Медико-биологический
информационный портал
для специалистов
 
Medline.ru

СОДЕРЖАНИЕ ЖУРНАЛА:
Физико-химическая биология

Клиническая медицина

Профилактическая медицина

Медико-биологические науки


АРХИВ:

Фундаментальные исследования

Организация здравохраниения

История медицины и биологии



Последние публикации

Поиск публикаций

Articles

Архив :  2000 г.  2001 г.  2002 г. 
               2003 г.  2004 г.  2005 г. 
               2006 г.  2007 г.  2008 г. 
               2009 г.  2010 г.  2011 г. 
               2012 г.  2013 г.  2014 г. 
               2015 г.  2016 г.  2017 г. 
               2018 г.  2019 г.  2020 г.  2021 г.  2022 г.  2023 г. 

Редакционная информация:
        Опубликовать статью
        Наша статистика


 РЕДАКЦИЯ:
Главный редактор

Заместители главного редактора

Члены редколлегии
Специализированные редколлегии


 УЧРЕДИТЕЛИ:
Институт теоретической и экспериментальной биофизики Российской академии наук.

ООО "ИЦ КОМКОН".




Адрес редакции и реквизиты

199406, Санкт-Петербург, ул.Гаванская, д. 49, корп.2

ISSN 1999-6314

Российская поисковая система
Искать: 


«
Vol. 24, Art. 57 (pp. 771-802)    |    2023       
»

Modern methods of qualitative and quantitative analysis of zootoxins in the framework of pharmacokinetic studies (review)
Yudina N.S., Astafyeva O.V., Luksha V.V., Nikiforov A.S., Chepur S.V.

State Scientific Research Testing Institute of Military Medicine of Ministry of Defense of the Russian Federation, 195043, St. Petersburg, Lesoparkovaya St., 4,
Russian Federation



Brief summary

A wide variety of zootoxins in nature, as well as a wide range of their action, served as the basis for the growth of research interest in toxins of animal origin. The discovered high pharmacological activity of the compounds contained in the poison contributed to the growth in the number of drugs developed on their basis. Currently, research groups continue to isolate new active toxins of animal origin, which in the future can be used to develop new drugs. An important step in the development of any drug is pharmacokinetic studies to establish the effectiveness and safety of the active substance. Studies of the dependence of therapeutic and toxic effects on the concentration of a substance, as well as the determination of the place of accumulation, the period of elimination, bioequivalence and other characteristics, are carried out by methods of physicochemical analysis. The methods used in such studies should be characterized by high sensitivity, the absence of false positive and false negative results, and a high degree of reliability and reproducibility of the results obtained. These include chromatographic methods of analysis, Western blotting, enzyme-linked immunosorbent assay (ELISA), NMR spectroscopy, etc. The most common and versatile method is tandem mass spectrometry - a modern high precision and highly sensitive method for identifying compounds, including toxins - both low molecular weight and protein nature. The method has an advantage in comparison with immunological methods of analysis in terms of reliability, allows you to work with various matrices and is of great importance in the quantitative analysis of preparations based on zootoxins.


Key words

zootoxins; drug; physicochemical analysis techniques; chromatography; mass-spectrometry; proteins; peptides





(The article in PDF format. For preview need Adobe Acrobat Reader)



Open article in new window

Reference list

1. Stepensky D. Pharmacokinetics of toxin-derived peptide. Toxins 2018; 10: 483


2. Ballard P., Brassil P., Bui K. H. [et al.] Metabolism and pharmacokinetic optimization strategies in drug discovery. In book: Drug discovery and development, 2013: 135-144


3. Lundanes E., Reubsaet L., Greibrokk T. Chromatography: basic principles, sample preparations and related methods. John Wiley & Sons. USA; 2013: 224.


4. Cummins P.M., Rochfort K.D., O?Connor B.F. Ion-exchange chromatography: Basic Principles and application. Methods Mol Biol. 2017; 1485: 209-223.


5. Fedotov P.S., Malofeeva G.I., Savonina E.U. [i dr.] Tverdofaznaya ekstrakciya organicheskih veshestv: netradicionnie metodi i podhodi. Jyrnal analiticheskoi himii. 2019; 74(3): 163-172.


