Медико-биологический
информационный портал
для специалистов
 
Medline.ru

СОДЕРЖАНИЕ ЖУРНАЛА:
Физико-химическая биология

Клиническая медицина

Профилактическая медицина

Медико-биологические науки


АРХИВ:

Фундаментальные исследования

Организация здравохраниения

История медицины и биологии



Последние публикации

Поиск публикаций

Articles

Архив :  2000 г.  2001 г.  2002 г. 
               2003 г.  2004 г.  2005 г. 
               2006 г.  2007 г.  2008 г. 
               2009 г.  2010 г.  2011 г. 
               2012 г.  2013 г.  2014 г. 
               2015 г.  2016 г.  2017 г. 
               2018 г.  2019 г.  2020 г.  2021 г.  2022 г.  2023 г. 

Редакционная информация:
        Опубликовать статью
        Наша статистика


 РЕДАКЦИЯ:
Главный редактор

Заместители главного редактора

Члены редколлегии
Специализированные редколлегии


 УЧРЕДИТЕЛИ:
Институт теоретической и экспериментальной биофизики Российской академии наук.

ООО "ИЦ КОМКОН".




Адрес редакции и реквизиты

199406, Санкт-Петербург, ул.Гаванская, д. 49, корп.2

ISSN 1999-6314

Российская поисковая система
Искать: 


«
Vol. 23, Art. 52 (pp. 856-901)    |    2022       
»

Hapten-carrier conjugates with haptens-analogues of psychoactive substances and toxicants: general principles of modeling the specificity of haptene epitopes
Kozlov V.K.1,2*, Bespalov A.Ya.1, Kashuro V.A. 2,3,4

1 Scientific and clinical center of toxicology named after academician S.N. Golikov FMBA of Russia
2 St. Petersburg State University
3 St. Petersburg State Pediatric Medical University of the Ministry of Health of Russia
4 Federal State Budgetary Educational Institution of Higher Education Russian State Pedagogical University. A.I. Herzen u



Brief summary

Based on the analysis of the available literature data and the author's own experience in the field of constructing conjugated antigens with haptens of psychoactive and toxic compounds, the principles of giving hapten epitopes the property of being immunodominant in the composition of antigens (immunogens) are summarized. The main algorithms for ensuring the immunodominance and target specificity of hapten analogs, and, accordingly, the specificity of antibodies obtained in the humoral immune response to such conjugated antigens, are described. It is argued that conjugated antigens with hapten analogues of psychoactive substances and toxicants, being molecular vaccines of a special type, exhibit various biological information in their composition, namely: 1) antigenic determinants of immunochemical specificity, including hapten epitopes and epitopes of a macromolecular carrier; 2) antigenic sites that activate cooperative interactions of immunocompetent cells in the process of antigen recognition and initiation of an adaptive immune response; 3) antigenic sites capable of triggering the process of polyclonal activation of lymphocytes (probably, this statement is not true for all conjugated antigens); 4) antigenic sites identified as PAMP, which are responsible for the manifestation of the property of "internal adjuvant" by the antigen and activate constitutional immunoreactivity (not present on all conjugated antigens); 5) pharmacophore (toxophoric) groups of the hapten-analogue that retained their activity upon chemical conjugation with a carrier. The conjugated antigen (immunogen) exhibiting the listed biological information during active immunization-vaccination triggers the processes of of organism's immunoreactivity. Activation of constitutional immunity system is a preparatory phase of the adaptive immune response, including its humoral component. In the course of the immune response, antibodies specific to the antigen (immunogen) are produced and immunocompetent cells proliferate - numerous clones of lymphocytes with specificity for each specific epitope of the antigen. Having recognized an antigen, the immune system embodies the strategy of response to an antigen and organizes a set of manifestations and mechanisms of immunoreactivity - an immune response that is always specific in its adaptive component, since it is implemented with the involvement of immune factors of individual and strictly specific recognition of immunochemical determinants of antigenic specificity - antigen epitopes, including hapten epitopes of conjugated antigens. In fact, the structure of conjugated antigen (immunogen) programs the organism's response. At the same time, the biological activity of the immunogen, exposed in its structure, predetermines the strategy and choice of immunoreactivity algorithms, the specificity and intensity of the immune response, including antibody production. These characteristics of the organism's immunoreactivity can be controlled by optimizing the quality of the antigen and modeling its structure. A methodology for optimizing the characteristics of conjugated antigens used to obtain reagents for immunochemical analysis, in particular, polyclonal and monoclonal antibodies, is outlined. These antibodies are intended for use in sensitive and specific methods for the quantitative determination of many biologically active low molecular weight compounds - drugs of various pharmacological groups, ecotoxicants and highly toxic poisons. Conjugated antigens with haptens-analogs of psychoactive substances, in particular with haptens-analogs of drugs, are trying to be used as vaccines used to vaccinate drug addicts with the aim of secondary prevention of drug addiction. Studies are also being conducted on the effectiveness of the use of Fab fragments of monoclonal antibodies as therapeutic biotechnological preparations for lethal intoxications with certain drugs and narcotic substances.


Key words

psychoactive substances; narcotic substances; organophosphates; conjugated antigens (hapten-carrier conjugates); design principles; immunochemical specificity; hapten determinants (epitopes); epitope density on the carrier; haptens-analogues of psych





(The article in PDF format. For preview need Adobe Acrobat Reader)



Open article in new window

Reference list

1. Petrov R.V., Haitov R.M. Iskysstvennie antigeni i vakcini. M.: Medicina; 1988: 288 s.


2. Sela M. Synthetic antigens and recent progress in immunology. In: Peptides, Polypeptides and Proteins. N.Y. - London - Sydney-Toronto: John Wiley & Sons; 1974: 495-509.


