Медико-биологический
информационный портал
для специалистов
 
Medline.ru

СОДЕРЖАНИЕ ЖУРНАЛА:
Физико-химическая биология

Клиническая медицина

Профилактическая медицина

Медико-биологические науки


АРХИВ:

Фундаментальные исследования

Организация здравохраниения

История медицины и биологии



Последние публикации

Поиск публикаций

Articles

Архив :  2000 г.  2001 г.  2002 г. 
               2003 г.  2004 г.  2005 г. 
               2006 г.  2007 г.  2008 г. 
               2009 г.  2010 г.  2011 г. 
               2012 г.  2013 г.  2014 г. 
               2015 г.  2016 г.  2017 г. 
               2018 г.  2019 г.  2020 г.  2021 г.  2022 г.  2023 г. 

Редакционная информация:
        Опубликовать статью
        Наша статистика


 РЕДАКЦИЯ:
Главный редактор

Заместители главного редактора

Члены редколлегии
Специализированные редколлегии


 УЧРЕДИТЕЛИ:
Институт теоретической и экспериментальной биофизики Российской академии наук.

ООО "ИЦ КОМКОН".




Адрес редакции и реквизиты

199406, Санкт-Петербург, ул.Гаванская, д. 49, корп.2

ISSN 1999-6314

Российская поисковая система
Искать: 


«
Vol. 24, Art. 86 (pp. 1258-1274)    |    2023       
»

Morphological and molecular biological study of the brain in patients with ii and iii waves of covid-19 and in the post-covid period
Mitrofanova L.B., Vorobeva O.M., Sterkhova K.A., Makarov I.A., Rasulov Z.M., Pal`tsev A.A., Vas`kova N.L., Gulyaev D.A.

Almazov National Medical Research Centre



Brief summary

There are a growing number of reports in the current literature that neurological disorders are not only manifest during COVID-19, but also persist in patients in the post-acute period. The aim: to determine the presence of SARS-CoV-2 in the brain structures of patients who died from acute COVID-19 and had a coronavirus infection. Materials and methods. The materials were fragments of the cerebral cortex, trunk and hippocampus of 57 patients who died from COVID-19 in the II and III waves of the disease; gliomas and arteriovenous malformation in 10 patients (surgical material) and the cortex of the frontal lobes in 3 patients (autopsy material) who had a coronavirus infection; cortex of the frontal lobes of 5 patients who died in 2018 (control group). Immunohistochemical analysis was performed with antibodies to SARS-CoV-2 spike protein, ACE2, CD26, RT-PCR for SARS-CoV-2 RNA - in the brain of 10 patients of the second wave of COVID-19 and the surgical material of 10 patients with Long COVID. Results. SARS-CoV-2 expression was detected in neurons of the cerebral cortex, brainstem and hippocampus in 100% of patients with wave II, 70% with wave III COVID-19 and 77% with Long COVID. At the same time, no differences were found in the number of neurons with the expression of this antigen in any of the groups. The average number of neurons expressing ACE2 and CD26 in wave II was 83 and 8%, and in wave III, 75 and 20%, respectively. No correlation was found between the number of neurons expressing SARS-CoV-2, CD26, and ACE2. RT-PCR reveals subthreshold SARS-CoV-2 RNA values in 23% of patients with gliomas. Conclusion. Immunohistochemical study revealed the expression of SARS-CoV-2 spike protein in neurons of the cerebral cortex, brainstem and hippocampus of patients with acute COVID-19, as well as in neurons and tumor cells of gliomas of patients with Long COVID. At the same time, RT-PCR detected viral RNA only at subthreshold values in 23% of patients with tumors, which may indicate unproductive persistence of the virus in the central nervous system and does not exclude its role in oncogenesis and tumor progression.


