БИОМЕДИЦИНСКИЙ ЖУРНАЛ МЕДЛАЙН.РУ
Содержание журнала

Архив

Редакция
Учредители

Федеральное государственное бюджетное учреждение науки
"Институт токсикологии Федерального медико-биологического агентства"


Федеральное государственное бюджетное учреждение науки
Институт теоретической и экспериментальной биофизики
Российской академии наук


ООО "ИЦ КОМКОН"

Адрес редакции и реквизиты

199406, Санкт-Петербург, ул.Гаванская, д. 49, корп.2

ISSN 1999-6314
Фундаментальные исследования • Экспериментальная токсикология

Том: 21
Статья: « 78 »
Страницы:. 976-1004
Опубликована в журнале: 5 сентября 2020 г.

English version

Сосудистый эндотелий при острых отравлениях

Ивницкий Ю.Ю., Рейнюк В.Л., Иванов М.Б., Краснов К.А., Вакуненкова О.А., Шефер Т.В.

Федеральное государственное бюджетное учреждение науки
«Институт токсикологии Федерального медико-биологического агентства»
ФГБУ «Государственный научно-исследовательский испытательный институт военной медицины» Министерства обороны Российской Федерации


Резюме
Сосудистый эндотелий (СЭ) - структурный элемент гистогематических барьеров, регулирующий процессы воспаления, вазомоторику, тромбообразование, синтез белков соединительной ткани и ангиогенез. Предметом обзора явилась гипотеза об отягощающем влиянии преформированной хронической дисфункции СЭ на острые отравления. СЭ повреждается при прямом цитотоксическом действии на него ксенобиотиков и (или) острой гипоксии. Это повреждение накладывается на исходное функциональное состояние СЭ, находящееся под влиянием гуморальных факторов. В их числе - вещества-эндотелиотоксиканты и вещества-эндотелиопротекторы. Преобладающее влияние веществ первой группы формирует хроническую дисфункцию СЭ, при которой воздействие ксенобиотика даже в сублетальной дозе может послужить триггером летальных осложнений острой экзогенной интоксикации. Рассмотрен принцип персонифицированной оценки риска таких осложнений на основе исходного содержания в крови веществ, обладающих эндотелиотоксическими или эндотелиопротекторными свойствами. Предложен предварительный перечень таких веществ. Показана необходимость его валидации и пополнения другими веществами, в том числе продуцируемыми как нормальной кишечной микрофлорой, так и микроорганизмами, подозреваемыми в причастности к развитию дисфункции СЭ.


Ключевые слова
сосудистый эндотелий, гистогематический барьер, дисфункция эндотелия, острая интоксикация, осложнение, персонифицированная оценка риска.



(статья в формате PDF. Для просмотра необходим Adobe Acrobat Reader)



открыть статью в новом окне

Список литературы

1. Rajendran P., Rengarajan T., Thangavel J., et al. The vascular endothelium and human diseases // Int. J. Biol. Sci., 2013. - Vol. 9. - P. 1057-1069.


2. Pries A.R., Kuebler W.M. Normal endothelium // Handb. Exp. Pharmacol., 2006. - Vol. 176, Pt.1. - P. 1-40. doi: 10.1007/3-540-32967-6_1.


3. Ramos K.S., Kerzee J.K., Alejandro N.F., Lu K.P. Vascular toxicology: a cellular and molecular perspective // Cardiovascular toxicology. ? 4th ed. / Ed. by D. Acosta. - London and New York: Tailor & Francis, 2005. - P. 470-516.


4. Guan W, Liang W., Zhao Y., et al. Comorbidity and its impact on 1590 patients with COVID-19 in China: a nationwide analysis // Eur. Respir. J., 2020. - Vol. 55, N 5. - P. 2000547. doi: 10.1183/13993003.00547-2020.


5. Alvarado-Moreno J.A, Majluf-Cruz A., COVID-19 and dysfunctional endothelium: the mexican scenario // Arch. Med. Res., 2020. doi: 10.1016/j.arcmed.2020.05.004.


6. Самсонова М.В., Черняев А.Л., Михалeва Л.М., Зайратянц О.В., Мишнев О.Д. Патологическая анатомия лeгких при COVID-19. ? М.: ФГБНУ "НИИ морфологии человека", 2020. - 57 с.


7. Wallez Y.; Huber P. Endothelial adherens and tight junctions in vascular homeostasis, inflammation and angiogenesis // Biochim. Biophys Acta, 2008. - Vol. 1778. - P. 794-809.


8. Lee W.L., Slutsky A.S. Sepsis and endothelial permeability // N. Engl. J. Med., 2010. - Vol. 363. - P. 689-691.


9. Takakura N. Discovery of a vascular endothelial stem cell (VESC) population required for vascular regeneration and tissue maintenance // Circ. J., 2019. - Vol. 83. - P. 12-17. doi:10.1253/circj.CJ-18-1180.


10. Colbert J.F.; Schmidt E.P. Endothelial and microcirculatory function and dysfunction in sepsis // Clin. Chest Med., 2016. - Vol. 37. - P. 263-275.


11. Radeva M.Y., Waschke J. Mind the gap: Mechanisms regulating the endothelial barrier. Acta Physiol. (Oxf.) 2018. - Vol. 222. doi: 10.1111/apha.12860.


