Ѕ»ќћ≈ƒ»÷»Ќ— »… ∆”–ЌјЋ ћ≈ƒЋј…Ќ.–”
—одержание журнала

јрхив

–едакци€
”чредители

‘едеральное государственное бюджетное учреждение ЂЌаучно-клинический центр токсикологии имени академика —.Ќ. √оликова ‘едерального медико-биологического агентстваї


‘едеральное государственное бюджетное учреждение науки
»нститут теоретической и экспериментальной биофизики
–оссийской академии наук


ќќќ "»÷  ќћ ќЌ"

јдрес редакции и реквизиты

199406, —анкт-ѕетербург, ул.√аванска€, д. 49, корп.2

ISSN 1999-6314


‘ундаментальные исследовани€ • ‘армакологи€

“ом: 12
—тать€: « 87 »
—траницы:. 1067-1091
ќпубликована в журнале: 10 окт€бр€ 2011 г.

English version

—ывороточный альбумин: структура и транспортна€ функци€ (обзор литературы)

ѕшенкина Ќ.Ќ.

‘√¬ќ” ¬ѕќ "¬оенно-медицинска€ академи€ им. —.ћ. ирова" ћќ –‘
194044, —анкт-ѕетербург, ул. јкадемика Ћебедева, 6


–езюме
¬ обзоре рассмотрены современные представлени€ о структуре сывороточного альбумина человека в контексте его роли в транспорте лекарственных веществ. ќхарактеризованы основные центров св€зывани€ лигандов и жирных кислот. –ассмотрено значение механизмов регул€ции св€зывани€ лигандов дл€ диссоциации лиганд-альбуминового комплекса в процессе транспорта лекарств из крови в ткани. ¬ заключении обозначены некоторые перспективные направлени€ дальнейших исследований в области изучени€ структуры и функций альбумина, а также их практического использовани€.


 лючевые слова
альбумин, структура, св€зывание, доставка, лекарственные вещества, жирные кислоты.



(стать€ в формате PDF. ƒл€ просмотра необходим Adobe Acrobat Reader)



открыть статью в новом окне

—писок литературы

1. Ѕендер  .»., Ћуцевич ј.Ќ. ¬заимодействие пипольфена и супрастина с сывороточным альбумином человека в зависимости от рЌ среды и содержани€ в ней ионов кальци€ // ‘армакол. токсикол. Ц 1983. Ц є6. Ц —.59-63.


2. Ѕендер  .»., Ћуцевич ј.Ќ.,  упчиков ¬.¬. –оль конформационных изменений сывороточного альбумина и взаимодействие с ним лекарственных веществ // ‘армакол. токсикол. Ц 1989. Ц “.52. Ц є5. Ц —.85-95.


3. √рызунов ё.ј., √ринберг ј.ј., —тупин ¬.ј. и соавт. »нформативность показател€ Ђэффективна€ концентраци€ альбуминаї при распространенном перитоните: данные многоцентрового исследовани€ // јнестезиол. реаниматол. Ц 2003. Ц є6. Ц —.32-35.


4. ћиллер ё.ј. —в€зывание ксенобиотиков альбумином сыворотки крови //  лин. лаб. диагн. Ц 1993. Ц є1. Ц —.34-40.


5. Ќ€маа ƒ., Ѕат-Ёрдэнэ ќ., Ѕурштейн Ё.ј. ¬ли€ние среды на функциональные и структурные свойства сывороточных альбуминов. I: ¬ли€ние ионной силы на сывороточный альбумин человека в N-форме // ћол. биол. Ц 1984. Ц є3. Ц —.839-847.


6. Ќ€маа ƒ., Ѕат-Ёрдэнэ ќ., Ѕурштейн Ё.ј. ¬ли€ние среды на функциональные и структурные свойства сывороточных альбуминов. II: ¬ли€ние температуры на N- форму сывороточного альбумина человека // ћол. биол. Ц 1984. Ц є4. Ц —.972-978.


7. Ќ€маа ƒ., Ѕат-Ёрдэнэ ќ., Ѕурштейн Ё.ј. ¬ли€ние среды на функциональные и структурные свойства сывороточных альбуминов: III: «ависимость переходов N-F1-, F1-F2- и F2-E- переходов сывороточного альбумина человека от температуры и ионной силы // ћол. биол. Ц 1985. Ц є3. Ц —.833-840.


