Медико-биологический
информационный портал
для специалистов
 
Medline.ru

СОДЕРЖАНИЕ ЖУРНАЛА:
Физико-химическая биология

Клиническая медицина

Профилактическая медицина

Медико-биологические науки


АРХИВ:

Фундаментальные исследования

Организация здравохраниения

История медицины и биологии



Последние публикации

Поиск публикаций

Articles

Архив :  2000 г.  2001 г.  2002 г. 
               2003 г.  2004 г.  2005 г. 
               2006 г.  2007 г.  2008 г. 
               2009 г.  2010 г.  2011 г. 
               2012 г.  2013 г.  2014 г. 
               2015 г.  2016 г.  2017 г. 
               2018 г.  2019 г.  2020 г.  2021 г.  2022 г.  2023 г. 

Редакционная информация:
        Опубликовать статью
        Наша статистика


 РЕДАКЦИЯ:
Главный редактор

Заместители главного редактора

Члены редколлегии
Специализированные редколлегии


 УЧРЕДИТЕЛИ:
Институт теоретической и экспериментальной биофизики Российской академии наук.

ООО "ИЦ КОМКОН".




Адрес редакции и реквизиты

199406, Санкт-Петербург, ул.Гаванская, д. 49, корп.2

ISSN 1999-6314

Российская поисковая система
Искать: 


«
Vol. 24, Art. 1 (pp. 1-16)    |    2023       
»

Molecular genetic features of the vesiculomembrane snare-complex associated with the risk of development of neurodegenerative diseases
Antonova1 E.N., Babkin1 A.V., Kravtsov1 I.S., Makhlai1 A.A., Ivanov1 I.M., Yudin1,2 M.A.

Feredal State Budgetary Establishment «State Scientific Research Test Institute of the military medicine» Defense Ministry of the Russian Federation
Federal State-Funded Education Institution of Higer Professional Education North-Western state Medical University named after I. I. Mechnikov (NWSMU), Ministry of Health of the Russian Federation




Brief summary

The review considers the structure, functioning and molecular genetic features of the main proteins of the vesicle-membrane SNARE complex (syntaxin-1, SNAP-25, Munc13-1, Munc18-1, synaptobrevin-2). Structural features (polymorphism) and the level of expression of genes encoding SNARE proteins were analyzed for association with phenotypic features and the risk of developing diseases of the central and peripheral nervous system in humans and animals. The relevance of research directions to find the relationship between individual molecular genetic features of the SNARE complex and the development of neurodegenerative diseases is emphasized. The expediency of taking into account the variants and the level of expression of the genes encoding proteins of the SNARE complex for predicting the development and developing a personalized approach to the treatment of neurodegenerative diseases was noted.


Key words

SNARE proteins, syntaxin-1, SNAP-25, Munc13-1, Munc18-1, synaptobrevin-2, neurodegenerative diseases, gene, polymorphism, personalized approach.





(The article in PDF format. For preview need Adobe Acrobat Reader)



Open article in new window

Reference list

1 Dekkers MP, Nikoletopoulou V, Barde YA. Cell biology in neuroscience: Death of developing neurons: new insights and implications for connectivity. J Cell Biol. 2013;203(3):385-393. doi:10.1083/jcb.201306136.


2 Margiotta A. Role of SNAREs in Neurodegenerative Diseases. Cells. 2021;10(5):991. Published 2021 Apr 23. doi:10.3390/cells10050991


3 Andreae LC, Burrone J. The role of spontaneous neurotransmission in synapse and circuit development. J Neurosci Res. 2018;96(3):354-359. doi:10.1002/jnr.24154


4 Dugger BN, Dickson DW. Pathology of Neurodegenerative Diseases. Cold Spring Harb Perspect Biol. 2017;9(7):a028035. Published 2017 Jul 5. doi:10.1101/cshperspect.a028035


5 Law C, Schaan Profes M, Levesque M, Kaltschmidt JA, Verhage M, Kania A. Normal Molecular Specification and Neurodegenerative Disease-Like Death of Spinal Neurons Lacking the SNARE-Associated Synaptic Protein Munc18-1. J Neurosci. 2016;36(2):561-576. doi:10.1523/JNEUROSCI.1964-15.2016


6 Santos TC, Wierda K, Broeke JH, Toonen RF, Verhage M. Early Golgi Abnormalities and Neurodegeneration upon Loss of Presynaptic Proteins Munc18-1, Syntaxin-1, or SNAP-25. J Neurosci. 2017;37(17):4525-4539. doi:10.1523/JNEUROSCI.3352-16.2017.


