Медико-биологический
информационный портал
для специалистов
 
Medline.ru

СОДЕРЖАНИЕ ЖУРНАЛА:
Физико-химическая биология

Клиническая медицина

Профилактическая медицина

Медико-биологические науки


АРХИВ:

Фундаментальные исследования

Организация здравохраниения

История медицины и биологии



Последние публикации

Поиск публикаций

Articles

Архив :  2000 г.  2001 г.  2002 г. 
               2003 г.  2004 г.  2005 г. 
               2006 г.  2007 г.  2008 г. 
               2009 г.  2010 г.  2011 г. 
               2012 г.  2013 г.  2014 г. 
               2015 г.  2016 г.  2017 г. 
               2018 г.  2019 г.  2020 г.  2021 г.  2022 г.  2023 г. 

Редакционная информация:
        Опубликовать статью
        Наша статистика


 РЕДАКЦИЯ:
Главный редактор

Заместители главного редактора

Члены редколлегии
Специализированные редколлегии


 УЧРЕДИТЕЛИ:
Институт теоретической и экспериментальной биофизики Российской академии наук.

ООО "ИЦ КОМКОН".




Адрес редакции и реквизиты

199406, Санкт-Петербург, ул.Гаванская, д. 49, корп.2

ISSN 1999-6314

Российская поисковая система
Искать: 


«
Vol. 24, Art. 94 (pp. 1398-1417)    |    2024       
»

Neuro-inflammatory theory of schizophrenia. Role of external factors (Literature review)
Khalchitsky S.E.1, Ivanov M.V.2, Stanovaya V.V.2, Khutoryanskaya Yu.V.3, Buslov K.G.1, Gracheva Yu.A.1, Komov Yu.V.3, Batotsyrenova E.G.3, Shchepetkova K.М.3, Kashuro V.A.3,4,5, Vissarionov S.V.1

1H.Turner National Medical Research Center for Children's Orthopedics and Trauma Surgery, Saint-Petersburg, Russia
2V.M. Bekhterev National Medical Research Center for Psychiatry and Neurology
Saint-Petersburg, Russia
3St. Petersburg State Pediatric Medical University, St. Petersburg, Russia
4Herzen State Pedagogical University of Russia, Saint Petersburg, Russia
5 Research Institute of Hygiene, Occupational Pathology and Human Ecology at FMBA of Russia



Brief summary

Schizophrenia (SCZ) is a disorder with a heterogeneous etiology, involving a complex interaction between genetic and environmental risk factors. The immune system is now known to play a vital role in the function and pathology of the nervous system by regulating neuronal and glial development, synaptic plasticity, and behavior. The article examines environmental factors that influence the onset of schizophrenia, including exposure to pollution, gut dysbiosis, maternal immune activation, and early life stress, and how the effects of these risk factors relate to microglial function and dysfunction. Although the mechanisms involved in the pathogenesis of SCZ are still unclear, exposure to air pollution has been found to increase the expression of multiple inflammatory genes in humans and animal models. Taken together, the inflammatory state caused by exposure to air pollution has been shown to alter microglial function and neuronal development. as well as axonal myelination, thereby influencing several neurodevelopmental processes that have been implicated in the pathogenesis of SCZ. Of the immune genes that are associated with SCZ, many were also altered in either humans or animals exposed to pollutants, suggesting a genetic relationship between changes in pollution-induced signaling and SCZ. Microbiota influences complex behaviors such as social behavior, depression, anxiety, which is directly related to SCZ and other neuropsychiatric disorders. Recent studies support the causative role of the microbiota in neuropsychiatric disorders and highlight the role of the immune system in brain-gut communication in pathological conditions. The gut microbiome can influence the integrity of the blood-brain barrier (BBB), which contributes to increased neuroinflammation. The presence of intestinal microflora is necessary for the proper formation of the BBB in the early stages of development. The microbiome determines several risk factors for SCZ, including stress responses, promoting immune system activation and BBB disruption. Exposure to psychological stress or traumatic life events during the prenatal period, childhood, or adolescence leads to an increased risk of SCZ. Particularly during critical periods of development, certain stressors, such as physical or psychological abuse, socioeconomic disadvantage, living in an urban environment, and neglect, increase the risk of SCZ.


