ÌÅÄËÀÉÍ.ÐÓ
Ñîäåðæàíèå æóðíàëà

Àðõèâ

Ðåäàêöèÿ
Ó÷ðåäèòåëè

Ôåäåðàëüíîå ãîñóäàðñòâåííîå áþäæåòíîå ó÷ðåæäåíèå íàóêè
Èíñòèòóò òåîðåòè÷åñêîé è ýêñïåðèìåíòàëüíîé áèîôèçèêè
Ðîññèéñêîé àêàäåìèè íàóê


ÎÎÎ "ÈÖ ÊÎÌÊÎÍ"

Àäðåñ ðåäàêöèè è ðåêâèçèòû

192012, Ñàíêò-Ïåòåðáóðã, óë.Áàáóøêèíà, ä.82 ê.2, ëèòåðà À, êâ.378

ISSN 1999-6314


Ôóíäàìåíòàëüíûå èññëåäîâàíèÿ • Ôàðìàêîëîãèÿ

Òîì: 12
Ñòàòüÿ: « 87 »
Ñòðàíèöû:. 1067-1091
Îïóáëèêîâàíà â æóðíàëå: 10 îêòÿáðÿ 2011 ã.

English version

Ñûâîðîòî÷íûé àëüáóìèí: ñòðóêòóðà è òðàíñïîðòíàÿ ôóíêöèÿ (îáçîð ëèòåðàòóðû)

Ïøåíêèíà Í.Í.

ÔÃÂÎÓ ÂÏÎ "Âîåííî-ìåäèöèíñêàÿ àêàäåìèÿ èì. Ñ.Ì.Êèðîâà" ÌÎ ÐÔ
194044, Ñàíêò-Ïåòåðáóðã, óë. Àêàäåìèêà Ëåáåäåâà, 6


Ðåçþìå
 îáçîðå ðàññìîòðåíû ñîâðåìåííûå ïðåäñòàâëåíèÿ î ñòðóêòóðå ñûâîðîòî÷íîãî àëüáóìèíà ÷åëîâåêà â êîíòåêñòå åãî ðîëè â òðàíñïîðòå ëåêàðñòâåííûõ âåùåñòâ. Îõàðàêòåðèçîâàíû îñíîâíûå öåíòðîâ ñâÿçûâàíèÿ ëèãàíäîâ è æèðíûõ êèñëîò. Ðàññìîòðåíî çíà÷åíèå ìåõàíèçìîâ ðåãóëÿöèè ñâÿçûâàíèÿ ëèãàíäîâ äëÿ äèññîöèàöèè ëèãàíä-àëüáóìèíîâîãî êîìïëåêñà â ïðîöåññå òðàíñïîðòà ëåêàðñòâ èç êðîâè â òêàíè.  çàêëþ÷åíèè îáîçíà÷åíû íåêîòîðûå ïåðñïåêòèâíûå íàïðàâëåíèÿ äàëüíåéøèõ èññëåäîâàíèé â îáëàñòè èçó÷åíèÿ ñòðóêòóðû è ôóíêöèé àëüáóìèíà, à òàêæå èõ ïðàêòè÷åñêîãî èñïîëüçîâàíèÿ.


Êëþ÷åâûå ñëîâà
àëüáóìèí, ñòðóêòóðà, ñâÿçûâàíèå, äîñòàâêà, ëåêàðñòâåííûå âåùåñòâà, æèðíûå êèñëîòû.



(ñòàòüÿ â ôîðìàòå PDF. Äëÿ ïðîñìîòðà íåîáõîäèì Adobe Acrobat Reader)



îòêðûòü ñòàòüþ â íîâîì îêíå

Ñïèñîê ëèòåðàòóðû

1. Áåíäåð Ê.È., Ëóöåâè÷ À.Í. Âçàèìîäåéñòâèå ïèïîëüôåíà è ñóïðàñòèíà ñ ñûâîðîòî÷íûì àëüáóìèíîì ÷åëîâåêà â çàâèñèìîñòè îò ðÍ ñðåäû è ñîäåðæàíèÿ â íåé èîíîâ êàëüöèÿ // Ôàðìàêîë. òîêñèêîë. – 1983. – ¹6. – Ñ.59-63.


2. Áåíäåð Ê.È., Ëóöåâè÷ À.Í., Êóï÷èêîâ Â.Â. Ðîëü êîíôîðìàöèîííûõ èçìåíåíèé ñûâîðîòî÷íîãî àëüáóìèíà è âçàèìîäåéñòâèå ñ íèì ëåêàðñòâåííûõ âåùåñòâ // Ôàðìàêîë. òîêñèêîë. – 1989. – Ò.52. – ¹5. – Ñ.85-95.