Key words

SARS-CoV-2, ACE2, DPP4, immunohistochemistry and brain polymerase chain reaction, Long COVID





(The article in PDF format. For preview need Adobe Acrobat Reader)



Open article in new window

Reference list

1. Kabbani N, Olds JL. Does COVID19 Infect the Brain If So, Smokers Might Be at a Higher Risk. Mol Pharmacol. 2020;97(5):351-3. doi: 10.1124/molpharm.120.000014


2. Mao L, Jin H, Wang M,et al. Neurologic Manifestations of Hospitalized Patients With Coronavirus Disease 2019 in Wuhan, China. JAMA Neurol. 2020;77(6):683-90. doi:10.1001/jamaneurol.2020.1127


3. Haidar MA, Jourdi H, Hassan ZH, et al. Neurological and Neuropsychological Changes Associated With SARS-CoV-2 Infection: New Observations, New Mechanisms. Neuroscientist. 2022;28(6):552-571. doi: 10.1177/1073858420984106


4. Puelles VG, Lütgehetmann M, Lindenmeyer MT, et al. Multiorgan and Renal Tropism of SARS-CoV-2. N Engl J Med. 2020;383(6):590-2. doi: 10.1056/NEJMc2011400


5. Davis HE, Assaf GS, McCorkell L, et al. Characterizing long COVID in an international cohort: 7 months of symptoms and their impact. EClinicalMedicine. 2021;38:101019. doi:10.1016/j.eclinm.2021.101019.


6. Davis HE, McCorkell L, Vogel JM, Topol EJ. Long COVID: major findings, mechanisms and recommendations. Nat Rev Microbiol. 2023;21(3):133-146. doi: 10.1038/s41579-022-00846-2.


7. Xie Y, Xu E, Bowe B, Al-Aly Z. Long-term cardiovascular outcomes of COVID-19. Nat. Med. 2022;28:583-590. doi: 10.1038/s41591-022-01689-3


8. Xie Y, Al-Aly Z. Risks and burdens of incident diabetes in long COVID: a cohort study. Lancet Diabetes Endocrinol. 2022;10:311-321. doi: 10.1016/S2213-8587(22)00044-4.


9. Mancini DM, Brunjes DL, Lala A, et al. Use of cardiopulmonary stress testing for patients with unexplained dyspnea post-coronavirus disease. JACC Heart Fail. 2021;9:927-937. doi: 10.1016/j.jchf.2021.10.002.


10. Kedor C, Freitag H, Meyer-Arndt L, et al. A prospective observational study of post-COVID-19 chronic fatigue syndrome following the first pandemic wave in Germany and biomarkers associated with symptom severity. Nat. Commun. 2022;13:5104. doi: 10.1038/s41467-022-32507-6.


11. Larsen NW, Stiles LE, Shaik R, et al. Characterization of autonomic symptom burden in long COVID: a global survey of 2314 adults. Front. Neurol. 2022;13:1012668. doi: 10.3389/fneur.2022.1012668.


12. Demko ZO, Yu T, Mullapudi SK, et al. Post-acute sequelae of SARS-CoV-2 (PASC) impact quality of life at 6, 12 and 18 months post-infection. 2022 Aug 9:2022.08.08.22278543. doi: 10.1101/2022.08.08.22278543.


13. Proal AD, Van Elzakker MB. Long COVID or post-acute sequelae of COVID-19 (PASC): an overview of biological factors that may contribute to persistent symptoms. Front. Microbiol. 2021;12:698169. doi: 10.3389/fmicb.2021.698169.


14. Chippa V, Aleem A, Anjum F. Post-Acute Coronavirus (COVID-19) Syndrome. 2023 Feb 3. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan-. PMID: 34033370.


15. Bonavia A, Arbour N, Yong VW, Talbot PJ. Infection of primary cultures of human neural cells by human coronaviruses 229E and OC43. J Virol. 1997;71:800-806.


16. Abdelaziz OS, Waffa Z. Neuropathogenic human coronaviruses: a review. Rev Med Virol. 2020;30:e2118.


17. Song E, Zhang C, Israelow B, et al.. Neuroinvasion of SARS-CoV-2 in Human and Mouse Brain. J Exp Med. 2021; 218(3):e20202135. doi: 10.1084/jem.20202135


18. Paniz-Mondolfi1 A, Bryce C, Grimes Z, et al. Central Nervous System Involvement by Severe Acute Respiratory Syndrome Coronavirus -2 (SARS-CoV-2). J Med Virol. 2020;92(7):699-702. doi: 10.1002/jmv.25915


19. Bulfamante G, Chiumello D, Canevini MP, et al. First Ultrastructural Autoptic Findings of SARS-Cov-2 in Olfactory Pathways and Brainstem. Minerva Anestesiol. 2020;86(6):678-9. doi: 10.23736/S0375-9393.20.14772-2


20. Wu B, Wang W, Wang H, et al. Single-Cell Sequencing of Glioblastoma Reveals Central Nervous System Susceptibility to SARS-CoV-2. Front Oncol. 2020;10:566599. doi: 10.3389/fonc.2020.566599.


