Медико-биологический
информационный портал
для специалистов
 
Medline.ru

СОДЕРЖАНИЕ ЖУРНАЛА:
Физико-химическая биология

Клиническая медицина

Профилактическая медицина

Медико-биологические науки


АРХИВ:

Фундаментальные исследования

Организация здравохраниения

История медицины и биологии



Последние публикации

Поиск публикаций

Articles

Архив :  2000 г.  2001 г.  2002 г. 
               2003 г.  2004 г.  2005 г. 
               2006 г.  2007 г.  2008 г. 
               2009 г.  2010 г.  2011 г. 
               2012 г.  2013 г.  2014 г. 
               2015 г.  2016 г.  2017 г. 
               2018 г.  2019 г.  2020 г.  2021 г.  2022 г.  2023 г. 

Редакционная информация:
        Опубликовать статью
        Наша статистика


 РЕДАКЦИЯ:
Главный редактор

Заместители главного редактора

Члены редколлегии
Специализированные редколлегии


 УЧРЕДИТЕЛИ:
Институт теоретической и экспериментальной биофизики Российской академии наук.

ООО "ИЦ КОМКОН".




Адрес редакции и реквизиты

199406, Санкт-Петербург, ул.Гаванская, д. 49, корп.2

ISSN 1999-6314

Российская поисковая система
Искать: 


«
Vol. 24, Art. 18 (pp. 239-259)    |    2023       
»

Diversity of zootoxins of peptide and protein nature and their biomedical application (review)
Astafyeva O.V., Yudina N.S., Rysev A.Y., Kruchinin E.G., Myasnikov V.A.

State Scientific Research Testing Institute of Military Medicine of Ministry of Defense of the Russian Federation



Brief summary

Venom of animal are a rich source of biologically active substance. Many of these natural biomolecules have already founds their application as components of pharmaceutical preparations. Thanks to numerous studies of the composition of animal poisons, many zootoxins have been isolated and characterized to date. Currently, peptide toxins of amphibian, proteins and peptides toxins of reptiles, arthropods and marine invertebrates are more studied and of great interest for applies use. The diversity of animal toxins is reflected in a wide range of biological targets for their activity. This property defines activity the use of zootoxins in biochemical, pharmacological and biomedical research. The range of potential pharmacological applications for these compounds includes such effects as antibacterial, antifungal, analgesic, neuroprotective, immunoprotective, anti-inflammatory, antitumor, cardiotoxic, cardioprotective, etc. The manifestation of certain physiological properties depends on the structure of protein and peptide toxins. Compounds saturated with disulfide bonds are a separate class. Due to their structural features, they have increased stability, are able to bind to non-linear channels, blocking them or changing the gating mechanism. Due to their diversity, animal venoms toxins cover a wide range of possible medical applications. In the present review considers the main components of vertebrate and invertebrate animals poisons. The toxic effects of various components of animal poisons and promising directions for the use of these biologically active proteins and peptides as a basis for the development of new pharmaceuticals are described.


Key words

zootoxins; proteins; peptides; physiologically active substances; animal venoms





(The article in PDF format. For preview need Adobe Acrobat Reader)



Open article in new window

Reference list

1. Wang L., Wang N., Zhang W. et al. Therapeutic peptides: current applications and future directions. Sig Transduct Target Ther. 2022; 7: 48.


2. Olamendi-Portugal T., Bartok A., Zamudio-Zuniga F. et al. Isolation, chemical and functional characterization of several new K(+)-channel blocking peptides from the venom of the scorpion Centruroides tecomanus. Toxins. 2016; 115: 1-12. 2


3. Kasheverov I.E., Oparin P.B., Zhmak M.N. et al. Scorpion toxins interact with nicotinic acetylcholine receptors. FEBS Letters. 2019; 593: 2779-2789.


4. Cohen G., Burks S.R., Frank J.S. Chlorotoxin-A multimodal imaging platform for targeting glioma tumors. Toxins (Basel). 2018; 10(12): 496.