3. Sela M. Antigen design as a tool for probing into the nature of immunological phenomena. In: Ed. by W.O. Milligan. Immunochemistry. Houston: Robert A. Welch. Foundation; 1975: 201-239.


4. De Weck A.L. Low molecular weight antigens. In: M. Sela, eds. The Antigens, V.2. N.Y. - San Francisco - London: Academic Press; 1974: 141-248.


5. Klinicheskaya immynologiya. Prakticheskoe posobie dlya infekcionistov. Krasnoyarsk: OOO «Izdatelstvo Polikor»; 2021: 576 s.


6. Kovalev I.E., Polevaya O.U. Biohimicheskie osnovi immyniteta k nizkomolekylyarnim soedineniyam. M.: Nayka; 1985: 304 s.


7. Yamashita N. Soluble E-selectin as a marker of disease activity in atopic dermatitis. J. Allergy Clin. Immunol. 1997; 99(3): 410-416. doi: 10.1016/s0091-6749(97)70060-5.


8. Landsteiner K. The Specificity of serological reactions. Cambridge, Massachusetts: Harvard Univ. Press; 1945 (republished by Dover Publication, N.Y.; 1962): 326.


9. Spector S. Radioimmunoassay of drugs. In: Radioimmunoassay and Related Procedures in Medicine, Vol.II. International Atomic Energy Association; 1974: 233.


10. Butler V.P, Jr. The immunological assay of drugs. Pharmacol. Rev. 1978; 29(2): 103-184.


11. Ishikawa E., Kato K. Ultrasensitive enzyme immunoassay. Scand. J. Immunol. 1978; 8(7): 43-55. https://doi.org/10.1111/j.1365-3083.1978.tb03883.x.


12. Erlanger B.F. Principles and methods for the preparation of drug protein conjugates for immunological studies. Pharmacol Rev. 1973; 25: 271-280.


13. Colburn W.A. Radioimmunoassay and related immunoassay techniques. In: Munson J.W., eds. Pharmaceutical Analysis Modern Methods, Part A. New York: Marcel Dekker; 1982: 381.


14. Lee J. W., Colburn W.A. Immunoassay Techniques. In: Ohannesian L. and Streeter A.J., eds. Handbook of Pharmaceutical Analysis. New York - Basel: Marcel Dekker; 2002.


15. Erlanger B. F. The preparation of antigenic hapten-carrier conjugates: A survey. Methods in Enzymology. 1980; 70: 85-104. doi: 10.1016/s0076-6879(80)70043-5.


16. Lemus R., Karol M.H. Conjugation of haptens. Methods Mol. Med. 2008; 138: 167-182. doi: 10.1007/978-1-59745-366-0_14.


17. Hermanson G.T. Preparation of Hapten-Carrier Immunogen Conjugates. In: Hermanson G.T. Bioconjugate Techniques. 2nd ed. Amsterdam?Tokyo: Elsevier; 2008: 745-782.


18. Hermanson G.T. Modification with Synthetic Polymer. In: Hermanson G.T. Bioconjugate Techniques. 2nd ed. Amsterdam?Tokyo: Elsevier; 2008: 936-960.


19. Caulcott C.A., Boraston R., Hill C. et al. Production and purification of monoclonal antibodies. In: Collins W.P., eds. Complementary Immunoassays. Chichester, UK: John Wiley and Sons; 1988: 27-42.


20. Torres O.B., Alving C.R., Matyas G.R. Synthesis of hapten-protein conjugate vaccines with reproducible hapten densities. In: Ed. by Sunil Thomas. Methods in Molecular Biology, Vol. 1403. Vaccine Design. Methods and Protocols: Vol. 1: Vaccines for Human Diseases. New York: Springer Science+Business Media; 2016: 695-712.


21. Kohler G., Milstein C. Continuous culture of fused cells secreting specific antibody predefined specificity. Nature. 1975; 256(5517): 495-497. doi: 10.1038/256495a0.


22. Galfre G., Milstein C. Preparation of monoclonal antibodies: Strategies and procedures // In: Colowick S., Kaplan N., eds. Methods in Enzymology, Vol. 73(Pt B). New York: Academic Press; 1981: 3-46. doi: 10.1016/0076-6879(81)73054-4.


23. Cooper M.D., Kirkpatrick R. Production of stable heterohybridomas producing human monoclonal antibodies. Methods Mol. Biol. 1995; 45: 29-39. doi: 10.1385/0-89603-308-2:29.


24. Hamilton M.J., Davis W.C. Culture conditions that optimize outgrowth of hybridomas. Methods Mol. Biol. 1995; 45:17-28. doi: 10.1385/0-89603-308-2:17.


25. Sakurai M., Wirsching P., Janda K. D. Design and synthesis of a cocaine-diamide hapten for vaccine development. Tetrahedron Letters. 1996; 37: 5479-5482.


26. Pentel P.R., Malin D.H., Ennifar S. et al. A nicotine conjugate vaccine reduces nicotine distribution to brain and attenuates its behavioral and cardiovascular effects in rats. Pharmacol. Biochem. Behav. 2000; 65 (1):191-198. doi: 10.1016/s0091-3057(99)00206-3.