12. Wettschureck N., Strilic B., Offermanns S. Passing the vascular barrier: endothelial signaling processes controlling extravasation // Physiol. Rev., 2019. - Vol. 99, N 3. - P. 1467-1525. doi: 10.1152/physrev.00037.2018.


13. Takakura N. Discovery of a vascular endothelial stem cell (VESC) population required for vascular regeneration and tissue maintenance // Circ. J., 2019. - Vol. 83. - P. 12-17. doi:10.1253/circj.CJ-18-1180.


14. Fink K., Feldbrügge L., Sunkomat J., et al. Severe endothelial injury and subsequent repair in patients after successful cardiopulmonary resuscitation // Critical Care, 2010. - Vol. 14. - Article R104. doi: 10.1186/cc9050.


15. Bermejo-Martin J., Martín-Fernandez M., López-Mestanza C., Duque P., Almansa R. Shared features of endothelial dysfunction between sepsis and its preceding risk factors (aging and chronic disease) // J. Clin. Med., 2018. - . Vol. 7, N 11. - P. 400. doi:10.3390/jcm7110400.


16. Zhou Y., Huang X., Zhao T., et al. Hypoxia augments LPS-induced inflammation and triggers high altitude cerebral edema in mice // Brain Behav. Immunol., 2017. - Vol. 64. - P. 266-275. doi: 10.1016/j.bbi.2017.04.013.


17. Khanna K., Mishra K., Changa S. Effects of acute exposure to hypobaric hypoxia on mucosal barrier injury and the gastrointestinal immune axis in rats // High Alt. Med. Biol., 2019. - Vol. 20, N 1. - P. 35-44.


18. Paralikar S.J. High altitude pulmonary edema?clinical features, pathophysiology, prevention and treatment // Indian J. Occup. Med., 2012. - Vol. 16, N 2. - P. 59-62.


19. Friedrich E., Hong Z., Xiong S., et al. Endothelial cell Piezo1 mediates pressure-induced lung vascular hyperpermeability via disruption of adherence junctions // Proc. Natl. Acad. Sci. USA, 2019. - Vol. 116, N 26, - P. 12980-12985.


20. Biolo G., Girolamo F., McDonnell A., et al. Effects of hypoxia and bed rest on markers of cardiovascular risk: compensatory changes in circulating TRAIL and glutathione redox capacity // Front. Physiol., 2018. - Vol. 9. - P. 1000. doi: 10.3389/fphys.2018.01000.


21. Vasovatti S.H., Hyman M.C., Goonewardena S.N. Purinergic dysregulation in pulmonary hypertension // Am. J. Yeart Circ.Physiol., 2016. - Vol. 311, N 1. - P. H286-H298.


22. Tremblay J., Howe C., Ainslie P., Pyke K. UBC-Nepal expedition: imposed oscillatory shear stress does not further attenuate flow-mediated dilation during acute and sustained hypoxia // Am. J. Physiol. Heart Circ. Physiol., 2018. - Vol. 315, N 1. - P. H122-H131.


23. Otellin V.A., Khozhai L.I., Shishko T.T. Reaction of structural elements of hematoencephalic barrier in newborn rats to normobaric hypoxia // Zh. Evol. Biokhim. Fiziol., 2015. - Vol. 51, N 5. - P. 377-382.


24. Li Y., Han J.< Chen Y.M Chen C., Chu B., Zhang Y. p-Coumaric acid as a prophylactic measure against normobaric hypohia induced pulmonary edema in mice // Life Sci., 2018. - Vol. 211. - P. 215-223. doi: 10.1016/j.lfs.2018.09.039.


25. Hill G.W., Gillum T.L., Lee B.J., et al. Prolonged treadmill running in normobaric hypoxia causes gastrointestinal barrier permeability and elevates circulating levels of pro- and anti-inflammatory cytokines // Appl. Physiol. Nutr. Metab., 2020. - Vol. 45, N 4. - P. 376-386.


26. Gorbunov N.V., Atkins J.L., Gurusamy N., Pitt B.R. Iron-induced remodeling in cultured rat pulmonary artery endothelial cells // Biometals, 2012. - bVol. 25, N 1. - P. 203-217.


27. Fukami K., Yamagishi S., Iida S., et al. Involvement of iron-evoked oxidative stress in smoking-related endothelial dysfunction in healthy young men // PLoS One, 2014. - Vol. 9, N 2. - P. e89433. doi: 10.1371/journal.pone.0089433.


28. Marques V.B., Leal M.A.S., Mageski J.G.A., et al. Chronic iron overload intensifies atherosclerosis in apolipoprotein E deficient mice: role of oxidative stress and endothelial dysfunction // Life Sci., 2019. - Vol. 233. - P. 116702. doi: 10.1016/j.lfs.2019.116702.


29. Kamanna V.S., Ganji S., Shelkovnicov S., et al. Iron sucrose promotes endothelial injury and dysfunction and monocyte adhesion/infiltration // Am. J. Nephrol., 2012. - Vol. 35, N 2. - P. 114-119.


30. Prozialeck W., Edwards J., Nebert D., Woods J., Barchowsky A., Atchison D. The vascular system as a target of metal toxicity // Toxicol Sci., 2008. - Vol. 102, N 2. - P. 207-218.


31. Jomova K., Jenisova Z., Feszterova M., et al. Arsenic: toxicity, oxidative stress and human disease // J. Appl. Toxicol., 2011. - Vol. 31, N 2. - P. 95-107.