5. Cremonez C. M., Maiti M., Peigneur S. et al. Structural and functional elucidation of peptide Ts11 shows evidence of a novel subfamily of scorpion venom toxins. Toxins. 2016; 8(10): 288.


6. Parente A., Daniele-Silva A., Furtado A.A. et al. Analogs of the scorpion venom peptide stigmurin: Structural assessment, toxicity, and increased antimicrobial activity. Toxins. 2018; 10 (4): 161.


7. Panteleev P.V., Bolosov I.A., Balandin S.V. i dr. Stroenie i biologicheskie fynkcii β-shpilechnih antimikrobnih peptidov. Acta Naturae. 2015; 7, 1(24): 39-50.


8. Chow C.Y., Chin Y.K., Walker A.A. et al. Venom Peptides with Dual Modulatory Activity on the Voltage-Gated Sodium Channel NaV1. 1 Provide Novel Leads for Development of Antiepileptic Drugs. ACS Pharmacology & Translational Science. 2019; 3(1): 119-134.


9. Ahmadi S., Knerr J.M., Argemi L. et al. Scorpion venom: detriments and benefits. Biomedicines. 2020; 8(5): 118.


10. Cardoso F.C. Multi-targeting sodium and calcium channels using venom peptides for the treatment of complex ion channels-related diseases. Biochemical Pharmacology. 2020: 107-114.


11. Emerich B.L., Ferreira R.C.M., Cordeiro M.N. et al. δ-Ctenitoxin-Pn1a from Phoneutria nigriventer spider venom, shows antinociceptive effect involving opioid and cannabinoid systems, in rats. Toxins, 2016; 8(4):106.


12. Pineda S.S., Undheim E.A., Rupasinhge D.B. [et al.] Spider venomics: Implications for drug discovery. Future medicinal chemistry. 2014; 6(15): 1699-1714.


13. Barbosa F.M., Daffre S., Maldonado R.A. et al. Gomesin, a peptide produced by the spider Acanthoscurria gomesiana, is a potent anticryptococcal agent that acts in synergism with fluconazole. FEMS Microbiol Lett. 2007; 274(2): 279-286.


14. Wehbe R., Frangieh J., Rima M. et al. Bee venom: Overview of main compounds and bioactivities for therapeutic interests. Molecules. 2019; 24(16): 2997.


15. Moreno M., Giralt E. Three Valuable Peptides from Bee and Wasp Venoms for Therapeutic and Biotechnological Use: Melittin, Apamin and Mastoparan. Toxins 2015; 7: 1126-1150.


16. Fitzgerald K.T., Flood A.A. Hymenoptera stings. Clinical techniques in small animal practice. 2006; 21(4): 194-204.


17. Omarov Sh.M., Ataev Z.Sh., Magomedova M. G. i dr. Rol pchelinogo yada i propolisa v stryktyre farmakoterapii. Vestnik mejdynarodnoi akademii nayk. 2006; 2: 35-42.


18. Syhanova L.V., Kanarskii A.V. Biologicheskaya cennost pchelinovogo yada. Vestnik tehnologicheskogo yniversiteta. 2016; 19(8): 145-150.


19. Lazcano-Perez F., Hernandez-Guzman U., Sanchez-Rodriguez J. et al. Cnidarian neurotoxic peptides affecting central nervous system targets. Cent Nerv Syst Agents Med Chem. 2016; 16(3): 173-182.


20. Chang S.C., Huq R., Chabra S. et al. Terminally extended analogues of the K+ channel toxin from Stichodactyla helianthus as a potent and selective blockers of the voltage-gated potassium channel Kv1.3. FEBS J. 2015; 282(12): 2247-2259.


21. Margiotta F., Micheli L., Ciampi C. et al. Conus regius-Derived conotoxins: novel therapeutic opportunities from a marine organism. Mar Drugs. 2022; 20(12): 773.


22. Yang M., Zhou M. μ-conotoxin Ts-IIIA, a peptide inhibitor of human voltage-gated sodium channel hNav1.9. Toxincon. 2020; 186: 29-34.


