Медико-биологический
информационный портал
для специалистов
 
БИОМЕДИЦИНСКИЙ ЖУРНАЛ Medline.ru

СОДЕРЖАНИЕ ЖУРНАЛА:
Физико-химическая биология

Клиническая медицина

Профилактическая медицина

Медико-биологические науки


АРХИВ:

Фундаментальные исследования

Организация здравохраниения

История медицины и биологии



Последние публикации

Поиск публикаций

Articles

Архив :  2000 г.  2001 г.  2002 г. 
               2003 г.  2004 г.  2005 г. 
               2006 г.  2007 г.  2008 г. 
               2009 г.  2010 г.  2011 г. 
               2012 г.  2013 г.  2014 г. 
               2015 г.  2016 г.  2017 г. 

Редакционная информация:
        Опубликовать статью
        Наша статистика


 РЕДАКЦИЯ:
Главный редактор

Заместители главного редактора

Члены редколлегии
Специализированные редколлегии


 УЧРЕДИТЕЛИ:
Федеральное государственное бюджетное учреждение науки
"Институт токсикологии Федерального медико-биологического агентства"
(ФГБУН ИТ ФМБА России)

Институт теоретической и экспериментальной биофизики Российской академии наук.

ООО "ИЦ КОМКОН".




Адрес редакции и реквизиты

199406, Санкт-Петербург, ул.Гаванская, д. 49, корп.2

ISSN 1999-6314

Российская поисковая система
Искать: 


«
ТОМ 18, СТ. 1 (стр. 1-49)   |   12 января 2017 г.   
»

Фундаментальные исследования »

Фторуглеродные соединения в биомедицинских исследованиях in vivo с применением магнитно-резонансной визуализации
Гервиц Л.Л.

Федеральное государственное бюджетное учреждение науки Институт элементоорганических соединений им. А.Н.Несмеянова Российской академии наук.



Резюме

1Н магнитно-резонансная визуализация (МРВ) стала незаменимым инструментом для определения состояния болезни на уровне описания анатомических изменений. Для идентификации специфических тканей и наблюдения биологических процессов на клеточном уровне требуется уже молекулярная визуализация. Одним из способов получения такой информации является МРТ на ядрах 19F. Реализуемость этого подхода обусловлена наличием стабильных наноразмерных эмульсий перфторуглеродов (ПФУ), разработанных для использования в качестве кровезаменителей переносчиков кислорода. Возможности использования этих эмульсий для 19F МРВ в различных комбинациях с МРТ- контрастирующими веществами, клетками различной природы и лекарственными препаратами описываются в данном обзоре. Да?тся общее представление о состоянии исследований в данной области и перспективах применения и развития отдельных направлений.


Ключевые слова

19F магнитно-резонансная визуализация (19F МРВ), перфторуглероды, эмульсия перфторуглеродов, наночастицы, контрастирующие вещества.





(статья в формате PDF. Для просмотра необходим Adobe Acrobat Reader)



открыть статью в новом окне

Список литературы




1. Clark L.C. and Gollan F. (1966). Survival of mammals breathing organic liquids equilibrated with oxygen at atmospheric pressure. Science, 152, 1755-1756.


2. Sloviter H.A. and Kamimoto T. (1967). Erythrocyte substitute for perfusion of brain. Nature, 216, 458-460.


3. Geyer R.P., Monroe R.G. and Taylor K. (1968). Survival of rats totally perfused with a fluorocarbon-detergent preparation. In: J.C. Norman , J. Folkman, W.G.Hardison, L.E. Rudolf, F.J.Veith (eds), Organ perfusion and preservation. Appleton-Century-Crofts, New York. pp. 85-96.


4. Riess J.G. and Krafft M.P. (2006). Perfluorocarbon emulsions as in vivo oxygen delivery systems: background and chemistry. Chapter 24 in: R.M. Winslow (ed.) ?Blood Substitutes?, Elsevier, Acad. Press, Amsterdam, Boston, Heidelberg, London, New York, Oxford, Paris, San Diego, San Francisco, Singapore, Sydney, Tokyo, pp. 259-275.


5. Lowe K.C. (2006). Fluosol: the first commercial injectable perfluorocarbon oxygen carrier. Chapter 25. Ibid, pp. 276-287.


6. Shaw R.F. and Richard T.J. (2006). Rational development of Oxyfluor. Chapter 27. Ibid, pp. 299-311.


7. Moroz V.V., Krylov N.L., Ivanitskiy G.R.;(1995) [Perftoran application in clinical medicine] (in Russian)//Anesthesiology and Reanimatology (Moscow). N 6. pp. 12-17.


8. United State Patent No. US 6,562,872, B1, May 13,2003. Emulsion of perfluoroorganic compounds for medical purposes, a process for the preparation thereof and methods for treating and preventing diseases with the use thereof. Maevsky, E.I., Ivanitsky, G.R., Makarov K.N. et al.


9. Maevsky, E.I., Ivanitsky, H.R., Islamov B.I., Moroz V.V., Bogdanova L.A. Karmen N.B., Pushkin S.Yu., Maslenikov I.A. (2006). Perftoran. Chapter 26 in: R.M. Winslow (ed.) ?Blood Substitutes?, Elsevier, Acad. Press, Amsterdam, Boston, Heidelberg, London, New York, Oxford, Paris, San Diego, San Francisco, Singapore, Sydney, Tokyo, pp. 288-297


10. Lauterbur, P. C. Nature 1973, 242, 190.


11. Holland GN, Bottomley PA, Hinshaw WS. 19F magnetic resonance


imaging. J. Magn. Reson. 1977; 28: 133-136.


12. Roman Schwarz, Mace. Schuurmans, Joachim Seelig, and Basil Ku., 19F-MRI of Perfluorononane as a Novel Contrast Modality for Gastrointestinal Imaging, Magnetic Resonance in Medicine 41:80-86 (1999)


13. Mattrey, R. F.; Trambert, M. A.; Brown, J. J.; Young, S. W.;Bruneton, J. N.; Wesbey, G. E.; Balsara, Z. N. Radiology 1994, 191, 841.