32. Ellinsworth D.C. Arsenic, reactive oxygen, and endothelial dysfunction // J. Pharmacol. Exp. Ther., 2015. - Vol. 353, N 3. - P. 458-464.


33. Souza A., Bastos D., Santos F., et al. Arsenic aggravates oxidative stress causing hepatic alterations and inflammation in diabetic rats // Life Sci., 2018. - Vol. 209. - P. 472-480. doi: 10.1016/j.lfs.2018.08.054.


34. Lim K., Shin Y., Kang S., et al. Potentiation of vasoconstriction and pressor response by low concentration of monomethylarsonous acid (MMA(III)) // Toxicol. Lett., 2011. - Vol. 205, N 3. - P. 250-256.


35. Zhou J., Li H., Fu Y., et al. Arsenic trioxide induces procoagulant activity through phosphatidylserine exposure and microparticle generation in endothelial cells // Thromb. Res., 2011. - Vol. 127, N 5. - P. 466-472.


36. Moon K/. Navas-Acien A., Grau-Pėrez M., et al. Low-moderate urine arsenic and biomarkers of thrombosis and inflammation in the strong heart study // PloS One, 2017. - Vol. 12, N 8. - P. e0182435. doi: 10.1371/journal.pone.0182435.


37. Huang Yu., He Q. Inhibition of c-Src-protects paraquat induced microvascular endothelial injury by modulating caveolin-1 phosphorylation and caveolae mediated transcellular permeability // Environ. Toxicol. Pharmacol., 2017. - Vol. 52. - P. 62-68. doi: 10.1016/j.etap.2017.01.023.


38. Shen H., Wu N., Wang Y., Zhao Y. Chloroquine attenuates paraquat-induced lung injury in mice by altering inflammation, oxidative stress and fibrosis // Int. Immunopharmacol., 2017. - Vol. 46. - P. 16-22. doi: 10.1016/j.intimp.2017.02.020.


39. Aires R., Capettini L., Silva J., et al. Paraquat poisoning induces TNF-a-dependent iNOS/NO mediated hyporesponsiveness of aorta to vasoconstrictors in rats // PLos One, 2013. - Vol. 8, N 9. - P. e73562. doi: 10.1371/journal.pone.0073562.


40. Yu L.J., Jian X.D., Zhang Z.C., et al. Clinical analysis of lower limb thrombosis caused by paraquat poisoning // Zhonghua Lao Dong Wei Sheng Zhi Ну Bing Za Zhi., 2018. - Vol. 36, N 1. - P. 58-60.


41. Kern J. K., Geier D.A., Audhia T., et al. Evidence of parallels between mercury intoxication and the brain pathology in autism // Acta Neurobiol. Exp. (Wars), 2012. - Vol.72, N 2. - P. 113-153.


42. Omanwar S., Fahim M. Mercury exposure and endothelial dysfunction: an interplay between nitric oxide and oxidative stress // Int. J. Toxicol., 2015. - Vol. 34, N 4. - P. 300-307.


43. Pollard K., Cauvi D., Toomey C., Hultman P., Kono D. Mercury-induced inflammation and autoimmunity // Biochim. Biophys. Acta Gen. Subj., 2019. - Vol. 1863, N 12. - P. 129299. doi: 10.1016/j.bbagen.2019.02.001.


44. Anders D., Keiser B., Benton B., Melber A., Olivera D., Holmes W., Paradiso D., Anderson D., Ray R. Transient receptor potential (TRP) channels as a therapeutic target for intervention of respiratory effects and lethality from phosgene // Toxicol. Lett., 2016. - Vol. 244. - P. 21-27. doi: 10.1016/j.toxlet.2015.11.004.


45. He D., Chen J., Shao Yi., Zhou F., Shen J. Adenovirus-delivered angiopoietin-1 ameliorates phosgene-induced acute lung injury via inhibition of NLRP3 inflammasome activation // Inhal. Toxicol., 2018. - Vol.30, N 4-5. - P. 187-194.


46. Addis D.R., Lambert J.A., Ford D.A., Jilling T., Matalon S. Halogen gas exposure: toxic effects on the parturient // Toxicol. Mech. Methods, 2020. - P. 1-16. doi: 10.1080/15376516.2020.1736702.


47. Vion A., Rautou P., Durand F., Boulanger C., Valla D. Interplay of inflammation and endothelial dysfunction in bone-marrow transplantation: focus on hepatic veno-occlusive disease // Sem. Thromb. Hemost., 2015. - Vol. 41, N 6. - P. 629-643.


48. Iqubal A., Iqubal M., Sharma S., Ansari M., Naimi A., Ali S., Haque S. Molecular mechanism involved in cyclophosphamide-induced cardiotoxicity: old drug with a new vision // Life Sci., 2019. - Vol. 218. - P. 112-131.


49. Chen M., Zhang C., Zhang J., et al. The involvement of DAMP-mediated inflammation in cyclophosphamide-induced liver injury and the protection of liquiritigenin and liquiritin // Eur. J. Pharmacol., 2019. - Vol. 856. - P. 172421. doi: 10.1016/j.ejphar.2019.172421.


50. Sales A., Negrão M., Testa L., et al. Chemotherapy acutely impairs neurovascular and hemodynamic responces in women with breast cancer // Am. J. Heart. Circ. Physiol., 2019. - Vol. 317, N 7. - P. H1-H12.