6. Kataev S.S., Dvorskaya O.N. Cravnenie effektivnosti tverdofaznoi ekstrakcii lekarstvennih i narkoticheskih veshestv iz krovi dlya patronov so smeshannoi fazoi nekotorih brendov. Farmaciya i farmakologiya. 2017; 5(6): 543-555.


7. Liang S-Y., Shi F., Zhao Y-G. [et al.] Determination of local anesthetic drugs in human plasma using magnetic solid-phase extraction coupled with high-performance liquid chromatography. Molecules 2022; 27: 5509.


8. Liu Y. A photothermally responsive nanoprobe for bioimaging based on Edman degradation. Nanoscale. 2016; 8(20): 10553-10557.


9. Huang Y., Mou S., Wang Y. [et al.] Characterization of antibody−drug conjugate pharmacokinetics and in vivo biotransformation using quantitative intact LC-HRMS and surrogate analyte LC-MRM. Anal. Chem. 2021; 93: 6135−6144.


10. Finley S. D., Engel-Stefanini M., Imoukhuede P. [et al.] Pharmacokinetics and pharmacodynamics of VEGF-neutralizing antibodies BMC. Systems Biology. 2011; 5:193.


11. Wang M., Gong Q., Liu W. [et al.] Applications of capillary electrophoresis in the fields of environmental, pharmaceutical, clinical, and food analysis (2019-2021). J Sep Sci. 2022; 45(11): 1918-1941.


12. Bagheri M., Hancock R.E. High-performance liquid chromatography and mass-spectrometry based design of proteolytically stable antimicrobial peptides. Methods Mol Biol. 2017; 1548:61-71.


13. Chew T.L., Ida I. M. Special Topics in Bioprocess Engineering Volume I. Univision press SDN, BHD. Malaysia; 2006: 224.


14. Cummins P.M., Rochfort K.D., O?Connor B.F. Ion-exchange chromatography: Basic Principles and application. Methods Mol Biol. 2017; 1485: 209-223.


15. Černý M., Skalak J., Cerna H. [et al.] Advances in purification and separation of posttranslationally modified proteins. Journal of proteomics. 2013; 92: 2-27.


16. Farmerie L., Rustandi R.R., Loughney J.W. [et al.] Recent advances ib isoelectric focusing of proteins and peptides. J. Chromatogr A. 2021; 1651: 462274.


17. Lee P.Y., Saraygord-Afshari N., Low T.Y. The evolution of two-dimensional gel electrophoresis-from proteomics to emerging alternative applications. J. Chromatogr A. 2020; 1651: 460763.


18. Loquet A., Bardiaux B., Gardiennet C. [et al.] 3D structure determination of the Crh protein from highly ambiguous solid-state NMR restraints. Journal of the American Chemical Society. 2008; 130(11): 3579-3589.


19. Nguyen L.M., Roche J. High-pressure NMR techniques for the study of protein dynamics, folding and aggregation. J Magn Reson. 2017;277: 179-185.


20. Arbogast L. W., Delaglio F., Tolman J.R. [et al.] Selective suppression of excipient signals in 2D 1 H-13 C methyl spectra of biopharmaceutical products. Journal of biomolecular NMR. 2018; 72(3-4): 149-161.


21. Wu D. H., Chen A. D., Johnson C. S. An improved diffusion-ordered spectroscopy experiment incorporating bipolar-gradient pulses. Journal of magnetic resonance, Series A. 1995; 115(2): 260-264.


22. Caprio V., McLachlan A.S., Sutcliffe O.B. [et al.] Structural Elucidation of Unknowns: A Spectroscopic Investigation with an Emphasis on 1D and 2D 1H Nuclear Magnetic Resonance Spectroscopy. Chemistry: Bulgarian Journal of Science Education. 2018; 27(2): 223-234.


23. Guleria A., Kumar A., Kumar U. [et al.] NMR Based Metabolomics: An Exquisite and Facile Method for Evaluating Therapeutic Efficacy and Screening Drug Toxicity. Curr Top Med Chem. 2018; 18(20): 1827-1849.


24. Van Steendam K., De Ceuleneer M., Dhaenens M. [et al.] Mass spectrometry-based proteomics as a tool to identify biological matrices in forensic science. International journal of legal medicine. 2013; 127(2): 287-298.