14. Mattrey, R. F.; Trambert, M. A.; Brown, J. J.; Young, S. W.;


Bruneton, J. N.; Wesbey, G. E.; Balsara, Z. N. Radiology 1994, 191, 841.


15. Roman Schwarz, Mace. Schuurmans, Joachim Seelig, and Basil Ku., 19F-MRI of Perfluorononane as a Novel Contrast Modality for Gastrointestinal Imaging, Magnetic Resonance in Medicine 41:80-86 (1999).


16. Tobias Hahn, Sebastian Kozerke, Werner Schwizer, Michael Fried, Peter Boesiger, and Andreas Steingoetter; Visualization and Quantification of Intestinal Transit and Motor Function by Real-time Tracking of 19F Labeled Capsules in Humans; Magnetic Resonance in Medicine 66:812-820 (2011)


17. Mikhail V. Gulyaev, Nikolay V. Anisimov, Nadezhda E. Ustyuzhanina, Andrey S. Dmitrenok, Alexander S. Shashkov, Dmitry V. Yashunsky, Lev L. Gervits, Yury A. Pirogov and Nikolay E. Nifantiev*; Sensitivity of magnetic resonance imaging based on the detection of 19F NMR signals; Mendeleev Commun., 2016, 26, 24-25.


18. Mangala Srinivas , Luis J. Cruz , Fernando Bonetto , Arend Heerschap , Carl G. Figdor , I. Jolanda M. de Vries., Customizable, multi-functional fluorocarbon nanoparticles for quantitative in vivo imaging using 19F MRI and optical imaging., Biomaterials 31 (2010) 7070e7077.


19. Zhao, D., L. Jiang & R. P. Mason: Measuring changes in tumor oxygenation. Methods Enzymol, 386, 378-418 (2004)


20. Thomas, S. R. C. L. Partain, R. R. Price, J. A. Patton, M. V. Kulkarni&A. E. J. James. W.B.: The biomedical applications of Fluorine-19 NMR. In: Magnetic Resonance Imaging. Eds: Saunders Co., London (1988)


21. Mason, R. P.: Non-invasive physiology: 19F NMR of perfluorocarbon. Art. Cells, Blood Sub. & Immob. Biotech., 22, 1141-1153 (1994)


22. Vikram D. Kodibagkar1, Xianghui Wang1 , Ralph P. Mason1, Physical principles of quantitative nuclear magnetic resonance oximetry., Frontiers in Bioscience 13, 1371-1384, January 1, 2008.


23. Harris, A. L. Hypoxia-a key regulatory factor in tumour growth. Nature Rev. Cancer 2, 38-47, 2002


24. BourkeVA, ZhaoD,Gilio J, Chang CH, Jiang L,Hahn EW, Mason RP (2007) Correlation of radiation response with tumor oxygenation in the dunning prostate R3327-AT1 tumor. Int J Radiat Oncol. Biol Phys 67(4):1179-1186


25. Zhao D, Jiang L, Mason RP Measuring changes in tumor oxygenation. Meth Enzymol (2004) 386:378-418


26. Yu J-X, Kodibagkar V, Cui W, Mason R (2005) 19F: a versatile reporter for non-invasive physiology and pharmacology using magnetic resonance. Curr Med Chem 12(7):819-848


27. Fishman JE, Joseph PM, Carvlin MJ, Saadi-Elmandjra M, Mukherji B, Sloviter HA (1989) In vivo measurements of vascular oxygen tension in tumors using MRI of a fluorinated blood substitute. Invest Radiol 24(1):65-71


28. Dardzinski B, Sotak C Rapid tissue oxygen tension mapping using 19F inversion-recovery echo-planar imaging of Perfluoro-15-crown-5-ether. Magn Reson Med. (1994) 32(1):88-97.


29. Shukla H, Mason R, Woessner D, Antich P A comparison of three commercial perfluorocarbon emulsions as high-field 19F NMR probes of oxygen tension and temperature. J Magn Reson B (1995) 106(2):131-141.


30. Mason R, Rodbumrung W, Antich P Hexafluorobenzene: a sensitive 19F NMR indicator of tumor oxygenation. NMR in Biomed (1996) 9(3):125-134.


31. Shukla H, Mason R, Bansal N, Antich P Regional myocardial oxygen tension: 19F MRI of sequestered perfluorocarbon. Magn Reson Med (1996) 35:827-833.


32. Le D, Mason R, Hunjan S, Constantinescu A, Barker B, Antich P Regional tumor oxygen dynamics: 19F PBSR EPI of hexafluorobenzene. Magn Reson Med (1997) 15(8):971-981.


33. Hunjan S, Mason R, Constantinescu A, Peschke P, Hahn E, Antich P Regional tumor oximetry: 19FNMRspectroscopy of hexafluorobenzene. Int J Radiat Oncol Biol Phys (1998) 41(1):161-171.


34. Hunjan S, Zhao D, Constantinescu A, Hahn EW, Antich PP, Mason RP Tumor oximetry: demonstration of an enhanced dynamic mapping procedure using fluorine-19 echo planar magnetic resonance imaging in the Dunning prostate R3327-AT1 rat tumor. Int J Radiat Oncol Biol Phys (2001) 49(4):1097-1108


35. FanX, River J, Zamora M, Al-HallaqH,KarczmarG Effect of carbogen on tumor oxygenation: combined fluorine-19 and protonMRI measurements. Int J Radiat Oncol Biol Phys(2002) 54(4):1202-1209


36. Noth U, Rodrigues L, Robinson S, Jork A, ZimmermannU,Newell B, Griffiths J In vivo determination of tumor oxygenation during growth and in response to carbogen breathing using 15C5- loaded alginate capsules as fluorine-19 magnetic resonance imaging oxygen sensors. Int J Radiat Oncol Biol Phys (2004) 60(3):909-919


37. Siyuan Liu, Sameer J. Shah, Lisa J. Wilmes, John Feiner, Vikram D. Kodibagkar, Michael F. Wendland, Ralph P. Mason, Nola Hylton, Harriet W. Hopf, and Mark D. Rollins., Quantitative Tissue Oxygen Measurement in Multiple Organs Using 19F MRI in a Rat Model , Magnetic Resonance in Medicine 66:1722-1730 (2011)