3. Ãðûçóíîâ Þ.À., Ãðèíáåðã À.À., Ñòóïèí Â.À. è ñîàâò. Èíôîðìàòèâíîñòü ïîêàçàòåëÿ «ýôôåêòèâíàÿ êîíöåíòðàöèÿ àëüáóìèíà» ïðè ðàñïðîñòðàíåííîì ïåðèòîíèòå: äàííûå ìíîãîöåíòðîâîãî èññëåäîâàíèÿ // Àíåñòåçèîë. ðåàíèìàòîë. – 2003. – ¹6. – Ñ.32-35.


4. Ìèëëåð Þ.À. Ñâÿçûâàíèå êñåíîáèîòèêîâ àëüáóìèíîì ñûâîðîòêè êðîâè // Êëèí. ëàá. äèàãí. – 1993. – ¹1. – Ñ.34-40.


5. Íÿìàà Ä., Áàò-Ýðäýíý Î., Áóðøòåéí Ý.À. Âëèÿíèå ñðåäû íà ôóíêöèîíàëüíûå è ñòðóêòóðíûå ñâîéñòâà ñûâîðîòî÷íûõ àëüáóìèíîâ. I: Âëèÿíèå èîííîé ñèëû íà ñûâîðîòî÷íûé àëüáóìèí ÷åëîâåêà â N-ôîðìå // Ìîë. áèîë. – 1984. – ¹3. – Ñ.839-847.


6. Íÿìàà Ä., Áàò-Ýðäýíý Î., Áóðøòåéí Ý.À. Âëèÿíèå ñðåäû íà ôóíêöèîíàëüíûå è ñòðóêòóðíûå ñâîéñòâà ñûâîðîòî÷íûõ àëüáóìèíîâ. II: Âëèÿíèå òåìïåðàòóðû íà N- ôîðìó ñûâîðîòî÷íîãî àëüáóìèíà ÷åëîâåêà // Ìîë. áèîë. – 1984. – ¹4. – Ñ.972-978.


7. Íÿìàà Ä., Áàò-Ýðäýíý Î., Áóðøòåéí Ý.À. Âëèÿíèå ñðåäû íà ôóíêöèîíàëüíûå è ñòðóêòóðíûå ñâîéñòâà ñûâîðîòî÷íûõ àëüáóìèíîâ: III: Çàâèñèìîñòü ïåðåõîäîâ N-F1-, F1-F2- è F2-E- ïåðåõîäîâ ñûâîðîòî÷íîãî àëüáóìèíà ÷åëîâåêà îò òåìïåðàòóðû è èîííîé ñèëû // Ìîë. áèîë. – 1985. – ¹3. – Ñ.833-840.


8. Íÿìàà Ä., Áàò-Ýðäýíý Î., Áóðøòåéí Ý.À. Âëèÿíèå ñðåäû íà ôóíêöèîíàëüíûå è ñòðóêòóðíûå ñâîéñòâà ñûâîðîòî÷íûõ àëüáóìèíîâ: IV: Ñîñòîÿíèå ñûâîðîòî÷íîãî àëüáóìèíà ÷åëîâåêà â çîíå ðÍ îò 5 äî 10 // Ìîë. áèîë. – 1985. – ¹ 6. – Ñ.1679-1684.


9. Ñìîëèíà H.Â., Ãðûçóíîâ Þ.A., Ìàêñèìîâà H.M. è ñîàâò. Ñâîéñòâà ñâÿçûâàþùèõ öåíòðîâ ìîëåêóëû àëüáóìèíà ó áîëüíûõ òðåâîæíîé äåïðåññèåé: èññëåäîâàíèå ìåòîäîì òóøåíèÿ ôëþîðåñöåíöèè // Áþëë. ýêñïåðèì. áèîë. ìåä. – 2007. – Ò.144. – ¹11. – Ñ.514-516.


10. Ñïðàâî÷íèê ëåêàðñòâ ÐËÑ. Ýíöèêëîïåäèÿ ëåêàðñòâ è òîâàðîâ àïòå÷íîãî àññîðòèìåíòà. http://www.rlsnet.ru/tn_alf.htm


11. ׸ã¸ð Ñ.È. Òðàíñïîðòíàÿ ôóíêöèÿ ñûâîðîòî÷íîãî àëüáóìèíà. – Áóõàðåñò: Èçä-âî Àêàäåìèè Ñîö. Ðåñïóáëèêè Ðóìûíèè, 1975. – 183 ñ.