25. Van den Broek I., Niessen W. M. A., van Dongen W. D. Bioanalytical LC-MS/MS of protein-based biopharmaceuticals. Journal of Chromatography B. 2013. 929: 161-179.


26. Yadav R.K., Tiwari A.K., Saklani R. HPLC method for simultaneous estimation of paclitaxel and baicalein: Pharmaceutical and pharmacokinetic applications. 2022; 14(14): 1005-1020


27. Gillet L. C., Leitner A., Aebersold R. Mass spectrometry applied to bottom-up proteomics: entering the high-throughput era for hypothesis testing. Annual review of analytical chemistry. 2016; 9: 449-472.


28. Shaw J. B., Li W., Holden W.W. [et al.] Complete protein characterization using top-down mass spectrometry and ultraviolet photodissociation. Journal of the American Chemical Society. 2013; 135(34): 12646-12651.


29. Schneider M., Belsom A., Rappsilber J. Protein tertiary structure by crosslinking/mass spectrometry. Trends in biochemical sciences. 2018; 43(3): 157-169.


30. Drenth J. Principles of protein X-ray crystallography. Springer Science & Business Media. New York, NY; 2007: 332.


31. Valavanidis A. Predicting 3D Protein Structure by Computational Approach from Amino Acid Sequence. A leap forward in solving the classic problem of biochemistry.2020.Available at: https://www.researchahgate.net/publication/339253934_Predicting_3D_Protein_Structure_by_Computational_Approach_from_Amino_Acid_Sequence._A_leap_forward_in_solving_the_classic_problem_of_biochemistry.


32. Zhou W., Apkarian R., Wang Z.L. [et al.] Fundamentals of scanning electron microscopy (SEM). In book Scanning microscopy for nanotechnology. Springer. New York, NY; 2006: 1-40.


33. Carpenter A.C., Paulsen I.T., Williams T.C. Blueprints for biosensors: design, limitations, and applications. Genes. 2018; 9: 375.


34. Southwest Center for Microsystems Education (SCME) Available at: App_BioMEM_PK14_PG_August2017.19


35. Swartz. M. HPLC detectors: a brief review. Journal of Liquid Chromatography & Related Technologies. 2010; 33(9-12): 1130-1150.


36. OFS.1.2.1.2.0005.15 Visokoeffektivnaya jidkostnaya hromatografiya. Gosydarstvennaya farmakopeya Rossiiskoi Federacii. XIII izdanie. M., 2015. Available at: http://docs.cntd.ru/document/420323733


37. Vincent S.G., Cunningham P.R., Stephens N.L. [et al.] Quantitative densitometry of proteins stained with coomassie blue using a Hewlett Packard scanjet scanner and Scanplot software. Electrophoresis. 1997; 18(1): 67-71.


38. Ghosh R., Gilda J.E., Gomes A.V. The necessity of and strategies for improving confidence in the accuracy of western blots. Expert review of proteomics. 2014; 11(5): 549-560.


39. Ramprasad M.P. Analytical and Formulation Development Road Map for protein Therapeutics. In book: Reference Module in Chemistry, Molecular Sciences and Chemical Engineering. aTyr Pharma. Elsevier. San Diego, CA, United States; 2017: 198-215


40. OFS.1.7.2.0035.18 Peptidnoe kartirovanie. Gosydarstvennaya farmakopeya Rossiiskoi Federacii. XIV izdanie. M., 2018. Available at: http://docs.cntd.ru/document/554199346.


41. Ni J., Ouyang H., Aiello M. [et al.] Microdosing assessment to evaluate pharmacokinetics and drug metabolism in rats using liquid chromatography-tandem mass spectrometry technology. Pharm. Res. 2008; 25(7): 1572-1582


42. Parhomchyk V.V., Petrojickii A.V., Ignatov M.M. [i dr.] Centr kollektivnogo polzovaniya «Yskoritelnaya mass-spektrometriya NGY-NNC». Sibirskii fizicheskii jyrnal. 2022; 17(3) :89-101.





Свидетельство о регистрации сетевого электронного научного издания N 077 от 29.11.2006
Журнал основан 16 ноября 2000г.
Выдано Министерством РФ по делам печати, телерадиовещания и средств массовых коммуникаций
(c) Перепечатка материалов сайта Medline.Ru возможна только с письменного разрешения редакции

Размещение рекламы

Rambler's Top100