Key words

schizophrenia, neuroinflammation, microglia, environment, risk factors, neurogenesis.





(The article in PDF format. For preview need Adobe Acrobat Reader)



Open article in new window

Reference list

1. Whiteford H.A., Degenhardt L., Rehm J., et al. Global burden of disease attributable to mental and substance use disorders: findings from the Global Burden of Disease Study 2010. Lancet. 2013; 382:1575-1586. doi: 10.1016/s0140-6736(13)61611-6.


2. Kroken R.A., Sommer I.E., Steen V.M., et al. Constructing the immune signature of schizophrenia for clinical use and research; an integrative review translating descriptives into diagnostics. Front. Psychiatry. 2018; 9:753. doi: 10.3389/fpsyt.2018.00753.


3. Frydecka D., Krzystek-Korpacka M., Lubeiro A., et al. Profiling inflammatory signatures of schizophrenia: a cross-sectional and meta-analysis study. Brain Behav. Immun. 2018; 71:28-36.doi: 10.1016/j.bbi.2018.05.002.


4. Misiak B., Stramecki F., Gawe¸da L., et al. Interactions between variation in candidate genes and environmental factors in the etiology of schizophrenia and bipolar disorder: a systematic review. Mol. Neurobiol. 2018; 55:5075-5100. doi:10.1007/s12035-017-0708-y.


5. Bolton J.L., Marinero S., Hassanzadeh T., et al. Gestational exposure to air pollution alters cortical volume, microglial morphology, and microglia-neuron interactions in a sex-specific manner. Front. Synaptic Neurosci. 2017; 9:10. doi: 10.3389/fnsyn.2017.00010.


6. Davis D.A., Bortolato M., Godar S.C., et al. Prenatal exposure to urban air nanoparticles in mice causes altered neuronal differentiation and depression-like responses. PLoS One. 2013; 8:e64128. doi: 10.1371/journal.pone.0064128.


7. Mumaw C.L., Levesque S., McGraw C., et al. Microglial priming through the lung-brain axis: the role of air pollution-induced circulating factors. FASEB J. 2016; 30:1880-1891. doi: 10.1096/fj.201500047.


8. Newman N.C., Ryan P., Lemasters G., et al. Traffic-related air pollution exposure in the first year of life and behavioral scores at 7 years of age. Environ. Health Perspect. 2013; 121:731-736. doi: 10.1289/ehp.1205555.


9. Woodward N.C., Levine M.C., Haghani A., et al. Toll-like receptor 4 in glial inflammatory responses to air pollution in vitro and in vivo. J. Neuroinflammation. 2017; 14:84.


10. Horsdal H.T., Agerbo E., McGrath J.J., et al. Association of childhood exposure to nitrogen dioxide and polygenic risk score for schizophrenia with the risk of developing schizophrenia. JAMA Netw. Open. 2019; 2:e1914401. doi: 10.1001/jamanetworkopen. 2019.14401.


11. Gruzieva O., Merid S.K., Gref A., et al. Exposure to traffic-related air pollution and serum inflammatory cytokines in children. Environ. Health Perspect. 2017; 125:067007. doi: 10.1289/ehp460.


12. Pope C.A., Bhatnagar A., McCracken J.P., et al. Exposure to fine particulate air pollution is associated with endothelial injury and systemic inflammation. Circ. Res. 2016; 119: 1204-1214. doi: 10.1161/circresaha.116.309279.


13. Woodward N.C., Haghani A., Johnson R.G., et al. Prenatal and early life exposure to air pollution induced hippocampal vascular leakage and impaired neurogenesis in association with behavioral deficits. Transl. Psychiatry. 2018; 8:261.


14. Bai K. J., Chuang K. J., Chen C.L., et al. Microglial activation and inflammation caused by traffic-related particulate matter. Chem. Biol. Interact. 2019. 311: 108762. doi: 10.1016/j.cbi.2019.108762.


15. Gruol D.L. IL-6 regulation of synaptic function in the CNS. Neuropharmacology. 2015; 96: 42-54. doi: 10.1016/j.neuropharm.2014.10.023.