27. Torres O.B., Jatah R., Rice K.C. et al. Characterization and optimization of heroin hapten-BSA conjugates: method development for the synthesis of reproducible hapten-based vaccines. Anal. Bioanal. Chem. 2014; 406: 5927-5937. doi: 10.1007/s00216-014-8035-x.


28. Owens S.M., Carrol F. I., Abraham P. Methamphetamine-like hapten compounds, linkers, carriers and composition and uses thereof: Patent 7632929 US. Int. Pat. Cl. C07K 1/04 530/403 / No 11/733085, fill. 09.04.2007; publ. 11.10.2007.


29. Ennifar S. et al. Hapten-carrier conjugates for treating and preventing nicotine addiction: Patent 7,776,620 US. Int. Cl. G01N 33/552 / No 11/780742, fill., 20.07.2007; publ. 17.08.2010.


30. Klaus G.G.B., Cross A.M. The influence of epitope density on the immunological properties of hapten-protein conjugates. I. Characteristics of the immune response to hapten-coupled albumin with varying epitope density. Cell. Immunol. 1974; 14(2): 226-241. doi: 10.1016/0008-8749(74)90208-1.


31. Gill T.J., Kunz H.W., Ruscetti S.K. Studies on the chemical and genetic bass of immunogenicity and antigenic reactivity. In: Peptides, Polypeptides and Proteins. N.Y. - London - Sydney-Toronto: John Wiley & Sons; 1974: 510-525.


32. Lyashenko V.A., Vorobev A.A. Molekylyarnie osnovi immynogennosti antigenov. M.: Medicina; 1982: 269 s.


33. Dintzis H.M., Dintzis R.Z., Vogelstein B. Molecular determinants of immunogenicity: the immunon model of immune response. Proc. Natl. Acad. Sci. USA. 1976; 73(10): 367l-3675. doi: 10.1073/pnas.73.10.3671.


34. Parker C.W. Radioimmunoassay of Biologically Active Compounds. Prentice-Hall: Englewood Cliffs, N.J.; 1976.


35. Centeno E.R., Johnson W.J., Sehon A.H. Antibodies to two common pesticides: DDT and Melathion. Int. Arch. Allergy Appl. Immunol. 1970; 37: 1-13.


36. Duryee M.J., Bevins M.A., Reicyhel C.M. et al. Immune responses to methamphetamine by active immunization with peptide-based, molecular adjuvant-containing vaccines. Vaccine. 2009; 27: 2981-2988. doi: 10.1016/j.vaccine.2009.02.105.


37. Beiser S.M., Butler V.P., Jr., Erlanger B.F. Hapten-protein conjugates: Methodology and application. In: Miescher P.A., Miller-Eberhard H.J., eds. Textbook of Immunopathology, 2nd ed. New York: Grune and Stratton; 1976: 15-29.


38. Butler V.P., Jr., Beiser S. M. Antibodies to small molecules: biological and clinical applications. Adv. Immunology. 1973; 17: 253-310. doi: 10.1016/s0065-2776(08)60734-8.


39. Spector S., Berkowitz V., Flynn E.J. et al. Antibodies to morphine, barbiturates and serotonin. Pharmacol. Rev. 1973; 25: 281-291.


40. Spector S. Horizons in immunotoxicology: research needs and applications. Pharmacol. Rev. 1982; 34: 150.


41. Sternberger L.A., Sim V.M, Kavanag W.Z. A vaccine against organophosphorus poisoning. Proceedings of Army Science Conference; 1972; 3: 429-441.


42. Sternberger L.A., Cuculis I.I., Meyer H.G. et al. A vaccine against organophosphorus haptens: immunity to paraoxon poisoning. Fed. Proc. 1974; 33: 728.


43. Hunter K.W., Lenz D.E., Briemfield A.H., Naylor S.A. Quantification of the organophosphorus nerve agent soman by competitive inhibition enzyme immunoassay using monoclonal antibodies. FEBS Letters. 1982; 149(1): 147-151. doi: 10.1016/0014-5793(82)81091-0.


44. Erhard M.H., Kühlmann R., Szinicz L., Lösch U. Detection of the organophosphorus nerve agent soman by an ELISA using monoclonal antibodies. Arch Toxicol. 1990; 64(7): 580-585. doi: 10.1007/BF01971838.


45. Hieda Y., Keyler D. E., Ennifar S. et al. Vaccination against nicotine during continued nicotine administration in rats: immunogenicity of the vaccine and effects on nicotine distribution to brain. Int. J. Immunopharmacol. 2000; 22 (10): 809-819. doi: 10.1016/s0192-0561(00)00042-4.


46. Lee J. W., Colburn W.A. Immunoassay Techniques. In: Ohannesian L. and Streeter A.J., eds. Handbook of Pharmaceutical Analysis. New York - Basel: Marcel Dekker; 2002.


47. Singh R.V., Kaur J., Varshney G.C. et al. Synthesis and characterization of hapten-protein conjugates for antibody production against small molecules. Bioconjugate Chem. 2004; 15(1): 168-173. doi: 10.1021/bc034158v.


48. Carroll F. I., Blough B. E., Pidaparthi R. R. et al. Synthesis of mercapto-(+)-methamphethamine haptens and their use for obtaining improved epitope dencity on (+)-methamphethamine conjugate vaccines. J. Med. Chem. 2011; 54: 5221-5228. doi: 10.1021/jm2004943.


49. Stowe G.N., Vendruscolo L.F., Edwards S. et al. A vaccine strategy that induced propective immunity against heroin. J. Med. Chem. 2011; 54(14): 5195-5204. doi: 10.1021/jm200461m.