7 Zhang H, Therriault J, Kang MS, et al. Cerebrospinal fluid synaptosomal-associated protein 25 is a key player in synaptic degeneration in mild cognitive impairment and Alzheimer's disease. Alzheimers Res Ther. 2018;10(1):80. Published 2018 Aug 16. doi:10.1186/s13195-018-0407-6.


8 Brunger AT. Structure and function of SNARE and SNARE-interacting proteins. Q Rev Biophys. 2005;38(1):1-47. doi:10.1017/S0033583505004051


9 Jahn R, Scheller RH. SNAREs--engines for membrane fusion. Nat Rev Mol Cell Biol. 2006;7(9):631-643. doi:10.1038/nrm2002


10 Schiavo G, Matteoli M, Montecucco C. Neurotoxins affecting neuroexocytosis. Physiol Rev. 2000;80(2):717-766. doi:10.1152/physrev.2000.80.2.717.


11 Borisovska M, Zhao Y, Tsytsyura Y, et al. v-SNAREs control exocytosis of vesicles from priming to fusion. EMBO J. 2005;24(12):2114-2126. doi:10.1038/sj.emboj.7600696


12 Vesicle-associated membrane protein 2; VAMP2. Available at: https://www.omim.org/entry/185881?search=vamp21&highlight=vamp2.


13 Syntaxin 1B; STX1B. Available at: https://www.omim.org/entry/601485?search=STX1B&highlight=stx1b.


14 Syntaxin-binding protein 1; STXBP1. Available at: https://www.omim.org/entry/602926?search=STXBP1&highlight=stxbp1.


15 Steffensen SC, Henriksen SJ, Wilson MC. Transgenic rescue of SNAP-25 restores dopamine-modulated synaptic transmission in the coloboma mutant. Brain Res. 1999;847(2):186-195. doi:10.1016/s0006-8993(99)02023-5.


16 Gosso MF, de Geus EJ, Polderman TJ, Boomsma DI, Heutink P, Posthuma D. Common variants underlying cognitive ability: further evidence for association between the SNAP-25 gene and cognition using a family-based study in two independent Dutch cohorts. Genes Brain Behav. 2008;7(3):355-364. doi:10.1111/j.1601-183X.2007.00359.x.


17 Honer WG, Barr AM, Sawada K, et al. Cognitive reserve, presynaptic proteins and dementia in the elderly. Transl Psychiatry. 2012;2(5):e114. Published 2012 May 15. doi:10.1038/tp.2012.38.


18 Han W, Zhang M, Feng X, Gong G, Peng K, Zhang D. Genetic influences on creativity: an exploration of convergent and divergent thinking. PeerJ. 2018;6:e5403. Published 2018 Jul 30. doi:10.7717/peerj.5403.


19 Dulubova I, Khvotchev M, Liu S, Huryeva I, Südhof TC, Rizo J. Munc18-1 binds directly to the neuronal SNARE complex. Proc Natl Acad Sci U S A. 2007;104(8):2697-2702. doi:10.1073/pnas.0611318104.


20 Rickman C, Medine CN, Bergmann A, Duncan RR. Functionally and spatially distinct modes of munc18-syntaxin 1 interaction. J Biol Chem. 2007;282(16):12097-12103. doi:10.1074/jbc.M700227200.


21 Bracher A, Weissenhorn W. Crystal structure of the Habc domain of neuronal syntaxin from the squid Loligo pealei reveals conformational plasticity at its C-terminus. BMC Struct Biol. 2004;4:6. Published 2004 Mar 15. doi:10.1186/1472-6807-4-6.


22 Meijer M, Burkhardt P, de Wit H, Toonen RF, Fasshauer D, Verhage M. Munc18-1 mutations that strongly impair SNARE-complex binding support normal synaptic transmission. EMBO J. 2012;31(9):2156-2168. doi:10.1038/emboj.2012.72


23 Zhou P, Pang ZP, Yang X, et al. Syntaxin-1 N-peptide and Habc-domain perform distinct essential functions in synaptic vesicle fusion. EMBO J. 2013;32(1):159-171. doi:10.1038/emboj.2012.307.


24 Lang T, Jahn R. Core proteins of the secretory machinery. Handb Exp Pharmacol. 2008;(184):107-127. doi:10.1007/978-3-540-74805-2_5


25 Available at: https://www.ncbi.nlm.nih.gov/snp/?LinkName=gene_snp&from_uid=6804.


26 Available at: https://www.ncbi.nlm.nih.gov/snp/?term=STX1B.


27 Wang M, Gu X, Huang X, Zhang Q, Chen X, Wu J. STX1A gene variations contribute to the susceptibility of children attention-deficit/hyperactivity disorder: a case-control association study. Eur Arch Psychiatry Clin Neurosci. 2019;269(6):689-699. doi:10.1007/s00406-019-01010-3.