12. Ascenzi P., Bocedi A., Notari S. et al. Heme impairs allosterically drug binding to human serum albumin Sudlow's site I // Biochem. Biophys. Res. Commun. – 2005. – Vol.334. – ¹2. – P.481-486.


13. Ascenzi P., Bocedi A., Notari S. et al. Allosteric modulation of drug binding to human serum albumin // Mini-Rev. Med. Chem. – 2006. – Vol. 6. – P. 483-489.


14. Ascenzi P., di Masi A., De Sanctis G. et al. Ibuprofen modulates allosterically NO dissociation from ferrous nitrosylated human serum heme-albumin by binding to three sites // // Biochem. Biophys. Res. Commun. – 2009. – Vol.387. – ¹1. – P.83-86.


15. Ascenzi P., Fasano M. Serum heme-albumin: an allosteric protein // IUBMB Life. – 2009. – Vol.61. – ¹12. – P.1118-1122.


16. Baker M., Parton T. Kinetic determinants of hepatic clearance: Plasma protein binding and hepatic uptake // Xenobiotica – 2007. – Vol. 37. – ¹10–11. – P.1110–1134.


17. Baroni S., Mattu M., Vannini A. et al. Effect of ibuprofen and warfarin on the allosteric properties of haem-human serum albumin. A spectroscopic study // Eur. J. Biochem. – 2001. – Vol.268. – ¹23. – P.6214-6220.


18. Bertucci C., Domenici E. Reversible and covalent binding of drugs to human serum albumin: methodological approaches and physiological relevance // Curr. Med. Chem. – 2002. – Vol.9. – ¹15. – P.1463-1481.


19.Bertucci C., Nanni B., Raffaelli A., Salvadori P. Chemical modification of human albumin at cys34 by ethacrynic acid: structural characterisation and binding properties // J. Pharm. Biomed. Anal. – 1998. – Vol.18. – ¹1-2. – P.127-136.


20. Bhattacharya A.A., Curry S., Franks N.P. Binding of the general anesthetics propofol and halothane to human serum albumin. High resolution crystal structures // J. Biol. Chem. – 2000. – Vol.275. – ¹49. – P.38731-38738.


21. Bhattacharya A.A., Grüne T., Curry S. Crystallographic analysis reveals common modes of binding of medium and long-chain fatty acids to human serum albumin // J. Mol. Biol. – 2000. – Vol.303. – ¹5. – P.721-732.


22. Bhattacharya M., Jain N., Bhasne K. et al. pH-induced conformational isomerization of bovine serum albumin studied by extrinsic and intrinsic protein fluorescence // J. Fluoresc. – 2010. – DOI 10.1007/s10895-010-0781-3.


23.Bischer A., Zia-Amirhosseini P., Iwaki M. et al. Stereoselective binding properties of naproxen glucuronide diastereomers to proteins // J. Pharmacokinet. Biopharm. –1995. – Vol.23. – ¹4. – P.379-395.


24.Boulton D. W., Walle U. K., Walle T. Extensive binding of the bioflavonoid quercetin to human plasma proteins // J. Pharm. Pharmacol. – 1998. – Vol.50. – ¹2. – P.243-249.


25.Brée F., Urien S., Nguyen P., Tillement J.P. et al. Human serum albumin conformational changes as induced by tenoxicam and modified by simultaneous diazepam binding // J. Pharm. Pharmacol. – 1993. – Vol.45. – ¹12. – P.1050-1053.


26. Brodersen R. Bilirubin. Vol. I. Chemistry. / Ed. by Heirwegh K.P.M., Brown S.B. – Florida: CRC Press, Boca Raton. 1982, P.75-123.


27. Buttar D., Colclough N., Gerhardt S. et al. A combined spectroscopic and crystallographic approach to probing drug-human serum albumin interactions // Bioorg. Med. Chem. – 2010. – Vol.18. – ¹21. – P.7486-7496.


28. Carter D.C ., Ho J.X. Structure of serum albumin // Adv. Protein Chem. – 1994. – Vol.45. – P.153-203.


29. Chen Y.M., Guo L.H. Combined fluorescence and electrochemical investigation on the binding interaction between organic acid and human serum albumin // J. Environ. Sci. (China). – 2009. – Vol.21, ¹3. – P.373-379.