16. Girgis R.R., Kumar, S.S., and Brown A.S. The cytokine model of schizophrenia: emerging therapeutic strategies. Biol. Psychiatry. 2014; 75: 292-299. doi: 10.1016/j.biopsych.2013.12.002.


17. Woodward N., Finch C.E., and Morgan T.E. Traffic-related air pollution and brain development. AIMS Environ. Sci. 2015; 2: 353-373.


18. Solaimani P., Saffari A., Sioutas C., et al. Exposure to ambient ultrafine particulate matter alters the expression of genes in primary human neurons. Neurotoxicology. 2017; 58:50-57. doi: 10.1016/j.neuro.2016.11.001.


19. Cheng H., Saffari A., Sioutas C., et al. Nanoscale particulate matter from urban traffic rapidly induces oxidative stress and inflammation in olfactory epithelium with concomitant effects on brain. Environ. Health Perspect. 2016; 124:1537-1546. doi: 10.1289/ehp134.


20. Babadjouni R., Patel A., Liu Q., et al. Nanoparticulate matter exposure results in neuroinflammatory changes in the corpus callosum. PLoS One. 2018; 13:e0206934. doi: 10.1371/journal.pone.0206934.


21. Allen J.L., Oberdorster G., Wong C., et al. Developmental neurotoxicity of inhaled ambient ultrafine particle air pollution: Parallels with neuropathological and behavioral features of autism and other neurodevelopmental disorders. Neurotoxicology. 2017; 59:140-154. doi:10.1016/j.neuro.2015.12.014.


22. Cole T.B., Coburn J., Dao K., et.al. Sex and genetic differences in the effects of acute diesel exhaust exposure on inflammation and oxidative stress in mouse brain. Toxicology. 2016; 374:1-9. doi:10.1016/j.tox.2016.11.010.


23. Sampson T.R., Debelius J.W., Thron T., et al. Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson?s Disease. Cell. 2016; 167:1469-1480.e12.


24. Singh V., Roth S., Llovera G., et al. Microbiota dysbiosis controls the neuroinflammatory response after stroke. J. Neurosci. 2016; 36:7428-7440. doi: 10.1523/jneurosci.1114-16.2016.


25. Yano J.M., Yu K., Donaldson G.P., et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell. 2015; 161:264-276. doi: 10.1016/j.cell.2015.02.047.


26. Olekhnovich E.I., Batotsyrenova E.G., Yunes R.A., Kashuro V.A., Poluektova E.U., Veselovsky V.A., Ilina E.N., Danilenko V.N., Klimina K.M. The effects of Levilactobacillus brevis on the physiological parameters and gut microbiota composition of rats subjected to desynchronosis. Microb Cell Fact. 2021;20(1):226. doi: 10.1186/s12934-021-01716-x.


27. Sherwin E., Bordenstein S. R., Quinn J. L., et al. Microbiota and the social brain. Science. 2019; 366:eaar2016.


28. Klimina K.M., Yunes R.A., Poluektova E.U., Odorskaya M.V., Kasianov A.S., Danilenko V.N., Batotsyrenova E.G., Gilyaeva E.H., Kostrova T.A., Kashuro V.A., Ivanov M.B., Kudryavtseva A.V. The effects of desynchronosis on the gut microbiota composition and physiological parameters of rats. BMC Microbiol. 2019;19(1):160. doi: 10.1186/s12866-019-1535-2.


29. Franklin C.L., and Ericsson A.C. Microbiota and reproducibility of rodent models. Lab Anim. 2017; 46: 114-122. doi: 10.1038/laban.1222.


30. Schwarz E., Maukonen J., Hyytiäinen T., et al. Analysis of microbiota in first episode psychosis identifies preliminary associations with symptom severity and treatment response. Schizophr. Res. 2018; 192:398-403. doi: 10.1016/j.schres.2017.04.017.


31. Zheng P., Zeng B., Liu M., et al. The gut microbiome from patients with schizophrenia modulates the glutamateglutamine-GABA cycle and schizophrenia-relevant behaviors in mice. Sci. Adv. 2019; 5:eaau8317. doi: 10.1126/sciadv.aau8317.