28 Kowalska M, Prendecki M, Kapelusiak-Pielok M, et al. Analysis of Genetic Variants in SCN1A, SCN2A, KCNK18, TRPA1 and STX1A as a Possible Marker of Migraine. Curr Genomics. 2020;21(3):224-236. doi:10.2174/1389202921666200415181222.


29 Reuter MS, Tawamie H, Buchert R, et al. Diagnostic Yield and Novel Candidate Genes by Exome Sequencing in 152 Consanguineous Families With Neurodevelopmental Disorders. JAMA Psychiatry. 2017;74(3):293-299. doi:10.1001/jamapsychiatry.2016.3798.


30 Wang JY, Gong MY, Ye YL, et al. The RIT2 and STX1B polymorphisms are associated with Parkinson's disease. Parkinsonism Relat Disord. 2015;21(3):300-302. doi:10.1016/j.parkreldis.2014.12.006.


31 Rizo J, Xu J. The Synaptic Vesicle Release Machinery. Annu Rev Biophys. 2015;44:339-367. doi:10.1146/annurev-biophys-060414-034057.


32 Syntaxin-binding protein 1; STXBP1. Available at: https://www.omim.org/entry/602926?search=STXBP1&highlight=stxbp1.


33 Available at: https://www.ncbi.nlm.nih.gov/snp/?LinkName=gene_snp&from_uid=6812.


34 Engel AG, Selcen D, Shen XM, Milone M, Harper CM. Loss of MUNC13-1 function causes microcephaly, cortical hyperexcitability, and fatal myasthenia. Neurol Genet. 2016;2(5):e105. Published 2016 Sep 8. doi:10.1212/NXG.0000000000000105.


35 Lipstein N, Verhoeven-Duif NM, Michelassi FE, et al. Synaptic UNC13A protein variant causes increased neurotransmission and dyskinetic movement disorder. J Clin Invest. 2017;127(3):1005-1018. doi:10.1172/JCI90259.


36 Available at: https://www.ncbi.nlm.nih.gov/snp/?LinkName=gene_snp&from_uid=23025.


37 Available at: https://www.sciencedirect.com/science/article/abs/pii/S03064522183061837via%3Dihub


38 Washbourne P, Thompson PM, Carta M, et al. Genetic ablation of the t-SNARE SNAP-25 distinguishes mechanisms of neuroexocytosis. Nat Neurosci. 2002;5(1):19-26. doi:10.1038/nn783.


39 Available at: https://www.ncbi.nlm.nih.gov/snp/?LinkName=gene_snp&from_uid=6616.


40 Golimbet, V.E. Svyaz polimorfizma gena sinaptosomnogo belka (SNAP-25) s verbalnoi pamyatu i vnimaniem y bolnih endogennimi psihozami i psihicheski zdorovih ludei / V.E. Golimbet i dr. // Jyrn. nevrol. i psihiat. - 2009. - T. 109. - S 59-63.


41 Spellmann I, Müller N, Musil R, et al. Associations of SNAP-25 polymorphisms with cognitive dysfunctions in Caucasian patients with schizophrenia during a brief trail of treatment with atypical antipsychotics. Eur Arch Psychiatry Clin Neurosci. 2008;258(6):335-344. doi:10.1007/s00406-007-0800-9.


42 Terracciano A, Sanna S, Uda M, et al. Genome-wide association scan for five major dimensions of personality. Mol Psychiatry. 2010;15(6):647-656. doi:10.1038/mp.2008.113.


43 Honer WG, Barr AM, Sawada K, et al. Cognitive reserve, presynaptic proteins and dementia in the elderly. Transl Psychiatry. 2012;2(5):e114. Published 2012 May 15. doi:10.1038/tp.2012.38


44 Lewis CM, Levinson DF, Wise LH, et al. Genome scan meta-analysis of schizophrenia and bipolar disorder, part II: Schizophrenia. Am J Hum Genet. 2003;73(1):34-48. doi:10.1086/376549.


45 Tachikawa H, Harada S, Kawanishi Y, Okubo T, Suzuki T. Polymorphism of the 5'-upstream region of the human SNAP-25 gene: an association analysis with schizophrenia. Neuropsychobiology. 2001;43(3):131-133. doi:10.1159/000054880.


46 Thompson PM, Sower AC, Perrone-Bizzozero NI. Altered levels of the synaptosomal associated protein SNAP-25 in schizophrenia. Biol Psychiatry. 1998;43(4):239-243. doi:10.1016/S0006-3223(97)00204-7.