8. Ќ€маа ƒ., Ѕат-Ёрдэнэ ќ., Ѕурштейн Ё.ј. ¬ли€ние среды на функциональные и структурные свойства сывороточных альбуминов: IV: —осто€ние сывороточного альбумина человека в зоне рЌ от 5 до 10 // ћол. биол. Ц 1985. Ц є 6. Ц —.1679-1684.


9. —молина H.¬., √рызунов ё.A., ћаксимова H.M. и соавт. —войства св€зывающих центров молекулы альбумина у больных тревожной депрессией: исследование методом тушени€ флюоресценции // Ѕюлл. эксперим. биол. мед. Ц 2007. Ц “.144. Ц є11. Ц —.514-516.


10. —правочник лекарств –Ћ—. Ёнциклопеди€ лекарств и товаров аптечного ассортимента. http://www.rlsnet.ru/tn_alf.htm


11. „ЄгЄр —.». “ранспортна€ функци€ сывороточного альбумина. Ц Ѕухарест: »зд-во јкадемии —оц. –еспублики –умынии, 1975. Ц 183 с.


12. Ascenzi P., Bocedi A., Notari S. et al. Heme impairs allosterically drug binding to human serum albumin Sudlow's site I // Biochem. Biophys. Res. Commun. Ц 2005. Ц Vol.334. Ц є2. Ц P.481-486.


13. Ascenzi P., Bocedi A., Notari S. et al. Allosteric modulation of drug binding to human serum albumin // Mini-Rev. Med. Chem. Ц 2006. Ц Vol. 6. Ц P. 483-489.


14. Ascenzi P., di Masi A., De Sanctis G. et al. Ibuprofen modulates allosterically NO dissociation from ferrous nitrosylated human serum heme-albumin by binding to three sites // // Biochem. Biophys. Res. Commun. Ц 2009. Ц Vol.387. Ц є1. Ц P.83-86.


15. Ascenzi P., Fasano M. Serum heme-albumin: an allosteric protein // IUBMB Life. Ц 2009. Ц Vol.61. Ц є12. Ц P.1118-1122.


16. Baker M., Parton T. Kinetic determinants of hepatic clearance: Plasma protein binding and hepatic uptake // Xenobiotica Ц 2007. Ц Vol. 37. Ц є10Ц11. Ц P.1110Ц1134.


17. Baroni S., Mattu M., Vannini A. et al. Effect of ibuprofen and warfarin on the allosteric properties of haem-human serum albumin. A spectroscopic study // Eur. J. Biochem. Ц 2001. Ц Vol.268. Ц є23. Ц P.6214-6220.


18. Bertucci C., Domenici E. Reversible and covalent binding of drugs to human serum albumin: methodological approaches and physiological relevance // Curr. Med. Chem. Ц 2002. Ц Vol.9. Ц є15. Ц P.1463-1481.


19.Bertucci C., Nanni B., Raffaelli A., Salvadori P. Chemical modification of human albumin at cys34 by ethacrynic acid: structural characterisation and binding properties // J. Pharm. Biomed. Anal. Ц 1998. Ц Vol.18. Ц є1-2. Ц P.127-136.


20. Bhattacharya A.A., Curry S., Franks N.P. Binding of the general anesthetics propofol and halothane to human serum albumin. High resolution crystal structures // J. Biol. Chem. Ц 2000. Ц Vol.275. Ц є49. Ц P.38731-38738.


21. Bhattacharya A.A., Grüne T., Curry S. Crystallographic analysis reveals common modes of binding of medium and long-chain fatty acids to human serum albumin // J. Mol. Biol. Ц 2000. Ц Vol.303. Ц є5. Ц P.721-732.


22. Bhattacharya M., Jain N., Bhasne K. et al. pH-induced conformational isomerization of bovine serum albumin studied by extrinsic and intrinsic protein fluorescence // J. Fluoresc. Ц 2010. Ц DOI 10.1007/s10895-010-0781-3.


23.Bischer A., Zia-Amirhosseini P., Iwaki M. et al. Stereoselective binding properties of naproxen glucuronide diastereomers to proteins // J. Pharmacokinet. Biopharm. Ц1995. Ц Vol.23. Ц є4. Ц P.379-395.