50. Matyas G. R., Rice K. C., Cheng K. et al. Facial recognition of heroin vaccine opiates: Type 1 crossreactivities of antibodies induced by hydrolytically stable haptenic surrogates of heroin, 6-acetylmorphine, and morphine. Vaccine. 2014; 32(13): 1473-1479. doi: 10.1016/j.vaccine.2014.01.028.


51. Fasth A., Sollenberg J., Sorbo B. Production and characterization of antibodies to atropine. Acta Pharm. Suec. 1975; 12: 311-322.


52. Adamczyk M., Buko A., Chen Y.-Y. et al. Characterization of protein-hapten conjugates. 1. Matrix-assisted laser desorption ionization mass-spectrometry of immuno BSA-hapten conjugates and compfrison with other characterization methods. Bioconjugate Chem. 1994; 5: 631-635. doi: 10.1021/bc00030a019.


53. Johnson J.K., Cerasoli D.M., Lenz D.E. Role of immunogen design in induction of soman-specific monoclonal antibodies. Immunol Lett. 2005; 96(1): 121-127. doi: 10.1016/j.imlet.2004.08.003.


54. Jia P., Wang Y., Yu M. et al. An organophosphorus hapten used in the preparation of monoclonal antibody and as an active immunization vaccine in the detoxication of soman poisoning. Toxicol Lett. 2009; 187(1): 45-51. doi: 10.1016/j.toxlet.2009.01.029.


55. Lieberman S., Erlanger B.F., Beiser S.M. Steroid-protein conjugates: their chemical, immunochemical and endocrinological properties. Recent Progr. Hormone Res. 1959; 15: 165-200.


56. Beiser S.M., Erlanger B.F., Agate F.S. et al. Antigenicity of steroid-protein conjugates. Science. 1959; 129: 564-565.


57. Creech H.J. Chemical and immunological properties of carcinogen-protein conjugates. Cancer Res. 1952; 12: 557-564.


58. Spector S., Parker C.W. Morphine: radioimmunoassay. Science. 1970; 168: 1347-1348. doi: 10.1126/science.168.3937.1347.


59. Van Regenmortel M. H. V. From absolute to exquisite specificity. Reflection on the fuzzy nature of speicers, specificity and antigenic sites.


J. Immunol. Methods. 1998; 216 (1-2): 37-48. doi: 10.1016/s0022-1759(98)00069-6.


60. Beiser S.M., Erlanger B.F. Estimation of steroid hormones by an immunochemical technique. Nature. 1967; 214: 1044-1045.


61. Niswender G.D. Influence of the site of conjugation on the specificity of antibodies to progesterone. Steroids. 1973; 22: 413-424.


62. Wainer B.H., Fitch F.W., Fried J., Rothberg R.M. A measurement of the specificities of antibodies to morphine-6-succinyl-BSA by competitive inhibition of 14 C-morphine binding. J. Immunol. 1973; 110: 667-673.


63. Herndon B.L., Paull K., Baeder D.H. et al. Comparison of immunogenecity of opiates bound to protein at different sites on the molecule:


N-carboxymorphine-BSA. Pharmacol. Res. Com. 1976; 8: 325-335.


64. Findlay J.W.A., Butz R.F., Welch R.M. A codein radioimmunoassay exhibiting insignificant cross-reactivity with morphine. Life Sci. 1976; 19: 389-394.


65. Usagawa T., Itoh Y., Hifumi E. et al. Characterization of morphine-specific monoclonal antibodies showing minimal cross-reactivity with codeine.


J. Immunol. Meth. 1993; 157: 143-148. doi: 10.1016/0022-1759(93)90080-q.


66. Anton B., Leff P. A novel bivalent morphine/heroin vaccine that prevents relapse to heroin addiction in rodents. Vaccine. 2006; 24(16): 3232-3240. doi: 10.1016/j.vaccine.2006.01.047.


67. Li Q-Q., Sun C-Y., Luo Y-X., Xue Y-X. et al. A morphine/heroin vaccine with new hapten design attenuates behavioral effects in rats. J. Neurochem. 2011; 119: 1271-1281. doi: 10.1111/j.1471-4159.2011.07502.x


68. Li F., Cheng K., Antoline J.F. et al. Synthesis and immunological effects of heroin vaccines. Org. Biomol. Chem. 2014; 1: 7211-7232. doi: 10.1039/c4ob01053a.


69. Bespalov A.Ya., Kizimova G.V., Kozlov V.K., Gyryanov G.A. Gemisykcinat bromistogo 2-[N,N-dimetil-N-(2-oksietil) ammoniometil]-3-(N,N-dimetilkarbamoil) piridina v kachestve promejytochnogo prodykta dlya polycheniya sinteticheskih konugirovannih antigenov, specifichnih k aminostigminy: Avtorskoe svidetelstvo SSSR ?1593161, prior. 13.12.1988, reg. v Gos. reestre izobretenii 15.05.1990.


70. Kozlov V.K., Bespalov A.Ya., Shelkanova L.B., Gyryanov G.A. Sposob polycheniya konugata gapten-ferment dlya immynofermentnogo analiza: Avtorskoe svidetelstvo SSSR ?1351398, prior. 1.09.1984, reg. v Gos. reestre izobretenii 8.07.1987.


71. Kozlov V.K., Bespalov A.Ya., Gyryanov G.A. i dr. Sposob polycheniya eritrocitarnogo diagnostikyma dlya viyavleniya specificheskih antitel (ego varianti): Avtorskoe svidetelstvo SSSR ?1079247, prior. 8.02.82., reg. v Gos. reestre izobretenii 15.11.83.