38. Lee H, Price RR, Holburn GE, Partain CL, Adams MD, Cacheris WP (1994) In vivo fluorine-19 MR imaging: relaxation enhancement with Gd-DTPA. J Magn Reson Imaging 4(4):609-613


39. Guo Q, Mattrey R, Guclu C, Buxton R, Nalcioglu O (1994) Monitoring of pO2 by spin-spin relaxation rate 1/T2 of 19F in a rabit abscess model. Art Cells Blood Subs Immob Biotech 22(4):1449-1454


40. van der Sanden B, Heerschap A, Simonetti A, Rijken P, Peters H, Stuben G, van der Kogel A Characterization and validation of noninvasive oxygen tension measurements in human glioma xenografts by 19F-MR relaxometry. Int J Radiat Oncol Biol Phys (1999) 44(3):649-658


41. Jordan B, Cron G, Gallez B Rapid monitoring of oxygenation by 19F magnetic resonance imaging: simultaneous comparison with fluorescence quenching. Magn Reson Med (2009) 61:634-638


42. McIntyre DJO, McCoy CL, Griffiths JR (1999) Tumour oxygenation measurements by F-19 magnetic resonance imaging of perfluorocarbons. Curr Sci 76(6):753-762


43. Thomas SR, Pratt RG,Millard RW, Samaratunga RC, Shiferaw Y, Mcgoron AJ, Kim KT In vivo pO2 imaging in the porcine model with perfluoro carbon F-19 NMR at low field. Magn Reson Imaging (1996) 14(1):103-114


44. An oxygen-consuming phantom simulating perfused tissue to explore oxygen dynamics and 19F MRI oximetry Steven H(ubert) Baete ? Jan Vandecasteele ? Luc Colman ? Wilfried De Neve ? Yves De Deene. Magn Reson Mater Phy (2010) 23:217-226


45. Siyuan Liu, Sameer J. Shah, Lisa J. Wilmes, John Feiner, Vikram D. Kodibagkar, Michael F. Wendland, Ralph P. Mason, Nola Hylton, Harriet W. Hopf, and Mark D. Rollins., Quantitative Tissue Oxygen Measurement in Multiple Organs Using 19F MRI in a Rat Model , Magnetic Resonance in Medicine 66:1722-1730 (2011)


46. Nkongchu K, Santyr G (2005) An improved 3-D Look-Locker imaging method for T1 parameter estimation. Magn Reson Imaging 23(7):801-807.


47. Nkongchu K, Santyr G (2007) Phase-encoding strategies for optimal spatial resolution and T1 accuracy in3DLook-Locker imaging. Magn Reson Imaging 25(8):1203-1214


48. Lionel Mignion, Julie Magat, Olivier Schakman, Etienne Marbaix, Bernard Gallez, and Benedicte F. Jordan., Hexafluorobenzene in Comparison with Perfluoro-15-crown-5-ether for Repeated Monitoring of Oxygenation Using 19F MRI in a Mouse Model., Magnetic Resonance in Medicine 69:248-254 (2013).


49. S H Baete, J Vandecasteele1 and Y De Deene..19F MRI oximetry: simulation of perfluorocarbon distribution impact., Phys. Med. Biol. 56 (2011) 2535-2557.


50. Albert MS, Cates GD, Driehuys B, Happer W, Saam B, Wishnia A. Biologi?cal magnetic resonance imaging using laser-polarized 129Xe. Nature. 1994; 370(6486):199-201.


51. Parraga G, Ouriadov A, Evans A, et al. Hyperpolarized 3He ventilation defects and apparent diffusion coefficients in chronic obstructive pulmonary disease: preliminary results at 3.0 Tesla. Invest Radiol. 2007;42(6):384-391.


52. D.O. Kuethe, A. Caprihan, E. Fukushima, R.A. Waggoner, Imaging lungs using inert fluorinated gases, Magn. Reson. Med. 39 (1998) 85-88.


53. Kuethe DO, Caprihan A, Gach M, Lowe IJ, Fukushima E. Imaging obstructed ventilation with NMR using inert fluorinated gases. J. Appl. Physiol. 2000; 88: 2279-2286.


54. Perez-Sanchez JM, Perez de Alejo R, Rodriguez I, Cortijo M, Peces-Barba G, Ruiz-Cabello J. In vivo diffusion weighted 19F MRI using SF6.Magn. Reson. Med. 2005; 54: 460-463.


55. Wolf U, Scholz A, Heussel CP, Markstaller K, Schreiber WG. Subsecond fluorine-19 MRI of the lung. Magn. Reson. Med. 2006; 55: 948-951.


56. W.G. Schreiber, B. Eberle, S. Laukemper-Ostendorf, K. Markstaller,N. Weiler, A. Scholz, K. Burger, C.P. Heusel, M. Thelen, H.-U. Kauczor,Dynamic 19F-MRI of pulmonary ventilation using sulfur hexafluoride (SF6) gas, Magn. Reson. Med. 45 (2001) 605-613.


57. Adolphi NL, Kuethe DO. Quantitative mapping of ventilation-perfusion ratios in lungs by 19F MR imaging of T1 of inert fluorinated gases. Magn. Reson. Med. 2008; 59: 739-746.


58. Scholz AW, Wolf U, Fabel M, Weiler N, Heussel CP, Eberle B, David M, Schreiber WG. Comparison of magnetic resonance imaging of inhaled SF6 with respiratory gas analysis. Magn. Reson .Imaging,2009; 27: 549-556.


59. Marcus J. Couch, Iain K. Ball, Tao Li, Matthew S. Fox, Alexei V. Ouriadov, Birubi Biman and Mitchell S. Albert, Inert fluorinated gas MRI: a new pulmonary imaging modality, NMR Biomed. 2014; 27: 1525-1534.


60. Wolf U, Scholz A, Terekhov M, Muennemann K, Kreitner K, Werner C, Dueber C, Schreiber WG. Fluorine-19 MRI of the lung: first human experiment. In: Proceedings of the 16th Annual Meeting of ISMRM, Toronto, Canada, 2008; 3207.