24.Boulton D. W., Walle U. K., Walle T. Extensive binding of the bioflavonoid quercetin to human plasma proteins // J. Pharm. Pharmacol. Ц 1998. Ц Vol.50. Ц є2. Ц P.243-249.


25.Brée F., Urien S., Nguyen P., Tillement J.P. et al. Human serum albumin conformational changes as induced by tenoxicam and modified by simultaneous diazepam binding // J. Pharm. Pharmacol. Ц 1993. Ц Vol.45. Ц є12. Ц P.1050-1053.


26. Brodersen R. Bilirubin. Vol. I. Chemistry. / Ed. by Heirwegh K.P.M., Brown S.B. Ц Florida: CRC Press, Boca Raton. 1982, P.75-123.


27. Buttar D., Colclough N., Gerhardt S. et al. A combined spectroscopic and crystallographic approach to probing drug-human serum albumin interactions // Bioorg. Med. Chem. Ц 2010. Ц Vol.18. Ц є21. Ц P.7486-7496.


28. Carter D.C ., Ho J.X. Structure of serum albumin // Adv. Protein Chem. Ц 1994. Ц Vol.45. Ц P.153-203.


29. Chen Y.M., Guo L.H. Combined fluorescence and electrochemical investigation on the binding interaction between organic acid and human serum albumin // J. Environ. Sci. (China). Ц 2009. Ц Vol.21, є3. Ц P.373-379.


30. Choi J.K., Ho J., Curry S. et al. Interactions of very long-chain saturated fatty acids with serum albumin // J. Lipid Res. 2002. Vol. 43. P.1000-1010.


31.Chuang V.T., Kuniyasu A., Nakayama H. et al. Helix 6 of subdomain III A of human serum albumin is the region primarily photolabeled by ketoprofen, an arylpropionic acid NSAID containing a benzophenone moiety // Biochim. Biophys. Acta. Ц 1999. Ц Vol.1434. Ц є1. Ц P.18-30.


32. Chuang V.T., Otagiri M. How do fatty acids cause allosteric binding of drugs to human serum albumin? // Pharm. Res. Ц 2002. Ц Vol.19. Ц є10. Ц P.1458-1464.


33. Colmenarejro G. In silico prediction of drug-binding strengths to human serum albumin // Med. Res. Rev. Ц 2003. Ц Vol.23. Ц є3. Ц P.275-301.


34. Curry S. Lessons from the crystallographic analysis of small molecule binding to human serum albumin // Drug Metab. Pharmacokinet. Ц 2009. Ц Vol.24. Ц є4. Ц P.342-357.


35. Curry S., Brick P., Franks N.P. Fatty acid binding to human serum albumin: new insights from crystallographic studies // Biochim. Biophys. Acta. Ц 1999. Ц Vol.1441. Ц є2-3. Ц P.131-140.


36. Deeb O., Rosales-Hernández M.C., Gómez-Castro C. et al. Exploration of human serum albumin binding sites by docking and molecular dynamics flexible ligand-protein interactions // Biopolimers. Ц 2010. Ц Vol.93. Ц є2. Ц P.161-170.


37. DrugBank database. http://www.drugbank.ca 38. Fanali G., Pariani G., Ascenzi P., Fasano M. Allosteric and binding properties of Asp1- Glu382 truncated recombinant human serum albumin--an optical and NMR spectroscopic investigation // FEBS J. Ц 2009. Ц Vol.276. Ц є8. Ц P.2241-2250.


39.Fehske K.J., Müller W.E., Wollert U. The location of drug binding sites in human serum albumin // Biochem. Pharmacol. Ц 1981. Ц Vol.30. Ц є7. Ц P.687-692.


40. Fehske K.J ., Schlafer U., Wollert U., Müller W.E. Characterization of an important drug binding area on human serum albumin including the high-affinity binding sites of warfarin and azapropazone // Mol. Pharmacol. Ц 1982. Ц Vol.21. Ц є2. Ц P.387-393.


41. Fujiwara S., Amisaki T. Molecular dynamics study of conformational changes in human serum albumin by binding of fatty acids // Proteins. Ц 2006. Ц Vol.64. Ц є3. Ц P.730-739.