21. Chen A, Zhao W, Li X, et al. Comprehensive Oncogenic Features of Coronavirus Receptors in Glioblastoma Multiforme. Front Immunol. 2022;13:840785. doi: 10.3389/fimmu.2022.840785.


22. Samavati L, Uhal BD. ACE2, Much More Than Just a Receptor for SARS-COV-2. Front Cell Infect Microbiol. 2020;10:317. doi: 10.3389/fcimb.2020.00317.


23. Radzikowska U, Ding M, Tan G, et al. Distribution of ACE2, CD147, CD26, and other SARS-CoV-2 associated molecules in tissues and immune cells in health and in asthma, COPD, obesity, hypertension, and COVID-19 risk factors. Allergy. 2020;75(11):2829-2845. doi: 10.1111/all.14429.


24. Uversky VN, Elrashdy F, Aljadawi A, et al. . Severe acute respiratory syndrome coronavirus 2 infection reaches the human nervous system: How? J Neurosci Res. 2021;99(3):750-777. doi: 10.1002/jnr.24752.


25. Chen SY, Kong XQ, Zhang KF, et al. DPP4 as a Potential Candidate in Cardiovascular Disease. J Inflamm Res. 2022;15:5457-5469. doi: 10.2147/JIR.S380285.


26. Barchetta I, Cimini FA, Dule S, Cavallo MG. Dipeptidyl Peptidase 4 (DPP4) as A Novel Adipokine: Role in Metabolism and Fat Homeostasis. Biomedicines. 2022;10(9):2306. https://doi.org/10.3390/biomedicines10092306


27. Qi F, Qian S, Zhang S, Zhang Z. Single cell RNA sequencing of 13 human tissues identify cell types and receptors of human coronaviruses. Biochem Biophys Res Commun. 2020;526(1):135-140. doi: 10.1016/j.bbrc.2020.03.044.


28. Torices S, Cabrera R, Stangis M, et al.. Expression of SARS-CoV-2-Related Receptors in Cells of the Neurovascular Unit: Implications for HIV-1 Infection. J Neuroinflamm. 2021;18(1):167. doi: 10.1186/s12974-021-02210-2


29. Gaspar-Rodríguez A, Padilla-González A, Rivera-Toledo E. Coronavirus persistence in human respiratory tract and cell culture: An overview. Braz J Infect Dis. 2021;25(5):101632.


30. Liu Y, Herbst W, Cao J, Zhang X. Deficient incorporation of spike protein into virions contributes to the lack of infectivity following establishment of a persistent, non-productive infection in oligodendroglial cell culture by murine coronavirus. Virology. 2011;409:121-131.


31. Vanhulle E, Stroobants J, Provinciael B, et al. SARS-CoV-2 Permissive glioblastoma cell line for high throughput antiviral screening. Antiviral Res. 2022;203:105342. doi: 10.1016/j.antiviral.2022.105342.


32. Smirnova OA, Ivanova ON, Fedyakina IT, et al. SARS-CoV-2 Establishes a Productive Infection in Hepatoma and Glioblastoma Multiforme Cell Lines. Cancers. 2023;15(3):632. https://doi.org/10.3390/cancers15030632


33. Lei J, Liu Y, Xie T, et al.. Evidence for Residual SARS-CoV-2 in Glioblastoma Tissue of a Convalescent Patient. Neuroreport. 2021;32(9):771-5. doi: 10.1097/WNR.0000000000001654


34. Gregory T., Knight S, Aaroe A, et al. Analysis of tumor progression among patients with glioma after COVID-19 infection. J.of Clinical Oncology. 2023;41:16_suppl, 2041-2041


35. Khan I, Hatiboglu MA. Can COVID-19 induce glioma tumorogenesis through binding cell receptors? Med Hypotheses. 2020;144:110009. doi: 10.1016/j.mehy.2020.110009.





Свидетельство о регистрации сетевого электронного научного издания N 077 от 29.11.2006
Журнал основан 16 ноября 2000г.
Выдано Министерством РФ по делам печати, телерадиовещания и средств массовых коммуникаций
(c) Перепечатка материалов сайта Medline.Ru возможна только с письменного разрешения редакции

Размещение рекламы

Rambler's Top100