32. Zhu F., Guo R., Wang W., et al. Transplantation of microbiota from drug-free patients with schizophrenia causes schizophrenialike abnormal behaviors and dysregulated kynurenine metabolism in mice. Mol. Psychiatry. 2020; 25(11):2905-2918. doi: 10.1038/s41380-019-0475-4


33. Chiappelli J., Shi Q., Kodi P., et al. Disrupted glucocorticoid-Immune interactions during stress response in schizophrenia. Psychoneuroendocrinology. 2016; 63: 86-93. doi: 10.1016/j.psyneuen.2015.09.010.


34. Bretler T., Weisberg H., Koren O., et al. The effects of antipsychotic medications on microbiome and weight gain in children and adolescents. BMC Med. 2019; 17:112. doi: 10.1186/s12916-019-1346-1.


35. Strandwitz P. Neurotransmitter modulation by the gut microbiota. Brain Res. 2018; 1693:128-133. doi: 10.1016/j.brainres.2018.03.015.


36. Hsiao E.Y., McBride S.W., Hsien S., et al. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell. 2013; 155:1451-1463. doi: 10.1016/j.cell.2013.11.024.


37. Braniste V., Kowal C., Anuar F., et al. The gut microbiota influences blood-brain barrier permeability in mice. Sci. Transl. Med. 2014; 6:263ra158.


38. Hoyles L., Snelling T., Umlai U. K., et al. Microbiome-host systems interactions: protective effects of propionate upon the blood-brain barrier. Microbiome. 2018; 6:55.


39. Cipollini V., Anrather J., Orzi F., et al. Th17 and cognitive impairment: possible mechanisms of action. Front. Neuroanat. 2019; 13:95. doi: 10.3389/fnana.2019.00095.


40. Tang A.T., Choi J.P., Kotzin J.J., et al. Endothelial TLR4 and the microbiome drive cerebral cavernous malformations. Nature. 2017; 545: 305-310.


41. Hulme H., Meikle L. M., Strittmatter N., et al. Microbiome-derived carnitine mimics as previously unknown mediators of gut-brain axis communication. Sci. Adv. 2020; 6:eaax6328. doi: 10.1126/sciadv.aax6328.


42. Flippo K.H., Strack S. An emerging role for mitochondrial dynamics in schizophrenia. Schizophr. Res. 2017; 187:26-32. doi: 10.1016/j.schres.2017.05.003.


43. Roberts R. C. Postmortem studies on mitochondria in schizophrenia. Schizophr. Res. 2017; 187:17-25. doi: 10.1016/j.schres.2017.01.056.


44. Culmsee C., Michels S., Scheu S., et al. Mitochondria, microglia, and the immune system-how are they linked in affective disorders? Front. Psychiatry. 2018; 9:739. doi: 10.3389/fpsyt.2018.00739.


45. Hui C.W., St-Pierre A., El Hajj H., et al. Prenatal immune challenge in mice leads to partly sexdependent behavioral, microglial, and molecular abnormalities associated with schizophrenia. Front. Mol. Neurosci. 2018; 11:13. doi: 10.3389/fnmol.2018.00013.


46. Thion M.S., Low D., Silvin A., et al. Microbiome influences prenatal and adult microglia in a sex-specific manner. Cell. 2018; 172: 500-516.e16. doi: 10.1016/j.cell.2017.11.042.


47. Erny D., Hrabˇe de Angelis A.L., Jaitin D., et al. Host microbiota constantly control maturation and function of microglia in the CNS. Nat. Neurosci. 2015; 18: 965-977. doi: 10.1038/nn.4030.


48. Frost G., Sleeth M.L., Lizarbe B., et al. The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nat. Commun. 2014; 5:3611.


49. Li M., van Esch B.C.A.M., Wagenaar G.T.M., et al. Pro- and anti-inflammatory effects of short chain fatty acids on immune and endothelial cells. Eur. J. Pharmacol. 2018; 831:52-59. doi: 10.1016/j.ejphar.2018.05.003.


50. Ochoa S., Usall J., Cobo J., et al. Gender differences in schizophrenia and first-episode psychosis: a comprehensive literature review. Schizophr. Res. Treat. 2012; 2012:916198.