42. Ghuman J., Zunszain P.A., Petitpas I. et al. Structural basis of the drug-binding specificity of human serum albumin // J. Mol. Biol. Ц 2005. Ц Vol.353. Ц є1. Ц P.38-52.


43. Gleeson M.P., Hersey A., Hannongbua S. In-silico ADME models: a general assessment of their utility in drug discovery applications // Curr. Top. Med. Chem. Ц 2011. Ц Vol.11. Ц є4. Ц P.358-381.


44. Gustafsson S.S., Vrang L., Terelius Y., Danielson U.H. Quantification of interactions between drug leads and serum proteins by use of "binding efficiency" // Anal. Biochem. Ц 2011. Ц Vol.409. Ц є2. Ц P.163-175.


45. Hamilton J. A. Fatty acid interactions with proteins: what X-ray crystal and NMR solution structures tell us // Prog. Lipid. Res. Ц 2004. Ц Vol.43. Ц є3. Ц P.177-199.


46. Harmsen B.J ., De Bruin S.H., Janssen L.H. et al. pK change of imidazole groups in bovine serum albumin due to the conformational change at neutral pH // Biochem. Ц 1971. Ц Vol.10. Ц є7. Ц P.3217-3221.


47. Hawkins M.J., Soon-Shiong P., Desai N. Protein nanoparticles as drug carriers in clinical medicine // Adv. Drug Deliv. Rev. Ц 2008. Ц Vol.60. Ц є8. Ц P.876-885.


48. Hein K.L., Kragh-Hansen U., Morth J.P. et al. Crystallographic analysis reveals a unique lidocaine binding site on human serum albumin // J. Struct. Biol. Ц 2010. Ц Vol.171. Ц є3. Ц P.353-360.


49. Horie T., Mizuma T., Kasai S., Awazu S. Conformational changes in plasma albumin due to interaction with isolated rat hepatocytes // Am. J. Physiol. Ц 1988. Ц Vol. 254. Ц є4. (Pt 1). G.465-G470.


50.Irikura M., Takadate A., Goya S., Otagiri M. 7-Alkylaminocoumarin-4-acetic acids as fluorescent probe for studies of drug-binding sites on human serum albumin // Chem. Pharm. Bull. Ц 1991. Ц Vol.39. Ц є3. Ц P.724-728.


51. Janssen L.H ., Van Wilgenburg M.T., Wilting J. Human serum albumin as an allosteric twostate protein: Evidence from effects of calcium and warfarin on proton binding behaviour // Biochim. Biophys. Acta. Ц 1981. Ц Vol.669. Ц є2. Ц P.244-250.


52. Joseph K.S., Moser A.C., Basiaga S.B. et al. Evaluation of alternatives to warfarin as probes for Sudlow site I of human serum albumin: characterization by high-performance affinity chromatography // J. Chromatogr. A. Ц 2009. Ц Vol.1216. Ц є16. Ц P.3492-3500.


53. Joshi P., Chakraborty S., Dey S. et al. Binding of chloroquine-conjugated gold nanoparticles with bovine serum albumin // J. Colloid Interface Sci. Ц 2011. Ц Vol.355. Ц є2. Ц P.402- 409.


54. Kamal J.K.A., Zhao L., Zewail A.H. Ultrafast hydration dynamics in protein unfolding: Human serum albumin // Proc. Nat. Acad. Sci. USA. Ц 2004. Ц Vol.101. Ц є37. Ц P.13411- 13416.


55. Kandagal P.B., Ashoka S., Seetharamappa J. et al. Study of the interaction of an anticancer drug with human and bovine serum albumin: spectroscopic approach // J. Pharm. Biomed. Anal. Ц 2006. Ц Vol.41. Ц є2. Ц P.393-399.


56. Kim H.S., Hage D.S. Chromatographic analysis of carbamazepine binding to human serum albumin // J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci. Ц 2005. Ц Vol.816. Ц є1- 2. Ц P.57-66.


57. Kragh-Hansen U . Molecular aspects of ligand binding to serum albumin // Pharmacol. Rev. Ц 1981. Ц Vol.33. Ц є1. Ц P.17-53.