61. Couch MJ, Ball IK, Li T, Fox MS, Littlefield SL, Biman B, Albert MS.Pulmonary ultrashort echo time 19F MR imaging with inhaled fluorinated gas mixtures in healthy volunteers: feasibility. Radiology 2013; 269: 903-909.


62. Halaweish AF, Moon RE, Foster WM, Soher BJ, McAdams HP, MacFall JR, Ainslie MD, MacIntyre NR, Charles HC. Perfluoropropane gas as a magnetic resonance lung imaging contrast agent in humans. Chest 2013; 144: 1300-1310.


63. Alexei V. Ouriadov, Matthew S. Fox, Marcus J. Couch, Tao Li, Iain K. Ball, and Mitchell S. Albert; In Vivo Regional Ventilation Mapping Using Fluorinated Gas MRI with an X-Centric FGRE Method; Magnetic Resonance in Medicine 74:550-557 (2015).


64. Anne M. Neubauer, Shelton D. Caruthers, Franklin D. Hockett, Tillman Cyrus, J. David Robertson, J. Stacy Allen, Todd D. Williams, Ralph W. Fuhrhop, Gregory M. Lanza, and Samuel A. Wickline, Fluorine Cardiovascular Magnetic Resonance Angiography In Vivo at 1.5 T with Perfluorocarbon Nanoparticle Contrast Agent. Journal of Cardiovascular Magnetic Resonance (2007) 9, 565-573.


65. 14.Ruud B. van Heeswijk, Yves Pilloud, Ulrich Flo. gel, Ju. rg Schwitter, Matthias Stuber. Fluorine-19 Magnetic Resonance Angiography of the Mouse. PLoS ONE, July 2012 | Volume 7 | Issue 7 | e42236.


66. Kabalnov A.S., Makarov K.N., Sherbakova O.V.,Solubility of fluorocarbons in water as a key parameter determining fluorocarbon emulsion staability , J. Fluor.Chem, 1990, 50, p. 271-284.


67. Hyon Bin Na and Taeghwan Hyeon., Nanostructured T1 MRI contrast agents., J. Mater. Chem., 2009, 19, 6267-6273.


68. Lev L. Gervits, Andrey V. Shibaev, Mikhail V. Gulyaev, Vyacheslav S. Molchanov, Nikolai V. Anisimov, Yury A. Pirogov, Alexei R. Khokhlov, Olga E. Philippova; A Facile Method of Preparation of Polymer-Stabilized Perfluorocarbon Nanoparticles with Enhanced Contrast for Molecular Magnetic Resonance Imaging; BioNanoSci, Feb. 2017, DOI 1007/s12668-017-0400-8


69. Sonu Sharmaa, Umaporn Paiphansirib, Vinzenz Hombacha,Volker Maila.nderb, Oliver Zimmermanna, Katharina Landfesterb,and Volker Rasche., Characterization of MRI contrast agent-loaded polymeric nanocapsules as versatile vehicle for targeted imaging., Contrast Media Mol. Imaging 2010, 5 59-69


70. Gerlinde Schmidtke-Schrezenmeier , Markus Urban, Anna Musyanovych , Volker Mailander , Markus Rojewski, Natalie Fekete, Cedric Menard, Erika Deak , Karin Tarte , Volker Rasche , Katharina Landfester & Hubert Schrezenmeier., Labeling of mesenchymal stromal cells with iron oxide - poly( L -lactide) nanoparticles for magnetic resonance imaging: uptake, persistence, effects on cellular function and magnetic resonance imaging properties., Cytotherapy, 2011; 13: 962-975.


71. I. Vernikouskayaa, N. Feketec, M. Bannwarthe, A. Erlec, M. Rojewskic, K. Landfestere, G. Schmidtke-Schrezenmeierc, H. Schrezenmeierc, and V. Rasche., Iron-loaded PLLA nanoparticles as highly efficient intracellular markers for visualization of mesenchymal stromal cells by MRI ., Contrast Media Mol. Imaging 2014, 9 109-121.


72. Anne M. Neubauer, Jacob Myerson, Shelton D. Caruthers, Franklin D. Hockett, Patrick M. Winter, Junjie Chen, Patrick J. Gaffney, J. David Robertson, Gregory M. Lanza, and Samuel A. Wickline., Gadolinium-Modulated 19F Signals From Perfluorocarbon Nanoparticles as a New Strategy for Molecular Imaging., Magnetic Resonance in Medicine 60:1066-1072 (2008).


73. Chalmers KH, De Luca E, Hogg NH, Kenwright AM, Kuprov I, Parker D, et al. Design principles and theory of paramagnetic fluorine-labelled lanthanide complexes as probes for (19)F magnetic resonance: a proof-of-concept study. Chemistry 2010; 16: 134-148.


74. Anke de Vriesa, Rik Moonena, Muhammed Yildirimb, Sander Langereisb, Rolf Lamerichsb, Jeroen A. Pikkemaatb, Simona Baronic, Enzo Terrenoc, Klaas Nicolaya, Gustav J. Strijkersa and Holger Grull., Relaxometric studies of gadolinium functionalized perfluorocarbon nanoparticles for MR imaging., Contrast Media Mol. Imaging 2014, 9 83-91


75. Kejia Caia, Garry E. Kieferb, Shelton D. Caruthersa, Samuel A. Wicklinea, Gregory M. Lanzaa and Patrick M. Winter., Quantification of water exchange kinetics for targeted PARACEST perfluorocarbon nanoparticles., NMR Biomed. 2012; 25: 279-285.


76. Yong Taik Lim, Mi Young Cho, Ji-Hyun Kang, Young-Woock Noh, Jee-Hyun Cho, Kwan Soo Hong, Jin Woong Chung, Bong Hyun Chung; Perfluorodecalin/[InGaP/ZnS quantum dots] nanoemulsions as 19F MR/optical imaging nanoprobes for the labeling of phagocytic and nonphagocytic immune cells; Biomaterials 31 (2010) 4964e4971.


77. J. Laudien, D. Naglav, C. Grob-Heitfeld, K. B. Ferenz, H. de Groot, C. Mayer, S. Schulz, A. Schnepf, and M. Kirsch; Perfluorodecalin-soluble fluorescent dyes for the monitoring of circulating nanocapsules with intravital fluorescence microscopy; J Microencapsul, Early Online: 1-8, DOI: 10.3109/02652048.2014.918668


78. Ahrens ET, Flores R, Xu H, Morel PA. In vivo imaging platform for tracking immunotherapeutic cells. Nat Biotechnol. 2005;23(8):983-987.