72. Bespalov A.Ya., Kizimova G.V., Kozlov V.K., Drigina L.B. Gemisykcinat bromistogo 8-(2-oksietil) 8-metil-8-azonii-biciklo [3,2,1]-okt-3-ilovogo efira α-oksi-α, α-difenilyksysnoi kisloti v kachestve promejytochnogo prodykta dlya polycheniya sinteticheskih konugirovannih antigenov, specifichnih k glipiny: Avtorskoe svidetelstvo SSSR ?1587869 prior. 13.12.1988, reg. v Gos. reestre izobretenii 22.04.1990.


73. Steiner A.L., Parker C.W., Kipnis D.M. Radioimmunoassay for cyclic nucleotides. I. Preparation of antibodies and iodinated cyclic nucleotides. J. Biol. Chem. 1972; 247: 1106-1113.


74. Levine L. Antibodies to pharmacologically active molecules: specificities and some applications antiprostaglandins. Parmacol. Rev. 1973; 25(2): 293-307.


75. Grota L.J., Brown G.M. Antibodies to catecholamines. Endocrinology. 1976; 98(3): 615-622. doi: 10.1210/endo-98-3-615.


76. Renadive N.S., Sehon A.H. Antibodies to serotonin. Can. J. Biochem. 1967; 45: 1701-1710. doi: 10.1139/o67-201.


77. Butler V.P., Chen J.P. Digoxin specific antibodies. Proc. Natl. Acad Sci. (USA). 1967; 57(1): 71-78. doi: 10.1073/pnas.57.1.71.


78. Polevaya O.U., Basharova L.A., Kovalev I.E. Immynohimicheskii metod kolichestvennogo opredeleniya aminazina. Him.-farm. jyrn. 1983; 17(1): 32-37.


79. Kozlov V.K., Drigina L.B., Bespalov A.Ya. Identifikaciya i kolichestvennoe opredelenie v biojidkostyah neiroleptikov i antidepressantov fenotiazinovogo ryada immynofermentnim metodom. V kn.: Ostrie toksikozi v klinicheskoi praktike: Mat. naych. konf. Baky; 1989: 35-36.


80. Lau H.P., Gaur P.K., Chu F.S. Preparation and characterization of aflatoxin B2a-hemiglutorate and its use for production of antibody against aflatoxin B1. J. Food. Sci. 1981; 3: 1-13. doi:10.1111/j.1745-4565.1980.tb00404.x.


81. Sizaret P., Malavcill C. Preparation of aflatoxin B1-BSA conjugate with high hapten/carrier molar ratio. J.Immunol. Methods. 1983; 69: 159-162.


82. Gyryanov G.A., Kozlov V.K., Lubimov U.A. Immynofarmakologicheskie aspekti ligand-receptornogo vzaimodeistviya.


V kn.: Farmakologiya i naychno-tehnicheskii progress: Mat. VI Vsesouzn. sezda farmakologov. Tashkent; 1988: 104.


83. Gyryanov G.A., Kozlov V.K., Lubimov U.A. Specificheskaya antitoksicheskaya immynoterapiya: dostijeniya i realnie perspektivi.


V kn.: Ostrie toksikozi v klinicheskoi praktike: Mat. naychn. konf. Baky; 1989: 36-37.


84. Cuculis I.I., Meyer H.G., Sim V.M. Toxic chemical vaccines: US Patent kl. 424 (88 A6 YK 27/00) No 3642981, fill. 4.05.70; publ. 15.02.72.


85. Lenz D.E., Brimfield A.A., Hunter K.W., Jr. et al. Studies using a monoclonal antibody against soman. Fundam Appl. Toxicol. 1984; 4(2, Pt. 2): 156-164. doi: 10.1016/0272-0590(84)90148-9.


86. Kozlov V.K., Gyryanov G.A., Drigina L.B., Bespalov A.Ya., Immynofermentnii sposob identifikacii i opredeleniya yrovnya soderjaniya atropinopodobnih soedinenii v biojidkostyah i tkanyah.


V kn.: Ostrie toksikozi v klinicheskoi praktike: Mat. naych. konf. Baky; 1989: 38-39.


87. Bespalov A.Ya., Kizimova G.V., Kozlov V.K., Gyryanov G.A. Sposob polycheniya specificheskoi sivorotki k nizkomolekylyarnim gaptenam, soderjashim tretichnyu aminogryppy: Avtorskoe svidetelstvo SSSR ? 1602197, prior. 13.12.1988, reg. v Gos. reestre izobretenii 22.06.1990.


88. Virtanen R., Kanto J., Iisalo E. Radioimmunoassay for atropine and


l-hyoscyamine. Acta Pharmacol. Toxicol. 1980; 47(3): 208-212. doi: 10.1111/j.1600-0773.1980.tb01561.x.


89. Verma P. S. et al. Sensitive radioimmunoassay using antibodies to


l-hyoscyamine: Patent 5,196,351 US, Int. Pat. Cl.2 G01N 33/56. /; No 535190, fill. 09.23.1983; publ. 05.27.1986.


90. Wurzburger R., Miller R., Boxenbaum H. et al. Radioimmunoassay of atropine in plasma. J. Pharmacol. Exp. Ther. 1977; 203(2): 435-441.


91. Brinkley M. A brief survey of methods for preparing protein with dyes, haptens and crosslinking reagents. Bioconjugate chemistry. 1992; 3: 3-12. doi: 10.1021/bc00013a001.


