МЕДЛАЙН.РУ
Содержание журнала

Архив

Редакция
Учредители

Федеральное государственное бюджетное учреждение науки
Институт теоретической и экспериментальной биофизики
Российской академии наук


ООО "ИЦ КОМКОН"

Адрес редакции и реквизиты

192012, Санкт-Петербург, ул.Бабушкина, д.82 к.2, литера А, кв.378

ISSN 1999-6314




Том: 24
Статья: « 1 »
Страницы:. 1-16
Опубликована в журнале: 9 января 2023 г.

English version

Молекулярно-генетические особенности везикуло-мембранного snare-комплекса, ассоциированные с развитием нейродегенеративных заболеваний

Антонова Е.Н., Бабкин А.В., Кравцов И.С., Махлай А.А., Иванов И.М., Юдин М.А.

Государственный научно-исследовательский испытательный институт Министерства обороны Российской Федерации
ФГБОУ ВО СЗГМУ им. И. И. Мечникова Минздрава РФ


Резюме
В обзоре рассмотрены строение, функционирование и молекулярно-генетические особенности основных белков везикуло-мембранного SNARE-комплекса (синтаксина-1, SNAP-25, Munc13-1, Munc18-1, синаптобревина-2). Проанализированы структурные особенности (полиморфизм) и уровень экспрессии генов, кодирующих SNARE-белки на предмет наличия ассоциации с фенотипическими особенностями и риском развития заболеваний центральной и периферической нервной системы у человека и животных. Подчеркнута актуальность исследований по поиску связи отдельных молекулярно-генетических особенностей SNARE-комплекса с развитием нейродегенеративных заболеваний. Отмечена целесообразность учета вариантов и уровня экспрессии генов, кодирующих белки SNARE-комплекса, для прогнозирования развития и разработки персонализированного подхода к лечению нейродегенеративных заболеваний


Ключевые слова
SNARE белки, синтаксин-1, SNAP-25, Munc13-1, Munc18-1, синаптобревин-2, нейродегенеративные заболевания, ген, полиморфизм, персонализированный подход.



(статья в формате PDF. Для просмотра необходим Adobe Acrobat Reader)



открыть статью в новом окне

Список литературы

1 Dekkers MP, Nikoletopoulou V, Barde YA. Cell biology in neuroscience: Death of developing neurons: new insights and implications for connectivity. J Cell Biol. 2013;203(3):385-393. doi:10.1083/jcb.201306136.


2 Margiotta A. Role of SNAREs in Neurodegenerative Diseases. Cells. 2021;10(5):991. Published 2021 Apr 23. doi:10.3390/cells10050991


3 Andreae LC, Burrone J. The role of spontaneous neurotransmission in synapse and circuit development. J Neurosci Res. 2018;96(3):354-359. doi:10.1002/jnr.24154


4 Dugger BN, Dickson DW. Pathology of Neurodegenerative Diseases. Cold Spring Harb Perspect Biol. 2017;9(7):a028035. Published 2017 Jul 5. doi:10.1101/cshperspect.a028035


5 Law C, Schaan Profes M, Levesque M, Kaltschmidt JA, Verhage M, Kania A. Normal Molecular Specification and Neurodegenerative Disease-Like Death of Spinal Neurons Lacking the SNARE-Associated Synaptic Protein Munc18-1. J Neurosci. 2016;36(2):561-576. doi:10.1523/JNEUROSCI.1964-15.2016


6 Santos TC, Wierda K, Broeke JH, Toonen RF, Verhage M. Early Golgi Abnormalities and Neurodegeneration upon Loss of Presynaptic Proteins Munc18-1, Syntaxin-1, or SNAP-25. J Neurosci. 2017;37(17):4525-4539. doi:10.1523/JNEUROSCI.3352-16.2017.


7 Zhang H, Therriault J, Kang MS, et al. Cerebrospinal fluid synaptosomal-associated protein 25 is a key player in synaptic degeneration in mild cognitive impairment and Alzheimer's disease. Alzheimers Res Ther. 2018;10(1):80. Published 2018 Aug 16. doi:10.1186/s13195-018-0407-6.