30. Choi J.K., Ho J., Curry S. et al. Interactions of very long-chain saturated fatty acids with serum albumin // J. Lipid Res. 2002. Vol. 43. P.1000-1010.


31.Chuang V.T., Kuniyasu A., Nakayama H. et al. Helix 6 of subdomain III A of human serum albumin is the region primarily photolabeled by ketoprofen, an arylpropionic acid NSAID containing a benzophenone moiety // Biochim. Biophys. Acta. – 1999. – Vol.1434. – ¹1. – P.18-30.


32. Chuang V.T., Otagiri M. How do fatty acids cause allosteric binding of drugs to human serum albumin? // Pharm. Res. – 2002. – Vol.19. – ¹10. – P.1458-1464.


33. Colmenarejro G. In silico prediction of drug-binding strengths to human serum albumin // Med. Res. Rev. – 2003. – Vol.23. – ¹3. – P.275-301.


34. Curry S. Lessons from the crystallographic analysis of small molecule binding to human serum albumin // Drug Metab. Pharmacokinet. – 2009. – Vol.24. – ¹4. – P.342-357.


35. Curry S., Brick P., Franks N.P. Fatty acid binding to human serum albumin: new insights from crystallographic studies // Biochim. Biophys. Acta. – 1999. – Vol.1441. – ¹2-3. – P.131-140.


36. Deeb O., Rosales-Hernández M.C., Gómez-Castro C. et al. Exploration of human serum albumin binding sites by docking and molecular dynamics flexible ligand-protein interactions // Biopolimers. – 2010. – Vol.93. – ¹2. – P.161-170.


37. DrugBank database. http://www.drugbank.ca 38. Fanali G., Pariani G., Ascenzi P., Fasano M. Allosteric and binding properties of Asp1- Glu382 truncated recombinant human serum albumin--an optical and NMR spectroscopic investigation // FEBS J. – 2009. – Vol.276. – ¹8. – P.2241-2250.


39.Fehske K.J., Müller W.E., Wollert U. The location of drug binding sites in human serum albumin // Biochem. Pharmacol. – 1981. – Vol.30. – ¹7. – P.687-692.


40. Fehske K.J ., Schlafer U., Wollert U., Müller W.E. Characterization of an important drug binding area on human serum albumin including the high-affinity binding sites of warfarin and azapropazone // Mol. Pharmacol. – 1982. – Vol.21. – ¹2. – P.387-393.


41. Fujiwara S., Amisaki T. Molecular dynamics study of conformational changes in human serum albumin by binding of fatty acids // Proteins. – 2006. – Vol.64. – ¹3. – P.730-739.


42. Ghuman J., Zunszain P.A., Petitpas I. et al. Structural basis of the drug-binding specificity of human serum albumin // J. Mol. Biol. – 2005. – Vol.353. – ¹1. – P.38-52.


43. Gleeson M.P., Hersey A., Hannongbua S. In-silico ADME models: a general assessment of their utility in drug discovery applications // Curr. Top. Med. Chem. – 2011. – Vol.11. – ¹4. – P.358-381.


44. Gustafsson S.S., Vrang L., Terelius Y., Danielson U.H. Quantification of interactions between drug leads and serum proteins by use of "binding efficiency" // Anal. Biochem. – 2011. – Vol.409. – ¹2. – P.163-175.


45. Hamilton J. A. Fatty acid interactions with proteins: what X-ray crystal and NMR solution structures tell us // Prog. Lipid. Res. – 2004. – Vol.43. – ¹3. – P.177-199.


46. Harmsen B.J ., De Bruin S.H., Janssen L.H. et al. pK change of imidazole groups in bovine serum albumin due to the conformational change at neutral pH // Biochem. – 1971. – Vol.10. – ¹7. – P.3217-3221.


47. Hawkins M.J., Soon-Shiong P., Desai N. Protein nanoparticles as drug carriers in clinical medicine // Adv. Drug Deliv. Rev. – 2008. – Vol.60. – ¹8. – P.876-885.


48. Hein K.L., Kragh-Hansen U., Morth J.P. et al. Crystallographic analysis reveals a unique lidocaine binding site on human serum albumin // J. Struct. Biol. – 2010. – Vol.171. – ¹3. – P.353-360.


49. Horie T., Mizuma T., Kasai S., Awazu S. Conformational changes in plasma albumin due to interaction with isolated rat hepatocytes // Am. J. Physiol. – 1988. – Vol. 254. – ¹4. (Pt 1). G.465-G470.