58. Kragh-Hansen U. Relations between high-affinity binding sites of markers for binding regions on human serum albumin // Biochem. J. Ц 1985. Ц Vol.225. Ц є3. Ц P.629-638.


59. Kragh-Hansen U. Evidence for a large and flexible region of human serum albumin possessing high affinity binding sites for salicylate, warfarin, and other ligands // Mol. Pharmacol. Ц 1988. Ц Vol.34. Ц є2. Ц P.160-171.


60.Kragh-Hansen U. Octanoate binding to the indole- and benzodiazepine-binding region of human serum albumin // Biochem. J. Ц 1991. Ц Vol.273. Ц Pt.3. Ц P.641-644.


61. Kragh-Hansen U., Chuang V.T.G., Otagiri M. Practical aspects of the ligand-binding and enzymatic properties of human serum albumin // Biol. Pharm. Bull. Ц 2002. Ц Vol.25. Ц є6. Ц P.695-704.


62.Kragh-Hansen U., Minchiotti L., Brennan S.O., Sugita O. Hormone binding to natural mutants of human serum albumin // Eur. J. Biochem. Ц 1990. Ц Vol.193. Ц є1. Ц P.169-174.


63. Kratochwil N.A., Huber W., Müller F. et al. Predicting plasma protein binding of drugs: A new approach // Biochem. Pharmacol. Ц 2002. Ц Vol.64. Ц є9. Ц P.1355-1374.


64. Kratz F. Albumin as a drug carrier: design of prodrugs, drug conjugates and nanoparticles // J. Control Release. Ц 2008. Ц Vol.132. Ц є3. Ц P.171-183.


65. Liu X., Chen C., Hop C.E. Do we need to optimize plasma protein and tissue binding in drug discovery? // Curr. Top. Med. Chem. Ц 2011. Ц Vol.11. Ц є4. Ц P.450-466.


66. Liu X., Smith B.J., Chen C. et al. Use of physiologically based pharmacokinetic model to study the time to reach brain equilibrium: An experimental analysis of the role of bloodbrain barrier permibility, plasma protein binding, and brain tissue binding // J. Pharmacol. Exp. Ther. Ц 2005. Ц Vol.313. Ц є3. Ц P.1254-1262.


67. Lu J., Stewart A.J., Sadler P.J. et al. Albumin as a zinc carrier: properties of its high-affinity zinc-binding site // Biochem. Soc. Trans. Ц 2008. Ц Vol.36. Ц Pt. 6. Ц P.1317-1321.


68. Mallik R., Yoo M.J., Chen S., Hage D.S. Studies of verapamil binding to human serum albumin by high-performance affinity chromatography // J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci. Ц 2008. Ц Vol.876. Ц є1. Ц P.69-75.


69.Matsushita Y., Gouda H., Tsujishita H., Hirono S. Determination of binding conformations of drugs to human serum albumin by transferred nuclear overhauser effect measurements and conformational analyses using high-temperature molecular dynamics calculations // J. Pharm. Sci. Ц 1998. Ц Vol.87. Ц є3. Ц P.379-386.


70.Meisner H., Neet K. Competitive binding of long-chain free fatty acids, octanoate, and chlorophenoxyisobutyrate to albumin // Mol. Pharmacol. Ц 1978. Ц Vol.14. Ц є2. Ц P.337- 346.


71.Mignot I., Presle N., Lapicque F. et al. Albumin binding sites for etodolac enantiomers // Chirality. Ц 1996. Ц Vol.8, є3. Ц P.271-280.


72. Mitzner S.R., Stange J., Klammt S. et al. Albumin dialysis MARS: knowledge from 10 years of clinical investigation // ASAIO J. Ц 2009. Ц Vol.55. Ц є5. Ц P.498-502.


73.Montero M. T., Pouplana R., Valls O., Garcia S. On the binding of cinmetacin and indomethacin to human serum albumin // J. Pharm. Pharmacol. Ц 1986. Ц Vol.38. Ц є12. Ц P.925-927.


74.Mudge G. H., Desbiens N., Stibitz G. R. Binding of iophenoxate and iopanoate to human serum albumin // Drug Metab. Dispos. Ц 1978. Ц Vol.6. Ц є4. Ц P.432-439.