8 Brunger AT. Structure and function of SNARE and SNARE-interacting proteins. Q Rev Biophys. 2005;38(1):1-47. doi:10.1017/S0033583505004051


9 Jahn R, Scheller RH. SNAREs--engines for membrane fusion. Nat Rev Mol Cell Biol. 2006;7(9):631-643. doi:10.1038/nrm2002


10 Schiavo G, Matteoli M, Montecucco C. Neurotoxins affecting neuroexocytosis. Physiol Rev. 2000;80(2):717-766. doi:10.1152/physrev.2000.80.2.717.


11 Borisovska M, Zhao Y, Tsytsyura Y, et al. v-SNAREs control exocytosis of vesicles from priming to fusion. EMBO J. 2005;24(12):2114-2126. doi:10.1038/sj.emboj.7600696


12 Vesicle-associated membrane protein 2; VAMP2. Available at: https://www.omim.org/entry/185881?search=vamp21&highlight=vamp2.


13 Syntaxin 1B; STX1B. Available at: https://www.omim.org/entry/601485?search=STX1B&highlight=stx1b.


14 Syntaxin-binding protein 1; STXBP1. Available at: https://www.omim.org/entry/602926?search=STXBP1&highlight=stxbp1.


15 Steffensen SC, Henriksen SJ, Wilson MC. Transgenic rescue of SNAP-25 restores dopamine-modulated synaptic transmission in the coloboma mutant. Brain Res. 1999;847(2):186-195. doi:10.1016/s0006-8993(99)02023-5.


16 Gosso MF, de Geus EJ, Polderman TJ, Boomsma DI, Heutink P, Posthuma D. Common variants underlying cognitive ability: further evidence for association between the SNAP-25 gene and cognition using a family-based study in two independent Dutch cohorts. Genes Brain Behav. 2008;7(3):355-364. doi:10.1111/j.1601-183X.2007.00359.x.


17 Honer WG, Barr AM, Sawada K, et al. Cognitive reserve, presynaptic proteins and dementia in the elderly. Transl Psychiatry. 2012;2(5):e114. Published 2012 May 15. doi:10.1038/tp.2012.38.


18 Han W, Zhang M, Feng X, Gong G, Peng K, Zhang D. Genetic influences on creativity: an exploration of convergent and divergent thinking. PeerJ. 2018;6:e5403. Published 2018 Jul 30. doi:10.7717/peerj.5403.


19 Dulubova I, Khvotchev M, Liu S, Huryeva I, Südhof TC, Rizo J. Munc18-1 binds directly to the neuronal SNARE complex. Proc Natl Acad Sci U S A. 2007;104(8):2697-2702. doi:10.1073/pnas.0611318104.


20 Rickman C, Medine CN, Bergmann A, Duncan RR. Functionally and spatially distinct modes of munc18-syntaxin 1 interaction. J Biol Chem. 2007;282(16):12097-12103. doi:10.1074/jbc.M700227200.


21 Bracher A, Weissenhorn W. Crystal structure of the Habc domain of neuronal syntaxin from the squid Loligo pealei reveals conformational plasticity at its C-terminus. BMC Struct Biol. 2004;4:6. Published 2004 Mar 15. doi:10.1186/1472-6807-4-6.


22 Meijer M, Burkhardt P, de Wit H, Toonen RF, Fasshauer D, Verhage M. Munc18-1 mutations that strongly impair SNARE-complex binding support normal synaptic transmission. EMBO J. 2012;31(9):2156-2168. doi:10.1038/emboj.2012.72


23 Zhou P, Pang ZP, Yang X, et al. Syntaxin-1 N-peptide and Habc-domain perform distinct essential functions in synaptic vesicle fusion. EMBO J. 2013;32(1):159-171. doi:10.1038/emboj.2012.307.


24 Lang T, Jahn R. Core proteins of the secretory machinery. Handb Exp Pharmacol. 2008;(184):107-127. doi:10.1007/978-3-540-74805-2_5


25 Available at: https://www.ncbi.nlm.nih.gov/snp/?LinkName=gene_snp&from_uid=6804.


26 Available at: https://www.ncbi.nlm.nih.gov/snp/?term=STX1B.


27 Wang M, Gu X, Huang X, Zhang Q, Chen X, Wu J. STX1A gene variations contribute to the susceptibility of children attention-deficit/hyperactivity disorder: a case-control association study. Eur Arch Psychiatry Clin Neurosci. 2019;269(6):689-699. doi:10.1007/s00406-019-01010-3.