50.Irikura M., Takadate A., Goya S., Otagiri M. 7-Alkylaminocoumarin-4-acetic acids as fluorescent probe for studies of drug-binding sites on human serum albumin // Chem. Pharm. Bull. – 1991. – Vol.39. – ¹3. – P.724-728.


51. Janssen L.H ., Van Wilgenburg M.T., Wilting J. Human serum albumin as an allosteric twostate protein: Evidence from effects of calcium and warfarin on proton binding behaviour // Biochim. Biophys. Acta. – 1981. – Vol.669. – ¹2. – P.244-250.


52. Joseph K.S., Moser A.C., Basiaga S.B. et al. Evaluation of alternatives to warfarin as probes for Sudlow site I of human serum albumin: characterization by high-performance affinity chromatography // J. Chromatogr. A. – 2009. – Vol.1216. – ¹16. – P.3492-3500.


53. Joshi P., Chakraborty S., Dey S. et al. Binding of chloroquine-conjugated gold nanoparticles with bovine serum albumin // J. Colloid Interface Sci. – 2011. – Vol.355. – ¹2. – P.402- 409.


54. Kamal J.K.A., Zhao L., Zewail A.H. Ultrafast hydration dynamics in protein unfolding: Human serum albumin // Proc. Nat. Acad. Sci. USA. – 2004. – Vol.101. – ¹37. – P.13411- 13416.


55. Kandagal P.B., Ashoka S., Seetharamappa J. et al. Study of the interaction of an anticancer drug with human and bovine serum albumin: spectroscopic approach // J. Pharm. Biomed. Anal. – 2006. – Vol.41. – ¹2. – P.393-399.


56. Kim H.S., Hage D.S. Chromatographic analysis of carbamazepine binding to human serum albumin // J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci. – 2005. – Vol.816. – ¹1- 2. – P.57-66.


57. Kragh-Hansen U . Molecular aspects of ligand binding to serum albumin // Pharmacol. Rev. – 1981. – Vol.33. – ¹1. – P.17-53.


58. Kragh-Hansen U. Relations between high-affinity binding sites of markers for binding regions on human serum albumin // Biochem. J. – 1985. – Vol.225. – ¹3. – P.629-638.


59. Kragh-Hansen U. Evidence for a large and flexible region of human serum albumin possessing high affinity binding sites for salicylate, warfarin, and other ligands // Mol. Pharmacol. – 1988. – Vol.34. – ¹2. – P.160-171.


60.Kragh-Hansen U. Octanoate binding to the indole- and benzodiazepine-binding region of human serum albumin // Biochem. J. – 1991. – Vol.273. – Pt.3. – P.641-644.


61. Kragh-Hansen U., Chuang V.T.G., Otagiri M. Practical aspects of the ligand-binding and enzymatic properties of human serum albumin // Biol. Pharm. Bull. – 2002. – Vol.25. – ¹6. – P.695-704.


62.Kragh-Hansen U., Minchiotti L., Brennan S.O., Sugita O. Hormone binding to natural mutants of human serum albumin // Eur. J. Biochem. – 1990. – Vol.193. – ¹1. – P.169-174.


63. Kratochwil N.A., Huber W., Müller F. et al. Predicting plasma protein binding of drugs: A new approach // Biochem. Pharmacol. – 2002. – Vol.64. – ¹9. – P.1355-1374.


64. Kratz F. Albumin as a drug carrier: design of prodrugs, drug conjugates and nanoparticles // J. Control Release. – 2008. – Vol.132. – ¹3. – P.171-183.


65. Liu X., Chen C., Hop C.E. Do we need to optimize plasma protein and tissue binding in drug discovery? // Curr. Top. Med. Chem. – 2011. – Vol.11. – ¹4. – P.450-466.


66. Liu X., Smith B.J., Chen C. et al. Use of physiologically based pharmacokinetic model to study the time to reach brain equilibrium: An experimental analysis of the role of bloodbrain barrier permibility, plasma protein binding, and brain tissue binding // J. Pharmacol. Exp. Ther. – 2005. – Vol.313. – ¹3. – P.1254-1262.


67. Lu J., Stewart A.J., Sadler P.J. et al. Albumin as a zinc carrier: properties of its high-affinity zinc-binding site // Biochem. Soc. Trans. – 2008. – Vol.36. – Pt. 6. – P.1317-1321.


68. Mallik R., Yoo M.J., Chen S., Hage D.S. Studies of verapamil binding to human serum albumin by high-performance affinity chromatography // J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci. – 2008. – Vol.876. – ¹1. – P.69-75.