92. Scholl L., Seth P., Kariisa M. et al. Drug and opioid-involved overdose deaths - United States, 2013-2017. MMWR Morb. Mortal. Wkly Rep. 2019; 67(5152): 1419-1427. doi: 10.15585/mmwr.mm675152e1.


93. Golovko A.I., Ivnickii U.U., Ivanov M.B., Reinuk V.L., Kozlov V.K. O biologicheskoi aktivnosti dizainerskih narkotikov iz gryppi sinteticheskih opioidov. Yspehi sovremennoi biologii. 2020; 140(5): 464-477.


doi: 10.31857/S0042132420040067.


94. Kyleshov V.I., Golikov S.N., Kozlov V.K. i dr. Sposob vvedeniya atropina: Avtorskoe svidetelstvo SSSR ? 1113094, prior. 5.05. 1982, reg. v Gos. reestre izobretenii 15.05.1984.


95. Golikov S.N., Gyryanov G.A., Kozlov V.K. Specificheskie antitela - modylyatori effektov fiziologicheski aktivnih veshestv i ksenobiotikov. Osnovnie fenomeni. Yspehi sovremennoi biologii. 1986; 102(25): 193-206.


96. Golikov S.N., Gyryanov G.A., Kozlov V.K. Specificheskie antitela - modylyatori effektov fiziologicheski aktivnih veshestv i ksenobiotikov: mehanizmi osyshestvleniya antitelami fynkcii modylyatorov. Vestnik AMN SSSR. 1988; 3: 86-93.


97. Kozlov V.K., Shelkanova L.B. Mehanizmi «vektornogo» deistviya ksenobiotikov. Immynotoksikologicheskie aspekti. V kn.: Problemi ohrani zdorovya naseleniya i zashiti okryjaushei sredi ot himicheskih vrednih faktorov: Tez. dokl. I Vsesouzn. sezda toksikologov. Rostov na Dony; 1986: 303-304.


98. Hieda Y., Keyler D. E., Vandevoort J. T. et al. Active immunization alters the plasma nicotine concentration in rats. J. Pharm. Exper. Ther. 1997; 283(3): 1076-1081.


99. Carrera M.R., Ashley J.A., Parsons I.H. et al. Supression of psychoactive effects of cocaine by active immunization. Nature. 1995; 378(6558): 727-730. doi: 10.1038/378727a0.


100. Barbosa-Mendez S., Matus-Ortega M., Hernandez-Miramontes R., Salazar-Juárez A. Synergistic immune and antinociceptive effects induced from the combination of two different vaccines against morphine/heroin in mouse. Hum. Vaccin Immunother. 2021;17(10): 3515-3528. doi: 10.1080/21645515.2021.1935171.


101. Orson F.M., Kinsey B.M., Singh R.A., Wu Y. et al. The future of vaccines in the management of addictive disorders. Curr. Psychiatry Rep. 2007; 9: 381-387. doi: 10.1007/s11920-007-0049-z.


102. Orson F.M., Kinsey B.M., Singh R. A. K. et al. Substance abuse vaccines. Ann. N.Y. Acad. Sci. 2008; 1141: 257-269. doi: 10.1196/annals.1441.027.


103. Kinsey B.M., Jackson D.C., Orson F.M. Anti-drug vaccines to treat substance abuse. Immunol. Cell Biol. 2009; 87(4): 309-314. doi: 10.1038/icb.2009.17.


104. Gamaleya N.B., Berzina A.G. Vakcini ot narkotikov - novoe perspektivnoe napravlenie profilaktiki zloypotrebleniya psihoaktivnimi veshestvami. Narkologiya. 2011; 10: 70-83.


105. Zalewska-Kaszubska J. Is immunotherapy an opportunity for effective treatment of drug addiction? Vaccine. 2015; 33(48): 6545-6551. doi: 10.1016/j.vaccine.2015.09.079.


106. Lee J.C., Janda K.D. Immunopharmacotherapeutic advancements in addressing methamphetamine abuse. RSC Chem Biol. 2020; 2(1): 77-93. doi: 10.1039/d0cb00165a.


107. Collins K.C., Schlosburg J.E., Bremer P.T., Janda K.D. Methamphetamine Vaccines: Improvement through Hapten Design. J Med Chem. 2016; 59(8): 3878-3885. doi: 0.1021/acs.jmedchem.6b00084.


108. Hossain M.K., Davidson M., Kypreos E. et al. Immunotherapies for the treatment of drug addiction. Vaccines. 2022; 10(11): 1778. https://doi.org/10.3390/vaccines10111778.


109. Bloom B.T., Bushell M.J. Vaccines against Drug Abuse-Are We There Yet? Vaccines (Basel). 2022; 10(6): 860. doi: 10.3390/vaccines10060860.


110. Moreno A. Y., Janda K. D. The impact of distinct chemical structures for the development of a methamphetamine vaccine. J. Am. Chem. Soc. 2011; 133 (17): 6587-6595. doi: 10.1021/ja108807j.


111. Wee S., Hicks M. J., De P. B. et al. Novel cocaine vaccine linked to a disrupted adenovirus gene transfer vector blocks cocaine psychstimulant and reinforcing effects. Neuropsychopharmacology. 2012; 37(5): 1083-1091. doi: 10.1038/npp.2011.200 .