51. Holtzman C.W., Trotman H.D., Goulding S.M., et al. Stress and neurodevelopmental processes in the emergence of psychosis. Neuroscience. 2013; 249:172-191. doi: 10.1016/j.neuroscience.2012.12.017.


52. Quidé Y., Ong X. H., Mohnke S., et al. Childhood trauma-related alterations in brain function during a Theory-of-Mind task in schizophrenia. Schizophr. Res. 2017; 189:162-168. doi: 10.1016/j.schres.2017.02.012


53. Popovic D., Schmitt A., Kaurani L., et al. Childhood trauma in schizophrenia: current findings and research perspectives. Front. Neurosci. 2019; 13:274.


54. Schifani C., Tseng H. H., Kenk M., et al. Cortical stress regulation is disrupted in schizophrenia but not in clinical high risk for psychosis. Brain. 2018; 141: 2213-2224. doi: 10.1093/brain/awy133.


55. Misiak B., Krefft M., Bielawski T., et al. Toward a unified theory of childhood trauma and psychosis: a comprehensive review of epidemiological, clinical, neuropsychological and biological findings. Neurosci. Biobehav. Rev. 2017; 75:393-406. doi: 10.1016/j.neubiorev.2017.02.015.


56. van Leeuwen J.M.C., Vink M., Fernández G., et al. At-risk individuals display altered brain activity following stress. Neuropsychopharmacology. 2018; 43:1954-1960. doi: 10.1038/s41386-018-0026-8.


57. do Prado C.H., Grassi-Oliveira R., Daruy-Filho L., et al. Evidence for immune activation and resistance to glucocorticoids following childhood maltreatment in adolescents without psychopathology. Neuropsychopharmacology. 2017; 42:2272-2282. doi: 10.1038/npp.2017.137.


58. Lange C., Huber C. G., Fröhlich D., et al. Modulation of HPA axis response to social stress in schizophrenia by childhood trauma. Psychoneuroendocrinology. 2017; 82:126-132. doi: 10.1016/j.psyneuen.2017.03.027.


59. Glassman M., Wehring H.J., Pocivavsek A., et al. Peripheral cortisol and inflammatory response to a psychosocial stressor in people with schizophrenia. J. Neuropsychiatry. 2018; 2:4.


60. Houtepen L.C., Boks M.P., Kahn R.S., et al. Antipsychotic use is associated with a blunted cortisol stress response: a study in euthymic bipolar disorder patients and their unaffected siblings. Eur. Neuropsychopharmacol. 2015; 25:77-84. doi: 10.1016/j.euroneuro.2014.10.005.


61. Tas C., Brown E.C., Eskikurt G., et al. Cortisol response to stress in schizophrenia: associations with oxytocin, social support and social functioning. Psychiatry Res. 2018; 270:1047-1052. doi:10.1016/j.psychres.2018.05.011.


62. Pugliese V., Bruni A., Carbone E.A., et al. Maternal stress, prenatal medical illnesses and obstetric complications: risk factors for schizophrenia spectrum disorder, bipolar disorder and major depressive disorder. Psychiatry Res. 2019; 271:23-30. doi: 10.1016/j.psychres.2018.11.023.


63. Bronson S.L., Bale T.L. Prenatal stress-induced increases in placental inflammation and offspring hyperactivity are male-specific and ameliorated by maternal antiinflammatory treatment. Endocrinology. 2014; 155:2635-2646. doi:10.1210/en.2014-1040.


64. Pedersen J.M., Mortensen E.L., Christensen D.S., et al. Prenatal and early postnatal stress and later life inflammation. Psychoneuroendocrinology. 2018; 88:158-166. doi: 10.1016/j.psyneuen.2017.12.014.


65. Gumusoglu S.B., Fine R.S., Murray S.J., et al. The role of IL-6 in neurodevelopment after prenatal stress. Brain Behav. Immun. 2017; 65:274-283. doi: 10.1016/j.bbi.2017.05.015.


66. Johnson F.K., Kaffman, A. Early life stress perturbs the function of microglia in the developing rodent brain: New insights and future challenges. Brain Behav. Immun. 2018; 69:18-27. doi: 10.1016/j.bbi.2017.06.008.