69.Matsushita Y., Gouda H., Tsujishita H., Hirono S. Determination of binding conformations of drugs to human serum albumin by transferred nuclear overhauser effect measurements and conformational analyses using high-temperature molecular dynamics calculations // J. Pharm. Sci. – 1998. – Vol.87. – ¹3. – P.379-386.


70.Meisner H., Neet K. Competitive binding of long-chain free fatty acids, octanoate, and chlorophenoxyisobutyrate to albumin // Mol. Pharmacol. – 1978. – Vol.14. – ¹2. – P.337- 346.


71.Mignot I., Presle N., Lapicque F. et al. Albumin binding sites for etodolac enantiomers // Chirality. – 1996. – Vol.8, ¹3. – P.271-280.


72. Mitzner S.R., Stange J., Klammt S. et al. Albumin dialysis MARS: knowledge from 10 years of clinical investigation // ASAIO J. – 2009. – Vol.55. – ¹5. – P.498-502.


73.Montero M. T., Pouplana R., Valls O., Garcia S. On the binding of cinmetacin and indomethacin to human serum albumin // J. Pharm. Pharmacol. – 1986. – Vol.38. – ¹12. – P.925-927.


74.Mudge G. H., Desbiens N., Stibitz G. R. Binding of iophenoxate and iopanoate to human serum albumin // Drug Metab. Dispos. – 1978. – Vol.6. – ¹4. – P.432-439.


75. Nerli B., Romanini D., Picó G. Structural specificity requirements in the binding of beta lactam antibiotics to human serum albumin // Chem. Biol. Interact. – 1997. – Vol.104. – ¹2-3. – P.179-202.


76. Neumann E., Frei E., Funk D. et al. Native albumin for targeted drug delivery // Expert Opin. Drug Deliv. – 2010. – Vol.7. – ¹8. – P.915-925.


77. Nicoletti F.P., Howes B.D., Fittipaldi M. et al. Ibuprofen induces an allosteric conformational transition in the heme complex of human serum albumin with significant effects on heme ligation // J. Am. Chem. Soc. – 2008. – Vol.130. – ¹35. – P.11677-11688.


78. Nikolić N., Vranjes-Ethurić S., Janković D. et al. Preparation and biodistribution of radiolabeled fullerene C60 nanocrystals // Nanotechnology. – 2009. – Vol.20. – ¹38. – P.385102.


79. Noskov B.A., Mikhailovskaya A.A., Lin S.Y. et al. Bovine serum albumin unfolding at the air/water interface as studied by dilational surface rheology // Langmuir. – 2010. – Vol.26. – ¹22. –P.17225-17231.


80. Novelli G., Rossi M., Pretagostini R. et al. A 3-year experience with Molecular Adsorbent Recirculating System (MARS): our results on 63 patients with hepatic failure and color Doppler US evaluation of cerebral perfusion // Liver Int. – 2003. – Vol.23. – Suppl. 3. – P.10-15.


81.Otagiri M., Masuda K., Imai T. et al. Binding of pirprofen to human serum albumin studied by dialysis and spectroscopy techniques // Biochem. Pharmacol. – 1989. – Vol.38. – ¹1. – P.1-7.


82.Otagiri M., Nakamura H., Maruyama T. et al. Characterization of binding sites for sulfadimethoxine and its major metabolite, N4-acetylsulfadimethoxine, on human and rabbit serum albumin // Chem. Pharm. Bull. – 1989. – Vol.37. – ¹2 – P.498-501.


83. Panjehshahin M.R ., Bowmer C.J., Yates M.S. Effect of valproic acid, its unsaturated metabolites and some structurally related fatty acids on the binding of warfarin and dansylsarcosine to human albumin // Biochem. Pharmacol. – 1991. – Vol.41. – ¹8. – P.1227-1233.


84. Peters T., Jr. All about Albumin: Biochemistry, Genetics, and Medical Applications. – San Diego: Academic Press. 1996. 432 p.


85. Petersen C.E ., Ha C.E., Harohalli K. et al. A dynamic model for bilirubin binding to human serum albumin // J. Biol. Chem. – 2000. – Vol.275. – ¹28. – P.20985-20995.


86. Petersen C.E ., Ha C.E., Jameson D.M., Bhagavan N.V. Mutations in a specific human serum albumin thyroxine binding site define the structural basis of familial dysalbuminemic hyperthyroxinemia // J. Biol. Chem. – 1996. – Vol.271. – ¹32. – P.19110-19117.