51. Krüger-Genge A., Steinbrecht S., Küpper J-H., Lendlein A., Jung F. Evidence for cytostatic effect of cyclophosphamide on human vein endothelial cells in cancer therapy: preliminary in vitro results // Clin. Hemorheol. Microcirc., 2018. - Vol. 69, N 1-2. - P. 267-276.


52. Leite L.N., do Vale G.T., Simplicio J.A., et al. Ethanol-induced erectile dysfunction and increased expression of pro-inflammatory proteins in the rat cavernosal smooth muscle are mediated by NADPH oxidase-derived reactive oxygen species // Eur. J. Pharmacol., 2017. - Vol. 804. - P. 82-93. doi: 10.1016/J.ejphar.2017.03.024.


53. Bishehsari F., Magno E., Swanson G., et al. Alcohol and gut-derived inflammation // Alcohol Res., 2017. - Vol. 38, N 2. - P. 163-171.


54. Eby J.M., Majetschak M. Effects of ethanol and ethanol metabolites on intrinsic function of mesenteric resistance arteries // PLoS One, 2019. - Vol. 14, N 3. - P. e0214336. doi: 10.1371/journal.pone.0214336.


55. Alves N., Yuan S., Breslin J. Sphignosine-1-phosphate protects against brain microvascular endothelial junctional protein disorganization and barrier dysfunction caused by alcohol // Microcirculation, 2019. - Vol. 26, N 1. - P. e12506. doi: 10.1111/micc.12506.


56. Liu R., Hong J., Xu X., et al. Gut microbiome and serum metabolome alterations in obesity and after weight-loss intervention // Nat. Med., 2017. - Vol. 23, N 7. - P. 859-868.


57. Tang W., Kitai T., Hazen L. Gut microbiota in cardiovascular health and disease // Circ. Res., 2017. - Vol. 120, N 7. - P. 1183-1196.


58. Lau W.L., Savoj J., Nakata M.B., Vaziri D. Altered microbiome in chronic kidney disease: systemic effects of gut-derived uremic toxins // Clin. Sci. (Lond.), 2018. - Vol.132, N 5. - P. 509-522.


59. Мечников И.И. Продолжительность жизни животных // Этюды оптимизма. - М.: Наука, 1986. - с. 72.


60. Ивницкий Ю.Ю., Шефер Т.В., Рейнюк Т.В. Эндогенный аммиак в токсическом процессе. Развитие концепции эндотоксикоза. - Б.м.: Palmarium Academic Publishing, 2012. - 176 с. ISBN:978-3-8473-9499-0.


61. Yang D., Hazey J. W., David F. et al. Integrative physiology of splanchnic glutamine and ammonium metabolism // Am. J. Endocrinol. Metab., 2000. - Vol. 278. - P. E469-E476.


62. Saleem T., Hassan M., Oriquat G., Soliman A., Youssef A., Ammari W. Blood gases, plasma ammonia levels and urine analysis; a potential for early detection of some inborn errors of metabolism // Int. J. Biochem. Res., 2016. - Vol. 15, N 4. - P. 1-10.


63. Ганн М., Массен В. М., Ненцкий М., Павлов И. П. Экковский свищ вен нижней полой и воротной и его последствия для организма // Арх. Биол. Наук, 1892. - Т. 1, ? 4. - С. 400-444.


64. Pagana K., Pagana T.J., eds. Mosby?s manual of diagnostic and laboratory tests. - 5th ed. - St.Louis: Mosby Elsevier, 2014. - 1245 p.


65. Scott T., Kronsten T., Hughes R., Shawcross D. Pathophysiology of cerebral oedema in acute liver failure // World J. Gastroenterol., 2013. - Vol. 19, N 48. - P. 9240-9255.


66. Skowroñska M., Albrecht J. Oxidative and nitrosative stress in ammonia neurotoxicity // Neurochem. Int., 2013. - Vol. 62, N 5. - P. 731-737.


67. Tranah T.H., Manakkat G.K., Ryan J., Shawcross D.L. Systemic inflammation and ammonia in hepatic encephalopathy // Metab. Brain Dis., 2013. - Vol.28, N 1. - P. 1-5.


68. Skwroñska M., Zieliñska M., Wójcik-Stanaszek W., et al. Ammonia increases paracellular permeability of rat brain endothelial cells by a mechanism encompassing oxidative/nitrosative stress and activation of matrix metalloproteinases // J. Neurochem., 2012. - Vol. 121, N 1. - P. 125-134.


69. Jayakumar A., Norenberg M. Hyperammonemia in hepatic encephalopathy // J. Clin. Exp. Hepatol., 2018. - Vol. 8, N 3. - P. 272-280.


70. McClung H., Sloan H., Powers P., et al. Early changes in the permeability of the blood-brain barrier produced by toxins associated with liver failure // Pediatr. Res., 1990. - Vol. 28, N 3. - P. 227-231.


71. Ochoa-Sanchez R., Rose C. Pathogenesis of hepatic encephalopathy in chronic liver disease // J. Clin. Exp. Hepatol., 2018. - Vol. 8, N 3. - P. 262-271.


72. Shi K., Wang F., Jiang H., et al. Gut bacterial translocation may aggravate microinflammation in hemodialysis patients // Dig. Dis. Sci., 2014. - Vol. 59. - P. 2109-2117. doi: 10.1007/s10620-014-3202-7.