75. Nerli B., Romanini D., Picó G. Structural specificity requirements in the binding of beta lactam antibiotics to human serum albumin // Chem. Biol. Interact. Ц 1997. Ц Vol.104. Ц є2-3. Ц P.179-202.


76. Neumann E., Frei E., Funk D. et al. Native albumin for targeted drug delivery // Expert Opin. Drug Deliv. Ц 2010. Ц Vol.7. Ц є8. Ц P.915-925.


77. Nicoletti F.P., Howes B.D., Fittipaldi M. et al. Ibuprofen induces an allosteric conformational transition in the heme complex of human serum albumin with significant effects on heme ligation // J. Am. Chem. Soc. Ц 2008. Ц Vol.130. Ц є35. Ц P.11677-11688.


78. Nikolić N., Vranjes-Ethurić S., Janković D. et al. Preparation and biodistribution of radiolabeled fullerene C60 nanocrystals // Nanotechnology. Ц 2009. Ц Vol.20. Ц є38. Ц P.385102.


79. Noskov B.A., Mikhailovskaya A.A., Lin S.Y. et al. Bovine serum albumin unfolding at the air/water interface as studied by dilational surface rheology // Langmuir. Ц 2010. Ц Vol.26. Ц є22. ЦP.17225-17231.


80. Novelli G., Rossi M., Pretagostini R. et al. A 3-year experience with Molecular Adsorbent Recirculating System (MARS): our results on 63 patients with hepatic failure and color Doppler US evaluation of cerebral perfusion // Liver Int. Ц 2003. Ц Vol.23. Ц Suppl. 3. Ц P.10-15.


81.Otagiri M., Masuda K., Imai T. et al. Binding of pirprofen to human serum albumin studied by dialysis and spectroscopy techniques // Biochem. Pharmacol. Ц 1989. Ц Vol.38. Ц є1. Ц P.1-7.


82.Otagiri M., Nakamura H., Maruyama T. et al. Characterization of binding sites for sulfadimethoxine and its major metabolite, N4-acetylsulfadimethoxine, on human and rabbit serum albumin // Chem. Pharm. Bull. Ц 1989. Ц Vol.37. Ц є2 Ц P.498-501.


83. Panjehshahin M.R ., Bowmer C.J., Yates M.S. Effect of valproic acid, its unsaturated metabolites and some structurally related fatty acids on the binding of warfarin and dansylsarcosine to human albumin // Biochem. Pharmacol. Ц 1991. Ц Vol.41. Ц є8. Ц P.1227-1233.


84. Peters T., Jr. All about Albumin: Biochemistry, Genetics, and Medical Applications. Ц San Diego: Academic Press. 1996. 432 p.


85. Petersen C.E ., Ha C.E., Harohalli K. et al. A dynamic model for bilirubin binding to human serum albumin // J. Biol. Chem. Ц 2000. Ц Vol.275. Ц є28. Ц P.20985-20995.


86. Petersen C.E ., Ha C.E., Jameson D.M., Bhagavan N.V. Mutations in a specific human serum albumin thyroxine binding site define the structural basis of familial dysalbuminemic hyperthyroxinemia // J. Biol. Chem. Ц 1996. Ц Vol.271. Ц є32. Ц P.19110-19117.


87. Petitpas I., Bhattacharya A. A., Twine S. et al. Crystal structure analysis of warfarin binding to human serum albumin: anatomy of drug site I // J. Biol. Chem. Ц 2001. Ц Vol.276. Ц є25. Ц P.22804-22809.


88. Petitpas I., Grüne T., Bhattacharya A. A., Curry S. Crystal structures of human serum albumin complexed with monounsaturated and polyunsaturated fatty acids // J. Mol. Biol. Ц 2001. Ц Vol.314. Ц є5. Ц P.955-960.


89. Petitpas I., Petersen C.E., Ha C.E. et al. Structural basis of albumin-thyroxine interactions and familial dysalbuminemic hyperthyroxinemia // Proc. Natl. Acad. Sci. USA Ц 2003. Ц Vol.100. Ц є11. Ц P.6440-6445.