23. Bourinet E., Zamponi G.W. Block of voltage-gated calcium channels by peptide toxins. Neuropharmacology. 2017; 127: 109-115.


24. Cai X.J., Wang L., Hu C.M. Effects of GABAB receptor activation on spatial cognitive function and hippocampal neurones in rat models of type 2 diabetes mellitus. Bioscience reports. 2018; 38(1): BSR-20171184_RET.


25. Ziegman R., Alewood P. Bioactive components in fish venoms. Toxins, 2015, 7(5): 1497-1531.


26. Gorman M.L., Judge S.J., Fezai M. et al. The venoms of the lesser (Echiichthys vipera) and greater (Trachinus draco) weever fish - A rewiew. Toxicon; 6(20202): 100025.


27. Ouanounou G., Malo M., Stinnakre J. et al. Trachynilysin, a neurosecretory protein isolated from shellfish (Synanceia Trachynis) venom, forms nonselecrive pores in the membrane of NG108-15 cells. Biol.Chem. 2002; 277(42): 39119-39127.


28. Lin Y., Lin T., Cheng N. et al. Evalution of antimicrobial and anticancer activities of three peptides identified from the skin secretion of Hylarana latouchii. Acta Biochim Biophys sin (Shanghai). 2021; 53(11): 1469-1483.


29. Chen X., Liu S., Fang J. [et al.] Peptides isolated from Amphibian skin secretions with emphasis on antimicrobial peptides. Toxins (Basel). 2022; 14(10): 722.


30. Prasasty V., Radifar M., Istyastono E. Natural peptides in drug discovery targeting acetylcholinesterase. Molecules. 2018; 23 (9): 2344.


31. Averin A.S., Ytkin U.N. Serdechno-sosydistie effekti toksinov zmeinogo yada: kardiotoksichnost i kardioprotekciya. Acta naturae. 2021; 13, 3(50): 4-14.


32. Kini R.M., Koh C.Y. Snake venom three-finger development targeting cardiovascular diseases. Biochem Pharmacol. 2020; 181:105-114.


33. Bansal A.B., Sattar Y., Jamil R.T. Eptifibatide. Treasure Island (FL): StatPearls Publishing; 2022.


34. Ferraz C.R., Arrahman A., Xie C. et al. Multifunctional toxins in snake venoms and therapeutic implications: from pain to hemorrhage and necrosis. Frontiers in Ecology and Evolution. 2019; 7, 218: 1-19.


35. Akhtar B., Muhammad F., Sharif A. et al. Mechanistic insights of snake venom desintegrins in cancer treatment. Eur J Pharmacol. 2021; 899: 174022.


36. Urra F.A., Araya-Maturana R. Putting the brakes on tumorigenesis with snake venom toxins: New molecular insights for cancer drug discovery. Seminars in Cancer Biology. 2020, 80: 195-204.


37. Chan Y.S., Cheung R.C.F., Xia L. et al. Snake venom toxins: toxicity and medicinal applications. Applied microbiology and biotechnology. 2016; 100(14): 6165-6181.


38. Cavalcante W.L., Ponce-Soto L.A., Marangoni S. et al. Neuromuscular effects of venoms and crotoxin-like proteins from Crotalus durissus ruruima and Crotalus durissus cumanensis. Toxicon. 2015; 96: 46-49.


39. Nekaris K.A.I., Campera M., Nijman V. et al. Slow lorises use venom as a weapon in intraspecific competition. Curr Biol. 2020, 30(20): R1252-R1253.


40. Whittington C., Belov K. Platypus venom: a review. Australian Mammalogy. 2007, 29 (1): 57-62.





Свидетельство о регистрации сетевого электронного научного издания N 077 от 29.11.2006
Журнал основан 16 ноября 2000г.
Выдано Министерством РФ по делам печати, телерадиовещания и средств массовых коммуникаций
(c) Перепечатка материалов сайта Medline.Ru возможна только с письменного разрешения редакции

Размещение рекламы

Rambler's Top100