USA 1994, 91:1309-1313.

10. Ongwijitwat S., Wong-Riley M.T. Is nuclear respiratory factor 2 a master transcriptional coordinator for all ten nuclear-encoded cytochrome c oxidase subunits in neurons? Gene 2005, 360:65-77.

11. Scarpulla R.C. Nuclear control of respiratory gene expression in mammalian cells. J. Cell Biochem 2006, 97:673-683.

12. Mootha V.K., Handschin C., Arlow D., Xie X., St. Pierre J., Sihag S., Yang W., Altshuler D., Puigserver P., Patterson N., Willy P.J., Schulman I.G., Heyman R.A., Lander E.S., Spiegelman B.M. Erralpha and Gabpa/b specify PGC 1alphadependent oxidative phosphorylation gene expression that is altered in diabetic muscle. Proc Natl Acad Sci USA 2004, 101:6570-6575.

13. Puigserver P., Wu Z., Park C.W., Graves R., Wright M., Spiegelman B.M. A coldinducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 1998, 92:829-39.

14. Handschin C., Lin J., Rhee J., Peyer A.K., Chin S., Wu P.H., Meyer U.A., Spiegelman B.M. Nutritional regulation of hepatic heme biosynthesis and porphyria through PGC-1alpha. Cell 2005, 122:505-515.

15. Baar K., Wende A.R., Jones T.E., Marison M., Nolte L.A., Chen M., Kelly D.P., Holloszy J.O. Adaptations of skeletal muscle to exercise: rapid increase in the transcriptional coactivator PGC-1. Faseb J 2002, 16:1879-1886.

16. Lin J., Wu H., Tarr P.T., Zhang C.Y., Wu Z., Boss O., Michael L.F., Puigserver P., Isotani E., Olson, E.N. Transcriptional co-activator PGC-1 alpha drives the formation of slowtwitch muscle fibres. Nature 2002, 418:797–801.

17. Liu C., Li S., Liu T., Borjigin J., Lin, J.D. Transcriptional coactivator PGC-1alpha integrates the mammalian clock and energy metabolism. Nature 2007, 447:477-481.

18. Cavailles V., Dauvois S., LHorset F., Lopez G., Hoare S., Kushner P.J., Parker M.G. Nuclear factor RIP140 modulates transcriptional activation by the estrogen receptor. EMBO J 1995, 14:3741–3751.

19. Leonardsson G., Steel J.H., Christian M., Pocock V., Milligan S., Bell J., So P.W., Medina-Gomez G., Vidal-Puig A., White R., Parker M.G. Nuclear receptor corepressor RIP140 regulates fat accumulation. Proc Natl Acad Sci USA 2004, 101:8437-8442.

20. Seth A., Steel J.H., Nichol D., Pocock V., Kumaran M.K., Fritah A., Mobberley M., Ryder T.A., Rowlerson A., Scott J., Poutanen M., White R., and Parker M. The Transcriptional Corepressor RIP140 Regulates Oxidative Metabolism in Skeletal Muscle. Cell Metab 2007, 6: 236–245.

21. Christian M., Kiskinis E., Debevec D., Leonardsson G., White R., Parker M.G. RIP140-targeted repression of gene expression in adipocytes. Mol Cell Biol 2005, 25:9383–9391.

22. Lin J.D. Minireview: The PGC-1 coactivator networks: chromatin-remodeling andmitochondrial energy metabolism. Mol Endocrinol 2009, 23:2-10.

23. Tiranti V., Savoia A., Forti F., Dapolito M.F., Centra M., Rocchi M., Zeviani M. Identification of the gene encoding the human mitochondrial RNA polymerase (h-mtRPOL) by cyberscreening of the expressed sequence tags database. Hum Mol Genet 1997, 6:615–625.

24. Fisher R.P., Clayton, D.A. Purification and characterization of human mitochondrial transcription factor 1. Mol Cell Biol 1988, 8:3496–3509.

25. Falkenberg M., Gaspari M., Rantanen A., Trifunovic A. Mitochondrial transcription factors B1 and B2 activate transcription of human mtDNA. Nat Genet 2002, 31:289–294.

26. Martinez-Azorin F. The mitochondrial ribomotor hypothesis. IUBMB Life 2005, 57:27-30.

27. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinum thiocyanate-phenol-chloroform extraction. Anal Biochem 1987, 162:156–159.

28. Vandesompele J., Kubista M., Pfaffl M.V. Reference gene validation software for improved normalization. In: Logan J., Edwards K., Saunders N.; editors. Real-Time PCR: current technology and applications. London: Caister Academic Press; 2009. p. 47-64.

29. Gybina N.E., Merekina O.S., Yshakova T.E. Issledovanie transkripcii mitohondrialnoi DNK v kletkah pecheni, skeletnoi mishci i golovnogo mozga posle rentgenovskogo oblycheniya mishei v doze 10Gr. Biohimiya 2010, 75:878-886.

30. Gybina N.E., Evdokimovskii E.V., Yshakova T.E. Fynkcionirovanie geneticheskogo apparata mitohondrii v kletkah selezenki mishei v ysloviyah indycirovannogo radiaciei apoptoza. Molekylyarnaya biologiya 2010, 44:1027-1035.

31. Litonin D., Sologub M., Shi Y., Savkina M., Anikin M., Falkenberg M., Gustafsson C.M., Temiakov D. Human mitochondrial transcription revisited: only TFAM and TFB2M are required for transcription of the mitochondrial genes in vitro. J Biol Chem 2010, 285:18129-18133.

32. Yarmonenko S.P., Vainson A.A. Radiobiologiya cheloveka i jivotnih. Moskva: Visshaya shkola, 2004.

33. Lee D.Y., Clayton D.A. Properties of a primer RNA-DNA hybrid at the mouse mitochondrial DNA leading-strand origin of replication. J Biol Chem 1996, 271:24262–24269.

34. Shutt T.E., Lodeiro M.F., Cotney J., Cameron C.E., Shadel G.S. Core human mitochondrial transcription apparatus is a regulated two-component system in vitro. Proc Natl Acad Sci USA 2010, 107;12133-12138.

35. Cotney J., Wang Z., Shadel G.S. Relative abundance of the human mitochondrial transcription system and distinct roles for h-mtTFB1 and h-mtTFB2 in mitochondrial biogenesis and gene expression. Nuc Acids Res 2007, 35:4042-4054.

36. Alam T.I., Kanki T., Muta T., Ukaji K., Abe Y., Nakayama H., Takio K., Hamasaki N., Kang D. Human mitochondrial DNA is packaged with TFAM. Nuc Acids Res 2003, 31:1640-1645.

37. Suliman H.B., Carraway M.S., Welty-Wolf K.E., Whorton A.R., Piantadosi C.A. Lipopolysaccharide stimulates mitochondrial biogenesis via activation of nuclear respiratory factor-1. J Biol Chem 2003, 278:41510–41518.

38. Suliman H.B., Welty-Wolf K.E., Carraway M.S., Tatro L, Piantadosi C.A. Lipopolysaccharide induces oxidative cardiac mitochondrial damage and biogenesis. Cardiovasc Res 2004, 64:279-288.

Свидетельство о регистрации сетевого электронного научного издания N 077 от 29.11.2006
Журнал основан 16 ноября 2000г.
Выдано Министерством РФ по делам печати, телерадиовещания и средств массовых коммуникаций
(c) Перепечатка материалов сайта Medline.Ru возможна только с письменного разрешения редакции

Размещение рекламы

Rambler's Top100