67. Marsland A. L., Walsh C., Lockwood K., et al. The effects of acute psychological stress on circulating and stimulated inflammatory markers: a systematic review and meta-analysis. Brain Behav. Immun. 2017; 64:208-219. doi: 10.1016/j.bbi.2017.01.011.


68. Réus G.Z., Fernandes G.C., de Moura A.B., et al. Early life experience contributes to the developmental programming of depressive-like behaviour, neuroinflammation and oxidative stress. J. Psychiatr. Res. 2017; 95:196-207. doi: 10.1016/j.jpsychires.2017.08.020.


69. Banqueri M., Mendez M., Gomez-Lazaro E., et al. Early life stress by repeated maternal separation induces long-term neuroinflammatory response in glial cells of male rats. Stress. 2019; 22:563-570. doi: 10.1080/10253890.2019.1604666.


70. Reus G.Z., Silva R.H., de Moura A.B., et al. Early maternal deprivation induces microglial activation, alters glial fibrillary acidic protein immunoreactivity and indoleamine 2,3-dioxygenase during the development of offspring rats. Mol. Neurobiol. 2019; 56:1096-1108. doi: 10.1007/s12035-018-1161-2.


71. Yue N., Huang H., Zhu X., et al. Activation of P2X7 receptor and NLRP3 inflammasome assembly in hippocampal glial cells mediates chronic stress-induced depressive-like behaviors. J. Neuroinflammation. 2017; 14:102.


72. Tay T.L., Savage J.C., Hui C.W., et al. Microglia across the lifespan: from origin to function in brain development, plasticity and cognition. J. Physiol. 2017; 595:1929-1945. doi: 10.1113/jp272134.


73. Duque E.E. A., Munhoz C.D. The pro-inflammatory effects of glucocorticoids in the brain. Front. Endocrinol. 2016; 7:78. doi: 10.3389/fendo.2016.00078.


74. Catale C., Gironda S., Lo Iacono L., et al. Microglial function in the effects of early-life stress on brain and behavioral development. J. Clin. Med. 2020; 9:468. doi: 10.3390/jcm9020468.


75. Lehmann M.L., Weigel T.K., Cooper H.A., et al. Decoding microglia responses to psychosocial stress reveals blood-brain barrier breakdown that may drive stress susceptibility. Sci.Rep. 2018; 8:11240.


76. Lehmann M.L., Weigel T.K., Poffenberger C.N., et al. The behavioral sequelae of social defeat require microglia and are driven by oxidative stress in mice. J. Neurosci. 2019; 39:5594-5605. doi: 10.1523/jneurosci.0184-19.2019.


77. Brannigan R., Cannon M., Tanskanen A., et al. The association between subjective maternal stress during pregnancy and offspring clinically diagnosed psychiatric disorders. Acta Psychiatr. Scand. 2019; 139:304-310. doi: 10.1111/acps.12996.


78. Dandi E, Kalamari A., Touloumi O., et al. Beneficial effects of environmental enrichment on behavior, stress reactivity and synaptophysin/BDNF expression in hippocampus following early life stress. Int. J. Dev. Neurosci. 2018; 67:19-32. doi:10.1016/j.ijdevneu.2018.03.003.


79. Gonzalez-Pardo H., Arias J.L., Vallejo G., et al. Environmental enrichment effects after early stress on behavior and functional brain networks in adult rats. PLoS One. 2019; 14:e0226377. doi: 10.1371/journal.pone.0231586.


80. Mackes N.K., Golm D., Sarkar S., et al. Early childhood deprivation is associated with alterations in adult brain structure despite subsequent environmental enrichment. Proc. Natl. Acad. Sci. U.S.A. 2020; 117:641-649. doi: 10.1073/pnas.1911264116.





Свидетельство о регистрации сетевого электронного научного издания N 077 от 29.11.2006
Журнал основан 16 ноября 2000г.
Выдано Министерством РФ по делам печати, телерадиовещания и средств массовых коммуникаций
(c) Перепечатка материалов сайта Medline.Ru возможна только с письменного разрешения редакции

Размещение рекламы

Rambler's Top100