79. Matthew S. Fox1,2, Jeffrey M. Gaudet1,2 and Paula J. Foster; Fluorine-19 MRI Contrast Agents for Cell Tracking and Lung Imaging; Magnetic Resonance Insights 2015:8(S1).


80. Bernd Ebner, Patrick Behm, Christoph Jacoby, Sandra Burghoff, Brent A. French, Jürgen Schrader, Ulrich Flögel, PhD., Early Assessment of Pulmonary Inflammation by 19F MRI In Vivo., Circ Cardiovasc Imaging. 2010;3:202-210.


81. Kadayakkara DK, Ranganathan S, Young WB, Ahrens ET. Assaying macrophage activity in a murine model of inflammatory bowel disease using fluorine-19 MRI. Lab Invest. 2012; 92(4):636-645. [PubMed: 22330343.


82. Hertlein T, Sturm V, Kircher S, Basse-L . usebrink T,Haddad D, Ohlsen K, Jakob P. Visualization of abscess formation in a murine thigh infection model of Staphylococcus aureus by 19F magnetic resonance imaging (MRI). PLoS One 2011, 6:e18246.


83. Fl ögel U, Ding Z, Hardung H, Jander S, Reichmann G, Jacoby C, Schubert R, Schrader J. In vivo monitoring of inflammation after cardiac and cerebral ischemia by fluorine magnetic resonance imaging. Circulation 2008, 118:140-148.


84. F. Bönner, M.W. Merx, K. Klingel, P. Begovatz, U. Flögel, M. Sager, S. Temme, C. Jacoby, M. Salehi Ravesh, C. Grapentin, R. Schubert, J. Bunke, M. Roden, M. Kelm, and J. Schrader; Monocyte imaging aftermyocardial infarction with 19FMRI at 3 T: a pilot study in explanted porcine hearts; Cardiovascular Imaging (2015) 16, 612-620, doi:10.1093/ehjci/jev008


85. Anthony Balducci, Brooke M. Helfer, Eric T. Ahrens, Charles F. O?Hanlon III and Amy K. Wesa , Visualizing arthritic inflammation and therapeutic response by fluorine-19 magnetic resonance imaging (19F MRI), Journal of Inflammation 2012, 9:24.


86. Flögel U, Su S, Kreideweiss I, Ding Z, Galbarz L, Fu J, Jacoby C, Witzke O, Schrader J. Noninvasive detection of graft rejection by in vivo 19F MRI in the early stage. Am J Transplant 2011, 11:235-244. doi: 10.1111/j.1600-6143.2010.03372.


87. Hitchens TK, Ye Q, Eytan DF, Janjic JM, Ahrens ET, Ho C. 19F MRI detection of acute allograft rejection with in vivo erfluorocarbon labeling of immune cells. Magn Reson Med 2011, 65:1144-1153. doi: 10.1002/mrm.22702.


88. Sebastian Temme, Florian Bonner, Ju rgen Schrader and Ulrich Flogel ; 19F magnetic resonance imaging of endogenous macrophages in inflammation; Nanomed Nanobiotechnol 2012, 4:329-343. doi: 10.1002/wnan.1163.


89. Corot C, Robert P, Idée JM, Port M., Recent advances in iron oxide nanocrystal technology for medical imaging. Adv Drug Deliv Rev. 2006 Dec 1;58(14):1471-504. Epub 2006 Sep 30.


90. Yeh TC, Zhang W, Ildstad ST, Ho C., Intracellular labeling of T-cells with superparamagnetic contrast agents. Magn Reson Med. 1993 Nov;30(5):617-25.


91. Bulte JW, Arbab AS, Douglas T, Frank JA., Preparation of magnetically labeled cells for cell tracking by magnetic resonance imaging. Methods Enzymol. 2004;386:275-99.


92. Mangala Srinivas, Arend Heerschap, Eric T. Ahrens, Carl G. Figdor and I. Jolanda M. de Vries , 19F MRI for quantitative in vivo cell tracking , Trends in Biotechnology 28 (2010) 363-370


93. Janjic, J.M.; Ahrens, E.T. Fluorine-containing nanoemulsions for MRI cell tracking. Rev. Nanomed. Nanobiotechnol. 2009, 1, 492-501.


94. Janjic JM, Kadayakkara DK, Pusateri LK, Ahrens ET. Novel perfluorocarbon nanoemulsion for 19F cell tracking of two cell populations in vivo. In Proceedings of the 17th Annual Meeting of ISMRM, Honolulu, Hawaii, 2009.


95. Kampf T, Fischer A, Basse-Lusebrink TC, Ladewig G, Breuer F, Stoll G, Jakob PM, Bauer WR. Application of compressed sensing to in vivo 3D 19F CSI. J Magn Reson 2010;207:262-273.


96. Hitchens TK, Ye Q, Eytan DF, Janjic JM, Ahrens ET, Ho C. 19F MRI detection of acute allograft rejection with in vivo perfluorocarbon labeling of immune cells. Magn Reson Med 2011;65:1144-1153.


97. T. Kevin Hitchens, Li Liu, Lesley M. Foley, Virgil Simplaceanu, Eric T. Ahrens, and Chien Ho., Combining Perfluorocarbon and Superparamagnetic Iron-Oxide Cell Labeling for Improved and Expanded Applications of Cellular MRI., Magnetic Resonance in Medicine 00:00-00 (2014).


98. Dechao Niu , Xia Wang , Yongsheng Li , * Yuanyi Zheng , Faqi Li , Hangrong Chen ,


Jinlou Gu , Wenru Zhao , and Jianlin Shi,. Facile Synthesis of Magnetite/Perfl uorocarbon Co-Loaded Organic/Inorganic Hybrid Vesicles for Dual-Modality Ultrasound/Magnetic Resonance Imaging and Imaging-Guided High-Intensity Focused Ultrasound Ablation., Adv. Mater. 2013, 25, 2686-2692.