47 Thompson PM, Egbufoama S, Vawter MP. SNAP-25 reduction in the hippocampus of patients with schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry. 2003;27(3):411-417. doi:10.1016/S0278-5846(03)00027-7.


48 Brophy K, Hawi Z, Kirley A, Fitzgerald M, Gill M. Synaptosomal-associated protein 25 (SNAP-25) and attention deficit hyperactivity disorder (ADHD): evidence of linkage and association in the Irish population. Mol Psychiatry. 2002;7(8):913-917. doi:10.1038/sj.mp.4001092.


49 Mill J, Curran S, Kent L, et al. Association study of a SNAP-25 microsatellite and attention deficit hyperactivity disorder. Am J Med Genet. 2002;114(3):269-271. doi:10.1002/ajmg.10253.


50 Lustig RH, Hua P, Wilson MC, Federoff HJ. Ontogeny, sex dimorphism, and neonatal sex hormone determination of synapse-associated messenger RNAs in rat brain. Brain Res Mol Brain Res. 1993;20(1-2):101-110. doi:10.1016/0169-328x(93)90114-5.


51 Fatemi SH, Sidwell R, Kist D, et al. Differential expression of synaptosome-associated protein 25 kDa [SNAP-25] in hippocampi of neonatal mice following exposure to human influenza virus in utero. Brain Res. 1998;800(1):1-9. doi:10.1016/s0006-8993(98)00450-8.


52 Brinkmalm A, Brinkmalm G, Honer WG, et al. SNAP-25 is a promising novel cerebrospinal fluid biomarker for synapse degeneration in Alzheimer's disease. Mol Neurodegener. 2014;9:53. Published 2014 Nov 23. doi:10.1186/1750-1326-9-53.


53 Öhrfelt A, Brinkmalm A, Dumurgier J, et al. A Novel ELISA for the Measurement of Cerebrospinal Fluid SNAP-25 in Patients with Alzheimer's Disease. Neuroscience. 2019;420:136-144. doi:10.1016/j.neuroscience.2018.11.038.


54 Etain B, Dumaine A, Mathieu F, et al. A SNAP25 promoter variant is associated with early-onset bipolar disorder and a high expression level in brain. Mol Psychiatry. 2010;15(7):748-755. doi:10.1038/mp.2008.148.


55 Houenou J, Boisgontier J, Henrion A, et al. A Multilevel Functional Study of a SNAP25 At-Risk Variant for Bipolar Disorder and Schizophrenia. J Neurosci. 2017;37(43):10389-10397. doi:10.1523/JNEUROSCI.1040-17.2017


56 Schoch S, Deák F, Königstorfer A, et al. SNARE function analyzed in synaptobrevin/VAMP knockout mice. Science. 2001;294(5544):1117-1122. doi:10.1126/science.1064335.


57 Available at: https://www.ncbi.nlm.nih.gov/snp/?LinkName=gene_snp&from_uid=6844.


58 Baghel R, Grover S, Kaur H, et al. Synergistic association of STX1A and VAMP2 with cryptogenic epilepsy in North Indian population. Brain Behav. 2016;6(7):e00490. Published 2016 Jun 14. doi:10.1002/brb3.490.


59 Yilmaz M, Edgunlu TG, Yilmaz N, et al. Genetic variants of synaptic vesicle and presynaptic plasma membrane proteins in idiopathic generalized epilepsy. J Recept Signal Transduct Res. 2014;34(1):38-43. doi:10.3109/10799893.2013.848893.


60 Gao Q, Liu L, Chen Y, et al. Synaptosome-related (SNARE) genes and their interactions contribute to the susceptibility and working memory of attention-deficit/hyperactivity disorder in males. Prog Neuropsychopharmacol Biol Psychiatry. 2015;57:132-139. doi:10.1016/j.pnpbp.2014.11.001.


61 Gao Q, Liu L, Chen Y, et al. Synaptosome-related (SNARE) genes and their interactions contribute to the susceptibility and working memory of attention-deficit/hyperactivity disorder in males. Prog Neuropsychopharmacol Biol Psychiatry. 2015;57:132-139. doi:10.1016/j.pnpbp.2014.11.001.





Свидетельство о регистрации сетевого электронного научного издания N 077 от 29.11.2006
Журнал основан 16 ноября 2000г.
Выдано Министерством РФ по делам печати, телерадиовещания и средств массовых коммуникаций
(c) Перепечатка материалов сайта Medline.Ru возможна только с письменного разрешения редакции

Размещение рекламы

Rambler's Top100