Медико-биологический
информационный портал
для специалистов
 
Medline.ru

СОДЕРЖАНИЕ ЖУРНАЛА:
Физико-химическая биология

Клиническая медицина

Профилактическая медицина

Медико-биологические науки


АРХИВ:

Фундаментальные исследования

Организация здравохраниения

История медицины и биологии



Последние публикации

Поиск публикаций

Articles

Архив :  2000 г.  2001 г.  2002 г. 
               2003 г.  2004 г.  2005 г. 
               2006 г.  2007 г.  2008 г. 
               2009 г.  2010 г.  2011 г. 
               2012 г.  2013 г.  2014 г. 
               2015 г.  2016 г.  2017 г. 
               2018 г.  2019 г.  2020 г.  2021 г.  2022 г.  2023 г. 

Редакционная информация:
        Опубликовать статью
        Наша статистика


 РЕДАКЦИЯ:
Главный редактор

Заместители главного редактора

Члены редколлегии
Специализированные редколлегии


 УЧРЕДИТЕЛИ:
Институт теоретической и экспериментальной биофизики Российской академии наук.

ООО "ИЦ КОМКОН".




Адрес редакции и реквизиты

199406, Санкт-Петербург, ул.Гаванская, д. 49, корп.2

ISSN 1999-6314

Российская поисковая система
Искать: 


«
Vol. 24, Art. 48 (pp. 655-666)    |    2023       
»

Immunopathogenesis of the pneumotactic effect of prolonged exposure to nitrogen dioxide
Preobrazhenskaya T.N.1, Lebedeva E.S.2

1S. M. Kirov Military Medical Academy
2Pavlov First Saint Petersburg State Medical University



Brief summary

Epidemiological studies of recent years have proved the existence of a relationship between prolonged exposure to gaseous pollutants, morbidity and mortality from various causes. The aim of the work was to assess the effect of prolonged exposure to nitrogen dioxide on the bronchoalveolar lavage fluid immunological profile in rats. The animals were exposed to nitrogen dioxide (30-40 mg/m3) for 30, 60 and 90 days in the mode: 6 days a week, three times a day for 30 minutes with a half-hour interval between exposures. The cellular composition and immunological profile of bronchoalveolar lavage fluid were determined. The damaging effect of prolonged exposure to inhaled nitrogen dioxide on the lungs was accompanied by activation of the bronchoalveolar space population of immunocompetent cells, primarily alveolar macrophages, as well as neutrophils and mast cells. With increasing duration of exposure to nitrogen dioxide immunological profile of bronchoalveolar lavage fluid was characterized by an increase in the content of proinflammatory cytokines (TNF-, IL-8, IL-17), which contributed to the persistence of respiratory inflammation, enzymes with protease destructive activity (neutrophil elastase, MMP-12, mast cell chymase) and profibrotic factor TGF-β. The structural restructuring of the lung tissue (denudation and squamous metaplasia of the ciliated bronchial epithelium, hyperplasia and hypersecretion of goblet cells, emphysema and focal fibrosis) can serve as a morphological substrate for the formation of bronchial obstruction, concomitant with diseases such as chronic obstructive pulmonary disease and bronchial asthma.


Key words

nitrogen dioxide; immunological profile; bronchoalveolar lavage fluid; inflammatory mediators; proteases





(The article in PDF format. For preview need Adobe Acrobat Reader)



Open article in new window

Reference list

1.Brunekreef B., Strak M., Chen J. et al. Mortality and morbidity effects of long-term exposure to low-level PM2.5, BC, NO2, and O3: An analysis of European cohorts in the ELAPSE project. Res. Rep. Health Eff. Inst. 2021; 2021: 208.


2. Chen Z., Liu N., Tang H. et al. Health effects of exposure to sulfur dioxide, nitrogen dioxide, ozone, and carbon monoxide between 1980 and 2019: A systematic review and meta-analysis. Indoor Air. 2022; 32(11): e13170. https://doi.org/10.1111/ina.13170.


3. Eum K.D., Honda T.J., Wang B. et al. Long-term nitrogen dioxide exposure and cause specific mortality in the U.S. Medicare population. Environ. Res. 2022; 207: 112154. https://doi.org/10.1016/j.envres.2021.112154.


4. Ko U.W., Kyung S.Y. Adverse effects of air pollution on pulmonary diseases. Tuberc. Respir. Dis. (Seoul). 2022; 85(4): 313319. https://doi.org/10.4046/trd.2022.0116.


5. Liu S., Jorgensen J.T., Ljungman P. et al. Long-term exposure to low-level air pollution and incidence of chronic obstructive pulmonary disease: the ELAPSE project. Environ. Int. 2021;146:106267. https://doi.org/10.1016/j.envint.2020.106267.


6. Huang S., Li H., Wang M. et al. Long-term exposure to nitrogen dioxide and mortality: A systematic review and meta-analysis. Sci. Total. Environ. 2021; 776: 145968. https://doi.org/10.1016/j.scitotenv.2021.145968.


7. Tomos I., Dimakopoulou K., Manali E.D. et al. Long-term personal air pollution exposure and risk for acute exacerbation of idiopathic pulmonary fibrosis. Environ. Health. 2021; 20(1): 99. https://doi.org/10.1186/s12940-021-00786-z.


8. Yoon H.Y., Kim S.Y., Kim O.J., Song J.W. Nitrogen dioxide increases the risk of disease progression in idiopathic pulmonary fibrosis. Respirology. 2023; 28(3): 254261. https://doi.org/10.1111/resp.14373.