90. Petrelli F., Bogonovo K., Barni S. Targeted delivery for breast cancer therapy: the history of nanoparticle-albumin-bound paclitaxel // Expert Opin. Pharmacother. Ц 2010. Ц Vol.11. Ц є8. Ц P.1413-1432.


91. Protein Data Bank. A Resource for Studying Biological Macromolecules. http://www.rcsb.org/pdb/home/home.do


92. Rahman M.H., Maruyama T., Okada T. et al. Study of interaction of carprofen and its enantiomers with human serum albumin. Ц I. Mechanism of binding studied by dialysis and spectroscopic methods // Biochem. Pharmacol. Ц 1993. Ц Vol.46. Ц є 10. Ц P.1721-1731.


93. Rahman M.H., Maruyama T., Okada T. et al. Study of interaction of carprofen and its enantiomers with human serum albumin. Ц II. Stereoselective site-to-site displacement of carprofen by ibuprofen // Biochem. Pharmacol. Ц 1993. Ц Vol.46. Ц є10. Ц P.1733-1740.


94. Rahman M. H., Yamasaki K., Shin Y. H. et al. Characterization of high affinity binding sites of non-steroidal anti-inflammatory drugs with respect to site-specific probes on human serum albumin // Biol. Pharm. Bull. Ц 1993. Ц Vol.16. Ц є11. Ц P.1169-1174.


95. Ryan A.J., Ghuman J., Zunszain P.A. et al. Structural basis of binding of fluorescent, sitespecific dansylated amino acids to human serum albumin // J. Struct. Biol. Ц 2011. Ц Vol.174. Ц є1. Ц P.84-91.


96.Sakai T., Takadate A., Otagiri M. Characterization of binding site of uremic toxins on human serum albumin // Biol. Pharm. Bull. Ц 1995. Ц Vol.18. Ц є12. Ц P.1755-1761.


97. Simard J.R., Zunszain P.A., Hamilton J.A., Curry S. Location of high and low affinity fatty acid binding sites on human serum albumin revealed by NMR drug-competition analysis // J. Mol. Biol. Ц 2006. Ц Vol.361. Ц є2. Ц P.336-351.


98. Stepensky D. Use of unbound volumes of drug distribution in pharmacokinetic calculations // Eur. J. Pharm. Sci. Ц 2011. Ц Vol. 42. Ц є1-2. Ц P.91-98.


99. Sudlow G ., Birkett D.J., Wade D.N. Spectroscopic techniques in the study of protein binding: A fluorescence technique for the evaluation of the albumin binding and displacement of warfarin and warfarin-alcohol // Clin. Exp. Pharmacol. Physiol. Ц 1975. Ц Vol.2. Ц є2. Ц P.129-140.


100. Sugio S., Kashima A., Mochizuki S. et al. Crystal structure of human serum albumin at 2.5 A resolution // Protein Eng. Ц 1999. Ц Vol.12. Ц є6. Ц P.439-446.


101. Takamura N., Haruta A., Kodama H. et al. Mode of interaction of loop diuretics with human serum albumin and characterization of binding site // Pharm. Res. Ц 1996. Ц Vol.13. Ц є7. Ц P.1015-1019.


102. Takamura N., Maruyama T., Ahmed S. et al. Interactions of aldosterone antagonist diuretics with human serum proteins // Pharm. Res. Ц 1997. Ц Vol.14. Ц є4. Ц P.522-526.


103. Takamura N., Rahman M. H., Yamasaki K. et al. Interaction of benzothiadiazides with human serum albumin studied by dialysis and spectroscopic methods // Pharm. Res. Ц 1994. Ц Vol.11. Ц є10. Ц P.1452-1457.


104. Takamura N., Shinozawa S., Maruyama T. et al. Effects of fatty acids on serum binding between furosemide and valproic acid // Biol. Pharm. Bull. Ц 1998. Ц Vol.21. Ц є2. Ц P.174- 176.


105. Tanaka H., Mizojiri K. Drug-protein binding and blood-brain barrier permeability // J. Pharmacol. Exp. Ther. Ц 1999. Ц Vol.288. Ц є3. Ц P.912-918.


106.Tsutsumi Y., Maruyama T., Takadate A. et al. Interaction between two dicarboxylate endogenous substances, bilirubin and an uremic toxin, 3-carboxy-4-methyl-5-propyl-2- furanpropanoic acid, on human serum albumin // Pharm Res. Ц 1999. Ц Vol.16. Ц є6. Ц P.916-923.