73. Brown G.C. The endotoxin hypothesis of neurodegeneration // J. Neuroinflammation, 2019. - Vol. 16. - P. 180. doi: 10.1186/s12974-019-1564-7.


74. Rubin L.J., Parker J.L., Adams H.R. Bacterial lipopolysaccharide (endotoxin) and myocardial dysfunction // Cardiovascular toxicology. ? 4th ed. / Ed. by D. Acosta. ? London and New York: Tailor & Francis, 2005. ? P. 216-262.


75. Iba T., Levy J.H., Hirota T., et al. Protection of the endothelial glycocalix by antithrombin in endotoxin-induced rat model of sepsis // Thromb. Res., 2018. - Vol. 171. - P. 1-6. doi: 10.1016/j.thromres.2018.09.042.


76. Pfalzgraff A., Weindl G. Intracellular lipopolysaccharide sensing as a potential therapeutic target for sepsis // Trends Pharmacol. Sci., 2019. - Vol. 40. - P. 187-197.


77. Morris M.C., Gilliam E.A., Li L. Innate immune programing by endotoxin and its pathological consequences // Front. Immunol., 2015. - Vol. 5. - P. 680. doi: 10.3389/fimmu.2014.00680.


78. Widerman R.F., Erf G.F. Chapman M.E. Intravenous endotoxin triggers pulmonary vasoconstriction and pulmonary hypertension in broiler chickens // Poult. Sci., 2001. - Vol. 80, N 5. - P. 647-655.


79. Vutukuri R., Brunkhorst R., Kestner R., et al. Alteration of sphingolipid metabolism as a putative mechanism underlying LPS-induced BBB disruption // J. Neurochem., 2018. - Vol. 144. - P. 172-85.


80. Wang L., Cao Y., Gorshcov B. Et al. Ablation of endothelial Pfkfb3 protects mice from acute lung injury in LPS-induced endotoxemia // Pharmacol. Res., 2019. - Vol. 146. - P. 104292. doi: 10.1016/j.phrs.2019.104292.


81. Lau W.L., Savoj J., Nakata M.B., Vaziri D. Altered microbiome in chronic kidney disease: systemic effects of gut-derived uremic toxins // Clin. Sci. (Lond.), 2018. - Vol. 132, N 5. - P. 509-522.


82. Matsumoto T., Takayanagi K., Kojima M., Taguchi K., Kobayashi T. Acute exposure to indoxyl sulfate impairs endothelium-dependent vasorelaxation in rat aorta // Int. J. Med. Sci., 2019. - Vol. 20. doi:10.3390/ijms20020338.


83. Lin C.J., Wu C.J., Wu P.C., et al. Indoxyl sulfate impairs endothelial progenitor cells and might contribute to vascular dysfunction in patients with chronic kidney disease // Kidney Blood Press Res., 2016. - Vol. 41., N 6 - P. 1025-1036.


84. Cosola C., Rocchetti M.T., Cupisti A., Gesualdo L. Microbiota metabolites: Pivotal players of cardiovascular damage in chronic kidney disease // Pharmacol. Res. 2018. - Vol. 130. - P. 132-142.


85. Chiu C.A., Lu L.F., Yu T.H., et al. Increased levels of total P-Cresylsulphate and indoxyl sulphate are associated with coronary artery disease in patients with diabetic nephrophathy // Rev. Diabet. Stud., 2010. - Vol. 7. - P. 275-284.


86. Gondouin B., Cerini C., Dou L., et al. Indolic uremic solutes increase tissue factor production in endothelial cells by the aryl hydrocarbon receptor pathway // Kidney Int., 2013. - Vol. 84. - P. 733-744. doi: 10.1038/ki.2013.133.


87. Sun C.Y., Hsu H.H., Wu M.S. P-cresol sulfate and indoxyl sulfate induce similar cellular inflammatory gene expressions in cultured proximal renal tubular cells // Nephrol. Dial. Transplant., 2013. - Vol. 28, N 1. - P. 70-78.


88. Zhu W., Gregory J.C., Org E., et al. Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk // Cell, 2016. - Vol. 65. - P. 111-124.


89. Seldin M.M., Meng Y., Qi H., et al., Trimethylamine N-oxide promotes vascular inflammation through signaling of mitogen-activated protein kinase and nuclear factor-κB // J. Am. Heart Assoc., 2016. - Vol. 5, N 2. - P. e00276. doi: 10.1161/JAHA.115.002767.


90. Heianza Y, Ma W., Manson J., Rexrode K., Qi L. Gut microbiota metabolites and risk of major adverse cardiovascular disease events and death: a systematic review and meta-analysis of prospective studies // J. Am. Hear.t Assoc., 2017. - Vol. 6, N 7. - P. e004947. doi: 0.1161/JAHA.116.004947.


91. Ogawa T., Kimoto M., Sasaoka K. Purification and properties of a new enzyme, NG,NG-dimethylarginine dimethylaminohydrolase, from rat kidney // J. Biol. Chem., 1989 - Vol.2. - P. 4:10205-10209.


92. Masuda H., Goto M., Tamaoki S., Azuma H. Accelerated intimal hyperplasia and increased endogenous inhibitors for NO synthesis in rabbits with alloxan-induced hyperglycaemia // Br. J. Pharmacol., 1999. - Vol. 12. - P. 211-218.