112. Kozlov V.K., Bespalov A.Ya., Gaft S.S. Konugati fiziologicheski aktivnih, toksichnih i lekarstvennih soedinenii. V kn.: V.K. Kozlov i dr. Osnovi immynotoksikologii. Tom 1. Obshaya immynotoksikologiya. Immynotoksichnost himicheskih soedinenii. Iniciiryemie toksikantami immynopatologicheskie sostoyaniya i zabolevaniya / pod red. V.K. Kozlova. M.: Kommentarii; 2019: 480 s.


113. Paula S., Tabet M.R., Farr C.D. et al. Three-dimensional quantitative structure-activity relationship modeling of cocaine binding by a novel human monoclonal antibody. J. Med. Chem. 2004; 47: 133-142. doi: 10.1021/jm030351z.


114. Kozlov V.K., Bespalov A.Ya. Immynologicheskaya i farmakologicheskaya aktivnost belkovih konugatov atropina. Bulleten eksperimentalnoi biologii i medicini. 1986; 11: 580-582.


115. Berson S., Yalow R. S. Quantitative aspects of the reaction between insulin and insulin-binding antibody. J. Clin. Invest. 1959; 38(12): 1996-2116.


116. Berson S., Yalow R. S. Radioimmunoassay: A status report. In: Good R.A. and Fisher D.W., eds. Immunobiology: Current Knowledge of Basic Concepts in Immunology and Their Clinical Application. Stamford, Connecticut: Sinauer; 1971: 287-293.


117. Oliver G.C., Parker B.M., Brasfield D.L., Parker C.W. A sensitive radioimmunoassay for digitalis. J. Lab. Clin. Med. 1966; 68: 1002-1009.


118. Oliver G.C., Parker B.M., Brasfield D.L., Parker C.W. The measurement of digitoxin in human serum by radioimmunoassay. J. Clin. Invest. 1968; 47: 1035-1042.


119. Butler V.P., Chen J.P. Digoxin specific antibodies. Proc. Natl. Acad Sci. (USA). 1977; 57(1): 71-78. doi: 10.1073/pnas.57.1.71.


120. Bering E., Kitasato S. Uber das Zustandekominen der Diphterie Immunitet und der Tetanus-Immunitet bei Thieren. Dtsch. Med. Wochenshr. 1890; 16: 113-114.


121. Mehta S.R., Sashindran V.K. Clinical features and management of snake bite. Med. J. Armed Forces India. 2002; 58 (3): 247-249. doi: 10.1016/S0377-1237(02)80140-X.


122. Simpson I.D. Snakebite management in India, the first few hours: a guide for primary care physicians. J. Indian Med. Assoc. 2007; 105 (6): 324-328.


123. Ahmed S. M., Ahmed M., Nadeem A. at el. Emergency treatment of a snake bite: Pearls from literature. J. Emerg. Trauma Shock. 2008; 1 (2): 97-105.


doi: 10.4103/0974-2700.43190.


124. Williams H. F., Layfield H. J., Vallance T. et al. The urgent need to develop novel strategies for the diagnosis and treatment of snakebites. Toxins (Basel). 2019; 11 (6): 363. doi: 10.3390/toxins11060363.


125. Gutierrez J. M., Lomonte B., Leon G. et al. Trends in snakebite envenomation therapy: scientific, technological and public health considerations. Current Pharm. Design. 2007; 13 (28): 2935-2950. doi: 10.2174/138161207782023784.


126. Sami-Merah S., Hammoudi-Triki D., Martin-Eauclaire M.F., Laraba-Djebari F. Combination of two antibody fragments F(ab') (2) / Fab: an alternative for scorpion envenoming treatment. Int. Immunopharmacol. 2008; 8 (10): 1386-1394. doi: 10.1016/j.intimp.2008.05.011.


127. Laustsen A.H., Maria Gutierrez J., Knudsen C. et al. Pros and cons of different therapeutic antibody formats for recombinant antivenom development. Toxicon. 2018; 146: 151-175. doi: 10.1016/j.toxicon.2018.03.004.


128. Liu C.C., Wu C.J., Chou T.Y. et al. Development of a monoclonal scFv against cytotoxin to neutralize cytolytic activity induced by Naja atra venom on myoblast C2C12 cells. Toxins (Basel). 2022; 14(7): 459. doi: 10.3390/toxins14070459.


129. Lipman N.S., Jackson L.R., Trudel L.J., Weis-Garcia F. Monoclonal versus polyclonal antibodies: Distinguishing characteristics, applications, and information resources. ILAR J. 2005; 46: 258-268. doi: 10.1093/ilar.46.3.258.


130. Tomita M., Tsumoto K. Hybridoma technologies for antibody production. Immunotherapy. 2011; 3(3): 371-380. doi: 10.2217/imt.11.4.


131. Watkins N.A., Ouwehand W.H. Introduction to antibody engineering and phage display. Vox Sang. 2000; 78(2): 72-79. doi: 10.1159/000031154.


132. Hammers C.M., Stanley J.R. Antibody phage display: Technique and applications. J. Investig. Dermatol. 2014; 134(2): 1-5. doi: 10.1038/jid.2013.521.


133. Frenzel A., Schirrmann T., Hust M. Phage display-derived human antibodies in clinical development and therapy. MAbs. 2016; 8(7): 1177-1194. doi: 10.1080/19420862.2016.1212149.


134. Roberts D.M., Gallapatthy G., Dunuwille A., Chan B.S. Pharmacological treatment of cardiac glycoside poisoning. Br. J. Clin. Pharmacol. 2016; 81(3): 488-495. doi: 10.1111/bcp.12814.