107. Twine S.M., Lee A.G., Gore M.G. et al. Characterisation of domain fragments of recombinant human albumin // Biochem. Soc. Trans. Ц 1998. Ц Vol.26. Ц є3. Ц S.279.


108. Valkó K.L., Nunhuck S.B., Hill A.P. Estimating unbound volume of distribution and tissue binding by in vitro HPLC-based human serum albumin and immobilised artificial membrane-binding measurements // J. Pharm. Sci. Ц 2011. Ц Vol.100. Ц є3. Ц P.849-862.


109. Vallner J.J. Binding of drugs by albumin and plasma protein // J. Pharm. Sci. Ц 1977. Ц Vol.66. Ц є4. Ц P.447-465.


110. Van der Vusse G.J. Albumin as fatty acid transporter // Drug Metab. Pharmacokinet. Ц 2009. Ц Vol.24. Ц є4. Ц P.300-307.


111. Varshney A., Rehan M., Subbarao N. et al. Elimination of endogenous toxin, creatinine from blood plasma depends on albumin conformation: site specific uremic toxicity & impaired drug binding // PLoS One. Ц 2011. Ц Vol.6. Ц є2. Ц e17230.


112. Varshney A., Sen P., Ahmad E. et al. Ligand binding strategies of human serum albumin: how can the cargo be utilized? // Chirality. Ц 2010. Ц Vol.22. Ц є1. Ц P.77-87.


113. Watanabe H., Kragh-Hansen U., Tanase S. et al. Conformational stability and warfarinbinding properties of human serum albumin studied by recombinant mutants // Biochem. J. Ц 2001. Ц Vol.357. Ц є1. Ц P.269-274.


114. Watanabe H., Tanase S., Nakajou K. et al. Role of arg-410 and tyr-411 in human serum albumin for ligand binding and esterase-like activity // Biochem. J. Ц 2000. Ц Vol.349. Ц є3. Ц P.813-819.


115. Yamasaki K., Maruyama T., Kragh-Hansen U., Otagiri M. Characterization of site I on human serum albumin: concept about the structure of a drug binding site // Biochim. Biophys. Acta. Ц 1996. Ц Vol.1295. Ц є2. Ц P.147-157.


116. Yamasaki K., Maruyama T., Takadate A. et al. Characterization of site I of human serum albumin using spectroscopic analyses: locational relations between regions Ib and Ic of site I // J. Pharm. Sci. Ц 2004. Ц Vol.93. Ц є12. Ц P.3004-3012.


117. Yamasaki K., Rahman M. H., Tsutsumi Y. et al. Circular dichroism simulation shows a site-II-to-site-I displacement of human serum albumin-bound diclofenac by ibuprofen // AAPS PharmSciTech. Ц 2000. Ц Vol.14. Ц є1. Ц E12 (http://www.pharmscitech.com).


118. Yoo M.J., Smith Q.R., Hage D.S. Studies of imipramine binding to human serum albumin by high-performance affinity chromatography // J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci. Ц 2009. Ц Vol.877. Ц є11-12. Ц P.1149-1154.


119. Zatón A., Martinez A., de Gandarias J. M. The binding of thioureylene compounds to human serum albumin // Biochem. Pharmacol. Ц 1988. Ц Vol.37. Ц є16. Ц P.3127-3131.


120. Zhao X., Liu R., Chi Z. et al. New insights into the behavior of bovine serum albumin adsorbed onto carbon nanotubes: comprehensive spectroscopic studies // J. Phys. Chem. B. Ц 2010. Ц Vol.114. Ц є16. Ц P.5625-5631.


121. Zhu L., Yang F., Chen L. et al. A new drug binding subsite on human serum albumin and drug-drug interaction studied by X-ray crystallography // J. Struct. Biol. Ц 2008. Ц Vol.162. Ц є1. Ц P.40-49.


122. Zurawski V.R. Jr ., Foster J.F. The neutral transition and the environment of the sulfhydryl side chain of bovine plasma albumin // Biochem. Ц 1974. Ц Vol.13. Ц є17. Ц P.465-471.