93. Malyszko J., Matuszkiewicz-Rowinska J. Endothelium, asymmetric dimethylarginine, and atherosclerosis in chronic kidney disease // Polish Arch. Intern. Med., 2018. - Vol. 128, N 3. - 145-147.


94. Oliva-Damaso E., Oliva-Damaso N., Rodriguez-Esparragon F., et al. Asymmetric (ADMA) and symmetric (SDMA) dimethylarginines in chronic kidney disease: a clinical approach // Int. J. Mol. Sci., 2019. - Vol. 20. - P. 3668. doi:10.3390/ijms20153668.


95. Liu X., Xu X., Shang R., Chen Y. Asymmetric dimethylarginine (ADMA) as an important risk factor for the increased cardiovascular diseases and heart failure in chronic kidney disease // Nitric Oxide, 2018. - Vol. 78. - P. 113-120. doi:10.1016/j.niox.2018.06.004.


96. Zeng Y., Pan Q., Wang X. Impaired mitochondrial fusion and oxidative phosphorylation triggered by high glucose is mediated by Tom22 in endothelial cells // Oxid. Med. Cell. Longev., 2019. - Vol. 2019, article ID 4508762. doi: 10.1155/2019/4508762.


97. Haspula D., Vallejos A., Moore T., Tomar N., Dash R., Hoffmann B. Influence of a hyperglycemic microenvironment on a diabetic versus healthy rat vascular endothelium reveals distinguishable mechanistic and phenotypic responses // Front. Physiol., 2019. - Vol. 10, article 558. doi: 10.3389/fphys.2019.00558.


98. Daiber A., Steven S., Vujacic-Mirski K., et al. Regulation of vascular function and inflammation via cross talk of reactive oxygen and nitrogen species from mitochondria or NADPH oxidase-implications for diabetes progression // Int. J. Mol. Sci., 2020. - Vol. 21, N 10. - P. E3405. doi: 10.3390/ijms21103405.


99. Drake-Holland A.J., Noble M.I. The important new drug target in cardiovascular medicine - the vascular glycocalyx // Cardiovasc. Hematol. Disord. Drug Targets, 2009. - Vol. 9. - P. 118-123.


100. Haidari M., Zhang W., Willerson J.T., Dixon, R.A. Disruption of endothelial adherens junctions by high glucose is mediated by protein kinase C-dependent vascular endothelial cadherin tyrosine phosphorylation // Cardiovasc. Diabetol., 2014. - Vol. 13. - P. 105.


101. Sena C.M., Pereira A.M., Seicia R. Endothelial dysfunction ? a major mediator of diabetic vascular disease // Biochim. Biophys. Acta, 2013. - Vol.1832. - P. 2216-2231.


102. Goligorsky M.S. Vascular endothelium in diabetes // Am. J. Physiol. Renal Physiol., 2017. - Vol. 312. - P. 266-275.


103. Ganguly P., Alam S.F. Role of homocysteine in the development of cardiovascular disease // Nutrition J., 2015. - Vol. 14. - P. 6. doi: 10.1186/1475-2891-14-6.


104. Baszczuk A, Kopczyński Z, Thielemann A. Endothelial dysfunction in patients with primary hypertension and hyperhomocysteinemia // Postepy Hig. Med. Dosw., 2014. -Vol. 68. - P. 91-100. doi: 10.5604/17322693.1087521.


105. Hirano T. Pathophysiology of diabetic dyslipidemia // J. Atheroscler. Thromb., 2018. - Vol. 25, N 9. - P. 771-782.


106. Exner M., Hermann M., Hofbauer R., et al. Semicarbazide-sensitive amine oxidase catalyzes endothelial cell-mediated low density lipoprotein oxidation // Cardiovasc. Res., 2001. - Vol. 50, N 3. - P. 583-588.


107. Abdo A.I., Rayner B.S., van Reyk D.M., Hawkins C.L. Low-density lipoprotein modified by myeloperoxidase oxidants induces endothelial dysfunction // Redox. Biol., 2017. - Vol. 13. - P. 623-632. doi: 10.1016/j.redox.2017.08.004.


108. Dias H.K.I., Brown C.L.R., Polidori M.C.; Lip G.Y.H., Griffiths H.R. LDL-lipids from patients with hypercholesterolaemia and Alzheimer?s disease are inflammatory to microvascular endothelial cells: Mitigation by statin intervention // Clin. Sci., 2015. - Vol. 129. - P. 1195-1206.


109. Цветкова М.В., Хирманов В.Н., Зыбина Н.Н. Роль неэтерифицированных жирных кислот в патогенезе сердечно-сосудистых заболеваний // Артериальная гипертензия, 2010. - Т. 16, ? 1. - С. 93-103.


110. Ghosh A., Gao L., Thakur A., Siu P., Lai C. Role of free fatty acids in endothelial dysfunction // J. Biomed. Sci., 2017. - Vol. 24, N 50. doi: 10.1186/s12929-017-0357-5.


111. Schönfeld P., Reiser G. Why does brain metabolism not favor burning of fatty acids to provide energy? - Reflections on disadvantages of the use of free fatty acids as fuel for brain // J. Cereb. Blood Flow Metab., 2013. - Vol. 33, N 10. - P. 1493-1499.