87. Petitpas I., Bhattacharya A. A., Twine S. et al. Crystal structure analysis of warfarin binding to human serum albumin: anatomy of drug site I // J. Biol. Chem. – 2001. – Vol.276. – ¹25. – P.22804-22809.


88. Petitpas I., Grüne T., Bhattacharya A. A., Curry S. Crystal structures of human serum albumin complexed with monounsaturated and polyunsaturated fatty acids // J. Mol. Biol. – 2001. – Vol.314. – ¹5. – P.955-960.


89. Petitpas I., Petersen C.E., Ha C.E. et al. Structural basis of albumin-thyroxine interactions and familial dysalbuminemic hyperthyroxinemia // Proc. Natl. Acad. Sci. USA – 2003. – Vol.100. – ¹11. – P.6440-6445.


90. Petrelli F., Bogonovo K., Barni S. Targeted delivery for breast cancer therapy: the history of nanoparticle-albumin-bound paclitaxel // Expert Opin. Pharmacother. – 2010. – Vol.11. – ¹8. – P.1413-1432.


91. Protein Data Bank. A Resource for Studying Biological Macromolecules. http://www.rcsb.org/pdb/home/home.do


92. Rahman M.H., Maruyama T., Okada T. et al. Study of interaction of carprofen and its enantiomers with human serum albumin. – I. Mechanism of binding studied by dialysis and spectroscopic methods // Biochem. Pharmacol. – 1993. – Vol.46. – ¹ 10. – P.1721-1731.


93. Rahman M.H., Maruyama T., Okada T. et al. Study of interaction of carprofen and its enantiomers with human serum albumin. – II. Stereoselective site-to-site displacement of carprofen by ibuprofen // Biochem. Pharmacol. – 1993. – Vol.46. – ¹10. – P.1733-1740.


94. Rahman M. H., Yamasaki K., Shin Y. H. et al. Characterization of high affinity binding sites of non-steroidal anti-inflammatory drugs with respect to site-specific probes on human serum albumin // Biol. Pharm. Bull. – 1993. – Vol.16. – ¹11. – P.1169-1174.


95. Ryan A.J., Ghuman J., Zunszain P.A. et al. Structural basis of binding of fluorescent, sitespecific dansylated amino acids to human serum albumin // J. Struct. Biol. – 2011. – Vol.174. – ¹1. – P.84-91.


96.Sakai T., Takadate A., Otagiri M. Characterization of binding site of uremic toxins on human serum albumin // Biol. Pharm. Bull. – 1995. – Vol.18. – ¹12. – P.1755-1761.


97. Simard J.R., Zunszain P.A., Hamilton J.A., Curry S. Location of high and low affinity fatty acid binding sites on human serum albumin revealed by NMR drug-competition analysis // J. Mol. Biol. – 2006. – Vol.361. – ¹2. – P.336-351.


98. Stepensky D. Use of unbound volumes of drug distribution in pharmacokinetic calculations // Eur. J. Pharm. Sci. – 2011. – Vol. 42. – ¹1-2. – P.91-98.


99. Sudlow G ., Birkett D.J., Wade D.N. Spectroscopic techniques in the study of protein binding: A fluorescence technique for the evaluation of the albumin binding and displacement of warfarin and warfarin-alcohol // Clin. Exp. Pharmacol. Physiol. – 1975. – Vol.2. – ¹2. – P.129-140.


100. Sugio S., Kashima A., Mochizuki S. et al. Crystal structure of human serum albumin at 2.5 A resolution // Protein Eng. – 1999. – Vol.12. – ¹6. – P.439-446.


101. Takamura N., Haruta A., Kodama H. et al. Mode of interaction of loop diuretics with human serum albumin and characterization of binding site // Pharm. Res. – 1996. – Vol.13. – ¹7. – P.1015-1019.


102. Takamura N., Maruyama T., Ahmed S. et al. Interactions of aldosterone antagonist diuretics with human serum proteins // Pharm. Res. – 1997. – Vol.14. – ¹4. – P.522-526.


103. Takamura N., Rahman M. H., Yamasaki K. et al. Interaction of benzothiadiazides with human serum albumin studied by dialysis and spectroscopic methods // Pharm. Res. – 1994. – Vol.11. – ¹10. – P.1452-1457.


104. Takamura N., Shinozawa S., Maruyama T. et al. Effects of fatty acids on serum binding between furosemide and valproic acid // Biol. Pharm. Bull. – 1998. – Vol.21. – ¹2. – P.174- 176.