99. C. F. van Nostrum , Covalently cross-linked amphiphilic block copolymer micelles Soft Matter 2011 , 7 , 3246.


100. Hisashi Matsushita, Shin Mizukami, Fuminori Sugihara, Yosuke Nakanishi,Yoshichika Yoshioka, and Kazuya Kikuchi, Multifunctional Core-Shell Silica Nanoparticles for Highly Sensitive 19F Magnetic Resonance Imaging, Angew. Chem. Int. Ed. 2014, 53, 1008 -1011.


101. J. Bauer, M. Za.hres, A. Zellermann, M. Kirsch, F. Petrat, H. de Groot and C. Mayer; Perfluorocarbon-filled poly(lactide-co-gylcolide) nano- and microcapsules as artificial oxygen carriers for blood substitutes: a physico-chemical assessment; Journal of Microencapsulation, 2010; 27(2): 122-132.


102. Odile Diou, Nicolas Tsapis, Celine Giraudeau, Julien Valette, Claire Gueutin, Fanchon Bourasset, Sandrine Zanna, Christine Vauthier, Elias Fattal; Long-circulating perfluorooctyl bromide nanocapsules for tumor imaging by 19FMRI; j.biomaterials.2012.04.037.


103. Hieu Vu-Quang, Mads Sloth Vinding, Thomas Nielsen, Marcus Gorge Ullisch, Niels Christian Nielsen, Jorgen Kjems,; Theranostic tumor targeted nanoparticles combining drug delivery with dual near infrared and 19F magnetic resonance imaging modalities; http://dx.doi.org/10.1016/j.nano.2016.04.010.


104 N. Altinbas, C. Fehmer, A. Terheiden, A. Shukla, H. Rehage, C. Mayer; Alkylcyanoacrylate nanocapsules prepared from mini-emulsions: A comparison with the conventional approach; Journal of Microencapsulation, August 2006; 23(5): 567-581.


105. Claudia Stephan, Carolin Schlawne, Stefan Grass, Indra N. Waack, Katja B. Ferenz, Michael Bachmann, Sabine Barnert, Rolf Schubert, Martin Bastmeyer, Herbert de Groot, and Christian Mayer; Artificial oxygen carriers based on perfluorodecalin-filled poly(n-butyl-cyanoacrylate) nanocapsules; J Microencapsul, 2014; 31(3): 284-292.


106. Julia Laudien, Christoph Gro.-Heitfeld, Christian Mayer, Herbert de Groot, Michael Kirsch, and Katja B. Ferenz; Perfluorodecalin-Filled Poly(n-butyl-cyanoacrylate) Nanocapsules as Potential Artificial Oxygen Carriers: Preclinical Safety and Biocompatibility ; J. Nanosci. Nanotechnol. 2015, Vol. 15, No. 8.


107. J. Laudien, D. Naglav, C. Grob-Heitfeld, K. B. Ferenz, H. de Groot, C. Mayer, S. Schulz, A. Schnepf, and M. Kirsch; Perfluorodecalin-soluble fluorescent dyes for the monitoring of circulating nanocapsules with intravital fluorescence microscopy; J Microencapsul, Early Online: 1-8, DOI: 10.3109/02652048.2014.918668.


108. Peters D, Kastantin M, Kotamraju VR, Karmali PP, Gujraty K, Tirrell M, Ruoslahti E. Winter PM, Caruthers SD, Wickline SA, Lanza GM., Molecular Targeting atherosclerosis by using modular, multifunctional micelles. Proc Nat Acad Sci 2009; 106: 9815-9. 17 .


109. Winter PM, Caruthers SD, Wickline SA, Lanza GM. Molecular imaging by MRI. Curr Cardiol Rep 2006; 8: 65-9.


110. Wickline SA, Mason RP, Caruthers SD, Chen J, Winter PM, Hughes MS, Lanza GM. WeisslederR,Ross BD, Gambhir SS, Shelton, CT:Fluorocarbon agents for multimodal molecular imaging and targeted therapeutics. In: eds. Molecular Imaging: Principles and Practice. Peoples Medical Publishing House, 2010: 542-73.


111. J. Myerson, L . He, G. Lanza, D. Tollefsen and S. Wickline., Thrombin-inhibiting perfluorocarbon nanoparticles provide a novel strategy for the treatment and magnetic resonance imaging of acute thrombosis., J Thromb Haemost 2011; 9: 1292-300.


112. Mangala Srinivas a,*, Philipp Boehm-Sturm b, Carl G. Figdor a, I. Jolanda de Vries a, Mathias Hoehn., Labeling cells for in vivo tracking using 19F MRIBiomaterials.2012.08.048.


113. Boehm-Sturm P, Mengler L, Wecker S, Hoehn M, Kallur T. In vivo tracking of human neural stem cells with 19F magnetic resonance imaging. PLoS One 2011;6(12):e29040.


114. Waiczies H, Lepore S, Janitzek N, Hagen U, Seifert F, Ittermann B, et al. Perfluorocarbon particle size influences magnetic resonance signal and immunological properties of dendritic cells. PLoS One 2011;6(7):e21981.


115. Bible E, Dell?acqua F, Solanky B, Balducci A, Crapo PM, Badylak SF, et al. Noninvasive imaging of transplanted human neural stem cells and ECM scaffold remodeling in the stroke-damaged rat brain by (19)F- and diffusion-MRI. Biomaterials 2012;33(10):2858e71.


116. Kadayakkara DK, Janjic JM, Pusateri LK, Young WB, Ahrens ET. In vivo observation of intracellular oximetry in perfluorocarbon-labeled glioma cells and chemotherapeutic response in the CNS using fluorine-19 MRI. Magn Reson Med 2010;64(5):1252e9.


117. Malaisse WJ, Zhang Y, Louchami K, Sharma S, Dresselaers T, Himmelreich U, et al. (19)F-heptuloses as tools for the non-invasive imaging of GLUT2-expressing cells. Arch Biochem Biophys 2012;517(2):138e43.


118. Lim YT, Cho MY, Kang JH, Noh YW, Cho JH, Hong KS, et al. Perfluorodecalin/ [InGaP/ZnS quantum dots] nanoemulsions as 19F MR/optical imaging nanoprobes for the labeling of phagocytic and nonphagocytic immune cells. Biomaterials 2010;31(18):4964e71.