28 Kowalska M, Prendecki M, Kapelusiak-Pielok M, et al. Analysis of Genetic Variants in SCN1A, SCN2A, KCNK18, TRPA1 and STX1A as a Possible Marker of Migraine. Curr Genomics. 2020;21(3):224-236. doi:10.2174/1389202921666200415181222.


29 Reuter MS, Tawamie H, Buchert R, et al. Diagnostic Yield and Novel Candidate Genes by Exome Sequencing in 152 Consanguineous Families With Neurodevelopmental Disorders. JAMA Psychiatry. 2017;74(3):293-299. doi:10.1001/jamapsychiatry.2016.3798.


30 Wang JY, Gong MY, Ye YL, et al. The RIT2 and STX1B polymorphisms are associated with Parkinson's disease. Parkinsonism Relat Disord. 2015;21(3):300-302. doi:10.1016/j.parkreldis.2014.12.006.


31 Rizo J, Xu J. The Synaptic Vesicle Release Machinery. Annu Rev Biophys. 2015;44:339-367. doi:10.1146/annurev-biophys-060414-034057.


32 Syntaxin-binding protein 1; STXBP1. Available at: https://www.omim.org/entry/602926?search=STXBP1&highlight=stxbp1.


33 Available at: https://www.ncbi.nlm.nih.gov/snp/?LinkName=gene_snp&from_uid=6812.


34 Engel AG, Selcen D, Shen XM, Milone M, Harper CM. Loss of MUNC13-1 function causes microcephaly, cortical hyperexcitability, and fatal myasthenia. Neurol Genet. 2016;2(5):e105. Published 2016 Sep 8. doi:10.1212/NXG.0000000000000105.


35 Lipstein N, Verhoeven-Duif NM, Michelassi FE, et al. Synaptic UNC13A protein variant causes increased neurotransmission and dyskinetic movement disorder. J Clin Invest. 2017;127(3):1005-1018. doi:10.1172/JCI90259.


36 Available at: https://www.ncbi.nlm.nih.gov/snp/?LinkName=gene_snp&from_uid=23025.


37 Available at: https://www.sciencedirect.com/science/article/abs/pii/S03064522183061837via%3Dihub


38 Washbourne P, Thompson PM, Carta M, et al. Genetic ablation of the t-SNARE SNAP-25 distinguishes mechanisms of neuroexocytosis. Nat Neurosci. 2002;5(1):19-26. doi:10.1038/nn783.


39 Available at: https://www.ncbi.nlm.nih.gov/snp/?LinkName=gene_snp&from_uid=6616.


40 Голимбет, В.Е. Связь полиморфизма гена синаптосомного белка (SNAP-25) с вербальной памятью и вниманием у больных эндогенными психозами и психически здоровых людей / В.Е. Голимбет и др. // Журн. неврол. и психиат. - 2009. - Т. 109. - С 59-63.


41 Spellmann I, Müller N, Musil R, et al. Associations of SNAP-25 polymorphisms with cognitive dysfunctions in Caucasian patients with schizophrenia during a brief trail of treatment with atypical antipsychotics. Eur Arch Psychiatry Clin Neurosci. 2008;258(6):335-344. doi:10.1007/s00406-007-0800-9.


42 Terracciano A, Sanna S, Uda M, et al. Genome-wide association scan for five major dimensions of personality. Mol Psychiatry. 2010;15(6):647-656. doi:10.1038/mp.2008.113.


43 Honer WG, Barr AM, Sawada K, et al. Cognitive reserve, presynaptic proteins and dementia in the elderly. Transl Psychiatry. 2012;2(5):e114. Published 2012 May 15. doi:10.1038/tp.2012.38


44 Lewis CM, Levinson DF, Wise LH, et al. Genome scan meta-analysis of schizophrenia and bipolar disorder, part II: Schizophrenia. Am J Hum Genet. 2003;73(1):34-48. doi:10.1086/376549.


45 Tachikawa H, Harada S, Kawanishi Y, Okubo T, Suzuki T. Polymorphism of the 5'-upstream region of the human SNAP-25 gene: an association analysis with schizophrenia. Neuropsychobiology. 2001;43(3):131-133. doi:10.1159/000054880.