135. Flanagan R.J., Jones A.L. Fab antibody fragments: some applications in clinical toxicology. Drug Saf. 2004; 27(14): 1115-1133. doi: 10.2165/00002018-200427140-00004.


136. Banner W. Jr, Timmons O.D., Vernon D.D. Advances in the critical care of poisoned paediatric patients. Drug Saf. 1994; 10(1): 83-92. doi: 10.2165/00002018-199410010-00006.


137. Chan B.S., Buckley N.A. Digoxin-specific antibody fragments in the treatment of digoxin toxicity. Clin. Toxicol (Phila). 2014; 52(8): 824-836. doi: 10.3109/15563650.2014.943907.


138. Antman E.M., Wenger T.L., Butler V.P. Jr, Haber E., Smith T.W. Treatment of 150 cases of life-threatening digitalis intoxication with digoxin-specific Fab antibody fragments. Final report of a multicenter study. Circulation. 1990; 81(6):1744-1752. doi: 10.1161/01.cir.81.6.1744.


139. Medynicin N.V. Vakcinologiya. M.: Triada H; 1999: 272 s.


140. Pichichero M.E. Protein carriers of conjugate vaccines: characteristics, development, and clinical trials. Hum. Vaccin. Immunother. 2013; 9(12): 2505-2523. doi: 10.4161/hv.26109.


141. Kovac M., Kostanyan L., Mesaros N. et al. Immunogenicity and safety of a second booster dose of an acellular pertussis vaccine combined with reduced antigen content diphtheria-tetanus toxoids 10 years after a first booster in adolescence: An open, phase III, non-randomized, multi-center study. Hum. Vaccin. Immunother. 2018; 14(8): 1977-1986. doi: 10.1080/21645515.2018.1460292.


142. McCormack P. L. Reduced-antigen, combined diphtheria, tetanus and acellular pertussis vaccine, adsorbed (Boostrix?): a review of its properties and use as a single-dose booster immunization. Drugs. 2012; 72(13): 1765-1791. doi: 10.2165/11209630-000000000-00000.


143. Berkowitz B.A., Ceretta K.V., Spector S. Influence of active and passive immunity on the disposition of dihydromorphine-H3. Life Sci. 1974; 15(5): 1017-1028. doi: 10.1016/0024-3205(74)90016-2.


144. Bonese K.F., Wainer B.H., Fitch F.W., et al. Changes in heroin self -administration by a rhesus mokey after morphine immunization. Nature. 1974; 252(5485): 708-710. doi: 10.1038/252708a0.


145. Basmadjian G.P., Singh S., Sastrojojo B.T. et al. Generation of polyclonal catalytic antibodies against cocaine using transition state analogs of cocaine conjugated to diphtheria toxoid. Chem. Pharm. Bull. 1995; 43 (11): 1902-1911. doi: 10.1248/cpb.43.1902.


146. Carrera M.R., Ashley J.A., Zhou B. et al. Cocaine vaccines: Antibodies protection against relapse in a rat model. Proc. Natl. Acad. Sci. USA. 2000; 97(11): 6202-6206. doi: 10.1073/pnas.97.11.6202.


147. Anton B., Salazar A., Flores A. et al. Vaccines against morphine/heroin and its use as effective medication for preventing relapse to opiate addictive behaviors. Human Vaccines. 2009; 5(4): 214-229. doi: 10.4161/hv.5.4.7556.


148. Hicks M. J., De P. B., Rosenberg J. B. et al. Cocaine analog coupled to disrupted adenovirus: A vaccine strategy to evoke high-titer immunity against addictive drugs. Mol. Ther. 2011; 19 (3): 612-619. doi: 10.1038/mt.2010.280.


149. Cerny E. H., Cerny T. Vaccines against nicotine. Human Vaccines. 2009; 5(4): 200-205. doi: 10.4161/hv.5.4.7310.


150. Kosten T., Rosen M., Bond J. et al. Human therapeutic cocaine vaccine: Safety and immunogenicity. Vaccines. 2002; 20(7-8): 1196-1204. doi: 10.1016/s0264-410x(01)00425-x.


151. Martell B. A., Orson F. M., Poling J. T. et al. Cocaine vaccine for the treatment of cocaine dependence: A randomized double-blind placebo controlled efficacy trial. Arch. Gen Psychiatry. 2009; 66(10): 1116-1123. doi: 10.1001/archgenpsychiatry.2009.128.


152. Vasiliu O. Current Trends and perspectives in the immune therapy for substance use disorders. Front Psychiatry. 2022; 13: 882491. doi: 10.3389/fpsyt.2022.882491.


153. Celik M. , Fuehrlein B. A review of immunotherapeutic approaches for substance use disorders: Current status and future prospects. Immunotargets Ther. 2022. 29; 11: 55-66. doi: 10.2147/ITT.S370435.


154. Scendoni R., Bury E., Ribeiro I.L.A. et al. Vaccines as a preventive tool for substance use disorder: A systematic review including a meta-analysis on nicotine vaccines' immunogenicity. Hum. Vaccin. Immunother. 2022; 18(6): 2140552. doi: 10.1080/21645515.2022.2140552.





Свидетельство о регистрации сетевого электронного научного издания N 077 от 29.11.2006
Журнал основан 16 ноября 2000г.
Выдано Министерством РФ по делам печати, телерадиовещания и средств массовых коммуникаций
(c) Перепечатка материалов сайта Medline.Ru возможна только с письменного разрешения редакции

Размещение рекламы

Rambler's Top100