119. Zhou ZX, Zhang BG, Zhang H, Huang XZ, Hu YL, Sun L, et al. Drug packaging and delivery using perfluorocarbon nanoparticles for targeted inhibition of vascular smooth muscle cells. Acta Pharmacol Sin 2009;30(11):1577e84.


120. Barnett BP, Ruiz-Cabello J, Hota P, Ouwerkerk R, Shamblott MJ, Lauzon C, et al. Use of perfluorocarbon nanoparticles for non-invasive multimodal cell tracking of human pancreatic islets. Contrast Media Mol Imaging 2011;6(4):251e9.


121. Bartusik D, Tomanek B. Detection of fluorine labeled herceptin using cellular (19)F MRI ex vivo. J Pharm Biomed Anal 2010;51(4):894e900.


122. Bartusik D, Tomanek B. Application of 19F magnetic resonance to study the efficacy of fluorine labeled drugs in the three-dimensional cultured breast cancer cells. Arch Biochem Biophys 2010;493(2):234e41.


123. Ahrens ET, Young WB, Xu H, Pusateri LK. Rapid quantification of inflammation in tissue samples using perfluorocarbon emulsion and fluorine-19 nuclear magnetic resonance. Biotechniques 2011;50(4):229e34.


124. Kadayakkara DK, Ranganathan S, Young WB, Ahrens ET. Assaying macrophage activity in a murine model of inflammatory bowel disease using fluorine-19 MRI. Lab Invest 012;92(4):636e45.


125. Philipp Boehm-Sturm , Markus Aswendt , Anuka Minassian , Stefanie Michalk , Luam Mengler , Joanna Adamczak , Laura Mezzanotte, Clemens Lowik, Mathias Hoehn., A multi-modality platform to image stem cell graft survival in the naive and stroke-damaged mouse brain., Вiomaterials.2013.11.085.


126. Jelena M. Janjic, Mangala Srinivas, Deepak K. K. Kadayakkara, and Eric T. Ahrens, Self-delivering Nanoemulsions for Dual Fluorine-19 MRI and Fluorescence Detection, J. AM. CHEM. SOC. 2008, 130, 2832-2841.


127. Sravan K. Patel 1, Jonathan Williams 2 and Jelena M. Janjic., Cell Labeling for 19F MRI: New and Improved Approach to Perfluorocarbon Nanoemulsion Design Biosensors 2013, 3, 341-359.


128. Ilaria Tirotta, Alfonso Mastropietro, Chiara Cordiglieri, Lara Gazzera, Fulvio Baggi,


Giuseppe Baselli, Maria Grazia Bruzzone, Ileana Zucca, Gabriella Cavallo, Giancarlo Terraneo, Francesca Baldelli Bombelli, Pierangelo Metrangolo, and Giuseppe Resnati, A Superfluorinated Molecular Probe for Highly Sensitive in Vivo19F‑MRI, J. Am. Chem. Soc., 2014, 136 (24), pp 8524-8527.


129. H. Peng, I. Blakey, B. Dargaville, F. Rasoul, S. Rose and A. K. Whittaker, Synthesis and Evaluation of Partly Fluorinated Block Copolymers as MRI Imaging Agents, Biomacromolecules, 2009, 10, 374-381.


130. W. Du, A. M. Nystrom, L. Zhang, K. T. Powell, Y. Li, C. Cheng, S. A. Wickline and K. L. Wooley, Amphiphilic Hyperbranched Fluoropolymers as Nanoscopic 19F Magnetic Resonance Imaging Agent Assemblies, Biomacromolecules, 2008, 9, 2826-2833.


131. Sarah Decato, Troy Bemis,Eric Madsen and Sandro Mecozz, Synthesis and characterization of per fluoro-tert-butyl semifluorinated amphiphilic polymers and their potential application in hydrophobic drug delivery. The Royal Society of Chemistry, Polym.Chem., 2014,5, 6461-6471.


132. Z.-X. Jiang, X. Liu, E.-K. Jeong and Y. B. Yu, Symmetry-Guided Design and Fluorous Synthesis of a Stable and Rapidly Excreted Imaging Tracer for 19F MRI Angew. Chem., Int.


Ed., 2009, 48, 4755-4758.


133. Jiang Z-X, Feng Y, Yu YB. Fluorinated paramagnetic chelates as potential multi-chromic 19F tracer agents. Chem Commun 2011, 47:7233-7235.


134. Criscione, J. M.; Le, B. L.; Stern, E.; Brennan, M.; Rahner, C.; Papademetris, X.; Fahmy, T. M. Biomaterials 2009, 30, 3946.


135. Ogawa, M.; Nitahara, S.; Aoki, H.; Ito, S.; Narazaki, M.; Matsuda, T. Macromol. Chem. Phys. 2010, 211, 1369.


136. Ogawa, M.; Nitahara, S.; Aoki, H.; Ito, S.; Narazaki, M.; Matsuda, T. Macromol. Chem. Phys. 2010, 211, 1602. Boas, U.; Heegaard, P. M. H. Chem. Soc. Rev. 2004, 33, 43.


137. (Yu, J.-X.; Hallac, R. R.; Chiguru, S.; Mason, R. P., New frontiers and developing pplications in 19F NMR. Prog. Nucl. Magn. Reson. Spectrosc. 2013, 70, 25.).


138. Jia Zhong, Parker H. Mills, T. Kevin Hitchens, and Eric T. Ahrens., Accelerated Fluorine-19 MRI Cell Tracking Using Compressed Sensing., Magnetic Resonance in Medicine 69:1683-1690 (2013).


139. Matthew J. Goette, Jochen Keupp, Jürgen Rahmer, Gregory M. Lanza, Samuel A. Wickline, and Shelton D. Caruthers, Balanced UTE-SSFP for 19F MR Imaging of Complex Spectra, Magnetic Resonance in Medicine 00:00-00 (2014).


140. Celsense, First Clinical Results Using the Cell Sense Product Published in Journal Magnetic Resonance in Medicine, September 19, 2014 - Pittsburgh, Pennsylvania.