112. Wang L., Chen Y., Li X., Zhang Y., Gulbins E., Zhang Y. Enhancement of endothelial permeability by free fatty acid through lysosomalcathepsin B-mediated Nlrp3 inflammasome activation // Oncotarget, 2016. - Vol. 7. - P. 73229-73241.


113. Oteng A., Kersten S. Mechanism of action of trans fatty acids // Adv. Nutr., 2020, -- Vol. 11, N 3. - P. 697-708.


114. Lipski M., Deuel J., Baek J., et al. Human Hp-1 and Hp-2 phenotype-specific haptoglobin therapeutics are both effective in vitro and in guinea pigs to attenuate hemoglobin toicity // Antioxidants & redox signaling, 2013. - Vol. 19, N 14. - P. 1619-1633.


115. Chiabrando D., Vinchi F., Fiorito V., Mercurio S., Tolosano E. Heme in pathophysiology: a matter of scavenging, metabolism and trafficking across cell membranes // Front. Pharmacol., 2014. - Vol. 5. - P. 61. doi: 10.3389/fphar.2014.00061.


116. Куценко С.А. Основы токсикологии. - СПб.: ООО «Фолиант», 2004. - 720 с.


117. Nath K., Belcher J., Nath M., et al. Role of TLR4 signaling in the nephrotoxicity of heme and heme proteins // Am.J. Physiol.Renal Physiol., 2018. - Vol. 314, N 5. - P. F906-F914.


118. Jenwy V., Eaton J., Balla G., Balla J. Natural history of the bruise: formation, elimination, and biological effects of oxidized hemoglobin // Oxid. Med. Cell Longev., 2013. - Vol. 2013. - P. 703571. doi: 10.1155/2013/703571.


119. Лейн Н. Кислород. Молекула, изменившая мир: Пер. с анг.. - М.: Издательство «Э», 2016. - с. 190.


120. Hopmann K., Cardey B., Gladwin M., Kim-Shapiro D., Ghosh A. Hemoglobin as a nitrite anhydrase: modelling methemoglobin-mediated N2O3 formation // Chemistry, 2011. - Vol. 17, N. 23. - P. 6348-6358.


121. Merle N., Paule R., Leon J., et al. P-selectin drives complement attack on endothelium during intravascular hemolysis in TLR-4/heme-dependent manner // PNAS, 2019. - Vol. 116, N 13. - P. 6280-6285.


122. Cholette J., Pietropaoli A., Henrichs K., et al. Elevated free hemoglobin and decreased haptoglobin levels are associated with adverse clinical outcomes, unfavorable physiologic measures, and altered inflammatory markers pediatric in pediatric cardiac surgery patients // Transfusion, 2018. - Vol. 58, N 7. - P. 1631-1639.


123. Chen G., Zhang D., Fuchs T., et al. Heme-induced neutrophil extracellular traps contribute to the pathogenesis of sickle cell disease // Blood, 2014. - Vol.123, N 24. - P.3818-3827.


124. Shi K., Wang F., Jiang H., et al. Gut bacterial translocation may aggravate microinflammation in hemodialysis patients // Dig. Dis. Sci., 2014. - Vol. 59. - P. 2109-2117. doi: 10.1007/s10620-014-3202-7.


125. Green C.E., Turner A.M. The role of the endothelium in asthma andchronic obstructive pulmonary disease (COPD) // Respir. Res., 2017. - Vol. 18, N 1. - P. 20. doi: 10.1186/s12931-017-0505-1.


126. Szucs B., Szucs C., Petrekanits M., Varga J. Molecular characteristics and treatment of endothelial disfunction in patients with COPD review article // Int. J. Mol. Sci., 2019. - Vol. 20, N 18. P. 4329. doi: 10.3390/ijms20184329.


127. Chiabrando D., Vinchi F., Fiorito V., Mercurio S., Tolosano E. Heme in pathophysiology: a matter of scavenging, metabolism and trafficking across cell membranes // Front. Pharmacol., 2014. - Vol. 5. - P. 61. doi: 10.3389/fphar.2014.00061.


128. Konukoglu D., Uzun H. Endothelial dysfunction and hypertension // Adv. Exp. Med. Biol., 2017. - Vol. 956. - P. 511-540.


129. Malerba M., Nardin M., Radaeli A., Montuschi P., Carpagnano G.E., Clini E. The potential role of endothelial dysfunction and platelet activation in the development of thrombotic risk in COPD patients // Expert Rev. Hematol., 2017. - Vol. 10. - P. 821-832.


130. Vairappan B. Endothelial dysfunction in cirrhosis: Role of inflammation and oxidative stress // World J. Hepatol., 2015. - Vol. 7. - P. 443-459.


131. Mitra R., O?Neil G.L., Harding I.C., Cheng M.J., Mensah,S.A., Ebong E.E. Glycocalyx in atherosclerosis- relevant endothelium function and as a therapeutic target // Curr. Atheroscler. Rep., 2017. - Vol. 19, N 12. - P. 63. doi: 10.1007/s11883-017-0691-9.


132. Fu Q., Colgan S.P., Shelley C.S. Hypoxia: The force that drives chronic kidney disease // Clin. Med. Res., 2016. - Vol. 14. - P. 15-39.


133. Wadkin J.C.R., Patten D.A., Kamarajah S.K., et al.. CD151 supports VCAM-1-mediated lymphocyte adhesion to liver endothelium and is upregulated in chronic liver disease and hepatocellular carcinoma // Am. J. Physiol. Gastrointest. Liver Physiol., 2017.-Vol.313.-P.138-149.