9. Copat C., Cristaldi A., Fiore M. et al. The role of air pollution (PM and NO2) in COVID-19 spread and lethality: A systematic review. Environ. Res. 2020; 191: 1101 29. https://doi.org/10.1016/j.envres.2020.110129.


10. Di Ciaula A., Bonfrate L., Portincasa P. et al. Nitrogen dioxide pollution increases vulnerability to COVID-19 through altered immune function. Environ. Sci. Pollut. Res. Int. 2022; 29(29): 4440444412. https://doi.org/10.1007/s11356-022-19025-0.


11. Ventura M.T., Casciaro M., Gangemi S., Buquicchio R. Immunosenescence in aging: between immune cells depletion and cytokines up-regulation. Clin. Mol. Allergy. 2017; 15: 21. https://doi.org/10.1186/s12948-017-0077-0.


12. Lebedeva E.S., Kuzubova N.A., Danilov L.N. et al. Experimental modelling of chronic obstructive pulmonary disease. Bull. Exper. Biol. Med. 2012; 152(5): 659663. https://doi.org/10.1007/s10517-012-1601-3.


13. Gao W., Li L., Wang Y. et al. Bronchial epithelial cells: The key effector cells in the pathogenesis of chronic obstructive pulmonary disease? Respirology. 2015; 20(5): 722729. https://doi.org/10.1111/resp.12542.


14. Bontinck A., Maes T., Joos G. Asthma and air pollution: recent insights in pathogenesis and clinical implications. Curr. Opin. Pulm. Med. 2020; 26(1): 1019. https://doi.org/10.1097/MCP.0000000000000644.


15. Dvorakovskaya I.V., Kyzybova N.A., Fionik A.M. i dr. Patologicheskaya anatomiya bronhov i respiratornoi tkani kris pri vozdeistvii dioksida azota. Pylmonologiya. 2009; 1: 54-61.


16. Joshi N., Walter J.M., Misharin A.V. Alveolar macrophages. Cell Immunol. 2018; 330: 8690. https://doi.org/10.1016/j.cellimm.2018.01.005.


17. Aegerter H., Lambrecht B.N., Jakubzick C.V. Biology of lung macrophages in health and disease. Immunity. 2022; 55(9): 15641580. https://doi.org/10.1016/j.immuni.2022.08.010.


18. Lugg S.T., Scott A., Parekh D., et al. Cigarette smoke exposure and alveolar macrophages: mechanisms for lung disease. Thorax. 2022; 77(1): 94-101. https://doi.org/10.1136/thoraxjnl-2020-216296.


19. Levänen B., Glader P., Dahlén B. et al. Impact of tobacco smoking on cytokine signaling via interleukin-17A in the peripheral airways. Int. J. Chron. Obstruct. Pulmon. Dis. 2016; 11: 21092116. doi: 10.2147/COPD.S99900.


20. Yanagisawa H., Hashimoto M., Minagawa S. et al. Role of IL-17A in murine models of COPD airway disease. Am. J. Phisiol. Lung Cell Mol. Physiol. 2017; 312(1): L122L130. https://doi.org/10.1152/ajplung.00301.2016.


21. Ritzmann F., Lunding L.P., Bals R. et al. IL-17 cytokines and chronic lung disease. Cells. 2022; 11(14): 2132. https://doi.org/10.3390/cells11142132.


22. Li D., Wang T., Ma Q. et al. IL-17A promotes epithelial ADAM9 expression in cigarette smoke-related COPD. Int. J. Chron. Obstruct. Pulmon. Dis. 2022; 17: 25892602. https://doi.org/10.2147/COPD.S375006.


23. Lamort A.S., Gravier R., Laffitte A. et al. New insights into the substrate specificity of macrophage elastase MMP-12. Biol. Chem. 2016; 397(5): 469484. https://doi.org/10.1515/hsz-2015-0254.


24. Gharib S.A., Manicone A.M., Parks W.C. Matrix metalloproteinases in emphysema. Matrix Biol. 2018; 73: 3451. https://doi.org/10.1016/j.matbio.2018.01.018.


25. Spix B., Butz E.S., Chen C.C. et al. Lung emphysema and impaired macrophage elastase clearance in mucolipin 3 deficient mice. Nat. Commun. 2022; 13(1): 318. https://doi.org/10.1038/s41467-021-27860-x.


26. Demedts I.K., Morel-Montero A., Lebecque S. et al. Elevated MMP-12 protein levels in induced sputum from patients with COPD. Thorax. 2006; 61(3): 196201. https://doi.org/10.1136/thx.2005.042432.


27. Douaiher J., Succar J., Lancerotto L. et al. Development of mast cells and importance of their tryptase and chymase serine proteases in inflammation and wound healing. Adv. Immunol. 2014; 122: 211252. https://doi.org/10.1016/B978-0-12-800267-4.00006-7.


28. Saito A., Horie M., Nagase T. TGF-β signaling in lung health and disease. Int. J. Mol. Sci. 2018; 19(8): 2460. https://doi.org/10.3390/ijms19082460.





Свидетельство о регистрации сетевого электронного научного издания N 077 от 29.11.2006
Журнал основан 16 ноября 2000г.
Выдано Министерством РФ по делам печати, телерадиовещания и средств массовых коммуникаций
(c) Перепечатка материалов сайта Medline.Ru возможна только с письменного разрешения редакции

Размещение рекламы

Rambler's Top100