141. Ann-Marie Chacko, Elizabeth D. Hood, Blaine J. Zern, Vladimir R. Muzykantov Targeted nanocarriers for imaging and therapy of vascular inflammation ., J.COCIS.2011.01.008


142. Eric T. Ahrens and Jeff W. M. Bulte., Tracking immune cells in vivo using magnetic resonance imaging .,Nat Rev Immunol. 2013 October ; 13(10).


143. PatrickM.Winter., Perfluorocarbon Nanoparticles: Evolution of a Multimodality


and Multifunctional Imaging Agent., Hindawi Publishing Corporation Scientifica


Volume 2014, Article ID 746574, 10 pages.


144. Megan M. Kaneda, Shelton Caruthers, Gregory M. Lanza, and Samuel A. Wickline., Perfluorocarbon Nanoemulsions for Quantitative Molecular Imaging and Targeted Therapeutics., Ann Biomed Eng. 2009 October ; 37(10): 1922-1933.


145. Jaehong Key, James F Leary., Nanoparticles for multimodal in vivo imaging in nanomedicine., International Journal of Nanomedicine 2014:9 711-726.


146. Dipanjan Pana, Gregory M. Lanzaa, Samuel A. Wicklinea, Shelton D. Caruthers.,


Nanomedicine: Perspective and promises with ligand-directed molecular imaging.,


European Journal of Radiology 70 (2009) 274-285


147. S.D. Caruthers, P.M Winter, S.A. Wickline, G.M. Lanza, MR molecular imaging of angiogenesis using targeted perfluorocarbon nanoparticles., Medicamundi. 2010 ; 54(2): 5-13.


148. L. Curvo-Semedo and F. Caseiro-Alves, MR contrast agents., Clinical MRI of the Abdomen, p17-39, Springer-Verlag Berlin Heidelberg 2011.


149. Mangala Srinivas a, Philipp Boehm-Sturm , Carl G. Figdor , I. Jolanda de Vries , Mathias Hoehn., Labeling cells for in vivo tracking using 19F MRI., J.BIOMATERIALS, 2012.08.048.


150. Mangala Srinivas, Arend Heerschap, Eric T. Ahrens, Carl G. Figdor and I. Jolanda M. de Vries., 19F MRI for quantitative in vivo cell tracking., Trends in Biotechnology 28 (2010) 363-370.


151. Antti Saraste, MD, PhD, Stephan G. Nekolla, PhD, Markus Schwaiger, MD., Cardiovascular molecular imaging: an overview., Cardiovascular Research Advance Access published June 24, 2009.


152. Jian-Xin Yu, Rami R. Hallac, Srinivas Chiguru, Ralph P. Mason, ; New frontiers and developing applications in 19F NMR, Progress in Nuclear Magnetic Resonance Spectroscopy 70 (2013) 25-49.


153. Eric T. Ahrens and Jia Zhong, In vivo MRI cell tracking using perfluorocarbon probes and fluorine-19 detection, NMR Biomed. 2013; 26: 860-871.


154. Jesu´ s Ruiz-Cabello, Brad P. Barnett, Paul A. Bottomley and Jeff W.M. Bulte, Fluorine (19F) MRS and MRI in biomedicine, NMR Biomed. 2011; 24: 114-129.


155. James C. Knight, Peter G. Edwards and Stephen J. Paisey, Fluorinated contrast agents for magnetic resonance imaging; a review of recent developments, RSC Adv., 2011, 1, 1415-1425.


156. Ilaria Tirotta, Valentina Dichiarante, Claudia Pigliacelli, Gabriella Cavallo, Giancarlo Terraneo, Francesca Baldelli Bombelli, Pierangelo Metrangolo, and Giuseppe Resnati , 19F Magnetic Resonance Imaging (MRI): From Design of Materials to Clinical Applications, Chem. Rev. 2015, 115, 106−1129.


157. E. Maevsky, G.Ivanitsky Oxygen-Dependent and Oxygen-Independent Effects of Perftoran // Artificial Oxygen Carrier. Its Frontline. Eds:?Kobayashi, K.,?Tsuchida, E.,?Horinouchi Hirohisa. Keio University Int. Symp.Life Sciences & Medicine . Tokyo. Springer, 2005.vol.12: ?221-228.


158. E Maevsky, G Ivanitsky, L Bogdanova, O Axenova, N Karmen, E Zhiburt, ...


Clinical results of Perftoran application: present and future


Artificial cells, blood substitutes, and biotechnology. 2005. 33 (1): 37-46.


159. В.В. Мороз, Е.И. Маевский, Г.Р. Иваницкий, Н.Б. Кармен, Л.А. Богданова и др. Эмульсия перфторорганических соединений как средство для лечения нарушений регионального кровотока // Общая реаниматология 2007 3 (3): 49-53.


160. E.I. Maevsky, L.L. Gervits Perfluorocarbon-based blood substitute-PERFTORAN: Russian Experience //Chimica oggi. 2008 26 (3): 34-37.


161. М. В. Гуляев , Л. Л. Гервиц , Ю. А. Устынюк , Н. В. Анисимов , Ю. А. Пирогов , А. Р. Хохлов, Получение изображений в магнитно-резонансной томографии на ядрах 19F с помощью препарата перфторан, Журнал радиоэлектроники, n8, 2013, 1-13.


162. Н.В.Анисимов, Л.Л.Гервиц, М.В.Гуляев, Д.Н.Силачев, Д.В.Волков, О.С.Павлова, Г.М. Юсубалиева, Е.А.Шаламова, Ю.А.Пирогов, А.Р.Хохлов, Методы 19F ЯМР и МРТ в изучении поведения препарата Перфторан? в организме лабораторных животных, ?Электромагнитные волны и электронные системы?, 2015 г., т. 20, N 8.



Свидетельство о регистрации сетевого электронного научного издания N 077 от 29.11.2006
Журнал основан 16 ноября 2000г.
Выдано Министерством РФ по делам печати, телерадиовещания и средств массовых коммуникаций
(c) Перепечатка материалов сайта Medline.Ru возможна только с письменного разрешения редакции

Размещение рекламы

Rambler's Top100