134. Gavin J.B., Maxwell L., Edgar, S.G. Microvascular involvement in cardiac pathology // J. Mol. Cell. Cardiol., 1998. - Vol 30. - P. 2531-2540.


135. Frijns C.J.M., Kappelle L.J. Inflammatory cell adhesion molecules in ischemic cerebrovascular disease // Stroke, 2002. - Vol. 33. - P. 2115-2122.


136. Lutz J., Menke J., Sollinger D., Schinzel H., Thürmel K. Haemostasis in chronic kidney disease // Nephrol. Dial. Transpl., 2014. - Vol. 29. - P. 29-40.


137. Wiseman S., Marlborough F., Doubal F., Webb D.J., Wardlaw J. Blood markers of coagulation, fibrinolysis, endothelial dysfunction and inflammation in lacunar stroke versus non-lacunar stroke and non-stroke: systematic review and meta-analysis // Cerebrovasc. Dis., 2014. - Vol. 37. - P. 64-75.


138. Remková A., Remko M. Homocysteine and endothelial markers are increased in patients with chronic liver diseases // Eur. J. Intern. Med., 2009. - Vol. 20. - P. 482-486.


139. Besedina A. NO-synthase activity in patients with coronary heart disease associated with hypertension of different age groups // J. Med. Biochem., 2016. - Vol. 35. - P. 43-49.


140. Ikonomidis I., Voumvourakis A., Makavos G., et al. Association of impaired endothelial glycocalyx with arterial stiffness, coronary microcirculatory dysfunction, and abnormal myocardial deformation in untreated hypertensives // J. Clin. Hypertens. (Greenwich), 2018. doi: 10.1111/jch.13236.


141. Hernandez N.M., Casselbrant A., Joshi M., Johansson B.R., Sumitran-Holgersson S. Antibodies to kidney endothelial cells contribute to a ?leaky? glomerular barrier in patients with chronic kidney diseases // Am. J. Physiol. Ren. Physiol., 2012. - Vol. 302. - P. 884-894.


142. Chistiakov D.A., Orekhov A.N., Bobryshev Y.V., Endothelial barrier and its abnormalities in cardiovascular disease // Front. Physiol., 2015. - Vol. 6. - P. 365.


143. Ветряков О.В., Халимов Ю.Ш., Быков В.Н., Фисун А.Я. Влияние различных стпеней нормобарической гипоксии на физическую работоспособность человека // Вестник Российской Военно-медицинской Академии, 2018. - Т. 62, ? 2. - с. 7-9.


144. Ivnitsky J.J., Schäfer T.V., Rejniuk V.L. Promotion of the toxic action of cyclophosphamide by digestive tract luminal ammonia in rats // ISRN Toxicology, 2011. - Vol. 2011, Article ID 450875, 4 pages, doi:10.5402/2011/450875.


145. Ивницкий Ю.Ю., Шефер Т.В., Тяптин А.А., Рейнюк В.Л. Изменения химического состава крови и головного мозга крыс при моделировании миелоабляционного режима применения циклофосфана // Токсикол. Вестник, 2019. - Т. 156, ? 3. - С.13-18.


146. Кармишин А.М., Киреев В.А., Насонова Н.А., Березин Г.И., Афанасьев Р.В. Математические методы фармакологии, токсикологии и радиобиологии. - Воронеж: Издательство «Истоки», 2009. - 256 с.


147. Карпунина Н.С., Туев А.В. Chlamydophila pneumonie и атерогенез: свидетель или подозреваемый? // Мед. Альманах, 2010. - Т. 4, ? 13. - С. 252-257.


148. Ferrer, R.; Mateu, X.; Maseda, E.; Yébenes, J.C.; Aldecoa, C.; De Haro, C.; Ruiz-Rodriguez, J.C.; Garnacho-Montero, J. Non-oncotic properties of albumin. A multidisciplinary vision about the implications for critically ill patients // Expert Rev. Clin. Pharmacol., 2018. - Vol. 11. - P. 125-137.


149. Kuck J.L., Bastarache J.A., Shaver C.M., et al.Ascorbic acid attenuates endothelial permeability triggered by cell-free hemoglobin // Biochem. Biophys. Res. Commun., 2018. - Vol. 495, N 1. - P. 433-437.


150. Wang W., Wu Q., Sui Y., Wang Y., Qiu. Rutin protects endothelial dysfunction by disturbing Nox4 and ROS- sensitive NLRP3 inflammasome // Biomed. Pharmacother., 2017. - Vol. 86. - P. 32-40. doi: 10.1016/j.biopha.2016.11.134.


151. Pingali U., Nutalapati C., Illendulla V. Evaluation of the effect of fish oil alone and with combination with a proprietary chromium complex on endothelial dysfunction, systemic inflammation and lipid profile in type 2 diabetes mellitus - a randomized, double-blind, placebo-controlled clinical study // Diabetes Metab. Syndr. Obes., 2020. - Vol. 13. - P. 31-42. doi: 10.2147/DMSO.S220046.


152. Rodella L., Lamon B.D., Sangras B., Goodman A.T., Falck J.R., Abraham N.G. Carbon monoxide and biliverdin prevent endothelial cell sloughing in rats with type I diabetes // Free Radic. Biol. Med., 2006. - Vol. 40, N 12. - P. 2198-2205.