46 Thompson PM, Sower AC, Perrone-Bizzozero NI. Altered levels of the synaptosomal associated protein SNAP-25 in schizophrenia. Biol Psychiatry. 1998;43(4):239-243. doi:10.1016/S0006-3223(97)00204-7.


47 Thompson PM, Egbufoama S, Vawter MP. SNAP-25 reduction in the hippocampus of patients with schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry. 2003;27(3):411-417. doi:10.1016/S0278-5846(03)00027-7.


48 Brophy K, Hawi Z, Kirley A, Fitzgerald M, Gill M. Synaptosomal-associated protein 25 (SNAP-25) and attention deficit hyperactivity disorder (ADHD): evidence of linkage and association in the Irish population. Mol Psychiatry. 2002;7(8):913-917. doi:10.1038/sj.mp.4001092.


49 Mill J, Curran S, Kent L, et al. Association study of a SNAP-25 microsatellite and attention deficit hyperactivity disorder. Am J Med Genet. 2002;114(3):269-271. doi:10.1002/ajmg.10253.


50 Lustig RH, Hua P, Wilson MC, Federoff HJ. Ontogeny, sex dimorphism, and neonatal sex hormone determination of synapse-associated messenger RNAs in rat brain. Brain Res Mol Brain Res. 1993;20(1-2):101-110. doi:10.1016/0169-328x(93)90114-5.


51 Fatemi SH, Sidwell R, Kist D, et al. Differential expression of synaptosome-associated protein 25 kDa [SNAP-25] in hippocampi of neonatal mice following exposure to human influenza virus in utero. Brain Res. 1998;800(1):1-9. doi:10.1016/s0006-8993(98)00450-8.


52 Brinkmalm A, Brinkmalm G, Honer WG, et al. SNAP-25 is a promising novel cerebrospinal fluid biomarker for synapse degeneration in Alzheimer's disease. Mol Neurodegener. 2014;9:53. Published 2014 Nov 23. doi:10.1186/1750-1326-9-53.


53 Öhrfelt A, Brinkmalm A, Dumurgier J, et al. A Novel ELISA for the Measurement of Cerebrospinal Fluid SNAP-25 in Patients with Alzheimer's Disease. Neuroscience. 2019;420:136-144. doi:10.1016/j.neuroscience.2018.11.038.


54 Etain B, Dumaine A, Mathieu F, et al. A SNAP25 promoter variant is associated with early-onset bipolar disorder and a high expression level in brain. Mol Psychiatry. 2010;15(7):748-755. doi:10.1038/mp.2008.148.


55 Houenou J, Boisgontier J, Henrion A, et al. A Multilevel Functional Study of a SNAP25 At-Risk Variant for Bipolar Disorder and Schizophrenia. J Neurosci. 2017;37(43):10389-10397. doi:10.1523/JNEUROSCI.1040-17.2017


56 Schoch S, Deák F, Königstorfer A, et al. SNARE function analyzed in synaptobrevin/VAMP knockout mice. Science. 2001;294(5544):1117-1122. doi:10.1126/science.1064335.


57 Available at: https://www.ncbi.nlm.nih.gov/snp/?LinkName=gene_snp&from_uid=6844.


58 Baghel R, Grover S, Kaur H, et al. Synergistic association of STX1A and VAMP2 with cryptogenic epilepsy in North Indian population. Brain Behav. 2016;6(7):e00490. Published 2016 Jun 14. doi:10.1002/brb3.490.


59 Yilmaz M, Edgunlu TG, Yilmaz N, et al. Genetic variants of synaptic vesicle and presynaptic plasma membrane proteins in idiopathic generalized epilepsy. J Recept Signal Transduct Res. 2014;34(1):38-43. doi:10.3109/10799893.2013.848893.


60 Gao Q, Liu L, Chen Y, et al. Synaptosome-related (SNARE) genes and their interactions contribute to the susceptibility and working memory of attention-deficit/hyperactivity disorder in males. Prog Neuropsychopharmacol Biol Psychiatry. 2015;57:132-139. doi:10.1016/j.pnpbp.2014.11.001.


61 Gao Q, Liu L, Chen Y, et al. Synaptosome-related (SNARE) genes and their interactions contribute to the susceptibility and working memory of attention-deficit/hyperactivity disorder in males. Prog Neuropsychopharmacol Biol Psychiatry. 2015;57:132-139. doi:10.1016/j.pnpbp.2014.11.001.