105. Tanaka H., Mizojiri K. Drug-protein binding and blood-brain barrier permeability // J. Pharmacol. Exp. Ther. – 1999. – Vol.288. – ¹3. – P.912-918.


106.Tsutsumi Y., Maruyama T., Takadate A. et al. Interaction between two dicarboxylate endogenous substances, bilirubin and an uremic toxin, 3-carboxy-4-methyl-5-propyl-2- furanpropanoic acid, on human serum albumin // Pharm Res. – 1999. – Vol.16. – ¹6. – P.916-923.


107. Twine S.M., Lee A.G., Gore M.G. et al. Characterisation of domain fragments of recombinant human albumin // Biochem. Soc. Trans. – 1998. – Vol.26. – ¹3. – S.279.


108. Valkó K.L., Nunhuck S.B., Hill A.P. Estimating unbound volume of distribution and tissue binding by in vitro HPLC-based human serum albumin and immobilised artificial membrane-binding measurements // J. Pharm. Sci. – 2011. – Vol.100. – ¹3. – P.849-862.


109. Vallner J.J. Binding of drugs by albumin and plasma protein // J. Pharm. Sci. – 1977. – Vol.66. – ¹4. – P.447-465.


110. Van der Vusse G.J. Albumin as fatty acid transporter // Drug Metab. Pharmacokinet. – 2009. – Vol.24. – ¹4. – P.300-307.


111. Varshney A., Rehan M., Subbarao N. et al. Elimination of endogenous toxin, creatinine from blood plasma depends on albumin conformation: site specific uremic toxicity & impaired drug binding // PLoS One. – 2011. – Vol.6. – ¹2. – e17230.


112. Varshney A., Sen P., Ahmad E. et al. Ligand binding strategies of human serum albumin: how can the cargo be utilized? // Chirality. – 2010. – Vol.22. – ¹1. – P.77-87.


113. Watanabe H., Kragh-Hansen U., Tanase S. et al. Conformational stability and warfarinbinding properties of human serum albumin studied by recombinant mutants // Biochem. J. – 2001. – Vol.357. – ¹1. – P.269-274.


114. Watanabe H., Tanase S., Nakajou K. et al. Role of arg-410 and tyr-411 in human serum albumin for ligand binding and esterase-like activity // Biochem. J. – 2000. – Vol.349. – ¹3. – P.813-819.


115. Yamasaki K., Maruyama T., Kragh-Hansen U., Otagiri M. Characterization of site I on human serum albumin: concept about the structure of a drug binding site // Biochim. Biophys. Acta. – 1996. – Vol.1295. – ¹2. – P.147-157.


116. Yamasaki K., Maruyama T., Takadate A. et al. Characterization of site I of human serum albumin using spectroscopic analyses: locational relations between regions Ib and Ic of site I // J. Pharm. Sci. – 2004. – Vol.93. – ¹12. – P.3004-3012.


117. Yamasaki K., Rahman M. H., Tsutsumi Y. et al. Circular dichroism simulation shows a site-II-to-site-I displacement of human serum albumin-bound diclofenac by ibuprofen // AAPS PharmSciTech. – 2000. – Vol.14. – ¹1. – E12 (http://www.pharmscitech.com).


118. Yoo M.J., Smith Q.R., Hage D.S. Studies of imipramine binding to human serum albumin by high-performance affinity chromatography // J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci. – 2009. – Vol.877. – ¹11-12. – P.1149-1154.


119. Zatón A., Martinez A., de Gandarias J. M. The binding of thioureylene compounds to human serum albumin // Biochem. Pharmacol. – 1988. – Vol.37. – ¹16. – P.3127-3131.


120. Zhao X., Liu R., Chi Z. et al. New insights into the behavior of bovine serum albumin adsorbed onto carbon nanotubes: comprehensive spectroscopic studies // J. Phys. Chem. B. – 2010. – Vol.114. – ¹16. – P.5625-5631.


121. Zhu L., Yang F., Chen L. et al. A new drug binding subsite on human serum albumin and drug-drug interaction studied by X-ray crystallography // J. Struct. Biol. – 2008. – Vol.162. – ¹1. – P.40-49.


122. Zurawski V.R. Jr ., Foster J.F. The neutral transition and the environment of the sulfhydryl side chain of bovine plasma albumin // Biochem. – 1974. – Vol.13. – ¹17. – P.465-471.