Медико-биологический
информационный портал
для специалистов
 
Medline.ru

СОДЕРЖАНИЕ ЖУРНАЛА:
Физико-химическая биология

Клиническая медицина

Профилактическая медицина

Медико-биологические науки


АРХИВ:

Фундаментальные исследования

Организация здравохраниения

История медицины и биологии



Последние публикации

Поиск публикаций

Articles

Архив :  2000 г.  2001 г.  2002 г. 
               2003 г.  2004 г.  2005 г. 
               2006 г.  2007 г.  2008 г. 
               2009 г.  2010 г.  2011 г. 
               2012 г.  2013 г.  2014 г. 
               2015 г.  2016 г.  2017 г. 
               2018 г.  2019 г.  2020 г.  2021 г.  2022 г.  2023 г. 

Редакционная информация:
        Опубликовать статью
        Наша статистика


 РЕДАКЦИЯ:
Главный редактор

Заместители главного редактора

Члены редколлегии
Специализированные редколлегии


 УЧРЕДИТЕЛИ:
Институт теоретической и экспериментальной биофизики Российской академии наук.

ООО "ИЦ КОМКОН".




Адрес редакции и реквизиты

199406, Санкт-Петербург, ул.Гаванская, д. 49, корп.2

ISSN 1999-6314

Российская поисковая система
Искать: 


«
Vol. 24, Art. 4 (pp. 44-56)    |    2023       
»

Aging theories, their role in the development of gerontology
Bazhanova E.D. 1,2,3, Zaklyakova L.V. 4 , Levitan B.N. 4, Teply D.L. 3

1 The Federal State-Financed Institution Golikov Research Clinical Center of Toxicology under the Federal Medical Biological Agency
2 Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences
3 Federal State Budgetary Educational Institution of Higher Education "Astrakhan State University named V.N. Tatishchev"
4 Federal State Budgetary Educational Institution of Higher Education "Astrakhan State Medical University" of the Ministry of Health of the Russian Federation



Brief summary

According to UN experts, the number of older people in all countries of the world is progressively increasing and will reach 2.1 billion people by 2050. As is known, aging is a process of extinction of the physiological functions of the body associated with the accumulation of damage at the molecular, cellular, tissue, organ and organism levels, which are induced by endogenous and exogenous factors and lead to disturbances in the genetic development program and homeostasis of the main life support systems (energy, adaptive, reproductive, etc.). Aging is an inevitable process, so gerontology is currently developing at an accelerated pace in order to improve the somatic and mental state of older people, involve them into work. At present, there are more than 300 theories explaining the initiation and realization of aging processes. The article analyzes both theories of historical significance and relevant in the 21st century. Molecular genetic theories are considered (the hypothesis of programmed aging (Weisman A.), telomerase theory (Olovnikov A.M.), elevation theory (Dilman V.M.), evolutionary theories, adaptive-regulatory theory of aging (Frolkis V.V.), epigenetic and others), and stochastic ones (free radical theory (Harman D.), mitochondrial, etc.).


Key words

aging, aging theory, molecular genetic theories, evolutionary theories, stochastic theories.





(The article in PDF format. For preview need Adobe Acrobat Reader)



Open article in new window

Reference list

1. Frolkis V.V. Starenie. Neirogymoralnie mehanizmi. Kiev: Naykova dymka, 1981.


2. Mc Auley M.T. DNA methylation in genes associated with the evolution of ageing and disease: A critical review. Ageing Res Rev. 2021; 72: 101488. doi: 10.1016/j.arr.2021.101488.


3. Batalha C.M.P.F., Vercesi A.E., Souza-Pinto N.C. The Many Roles Mitochondria Play in Mammalian Aging. Antioxid. Redox. Signal. 2022. doi: 10.1089/ars.2021.0074.


4. Harman D. Aging: A theory based on free radical and radiation chemistry. J. Gerontol. 1957; 2: 298-300.


5. Jebari K., Charradi K., Mahmoudi M. et al. Grape Seed Flour Extends Longevity by Improving Multi-Organ Dysfunction and Age-Associated Oxidative Stress and Inflammation in Healthy Rat. J. Gerontol. A Biol. Sci. Med. Sci. 2022; 77 (3): 443-451. doi: 10.1093/gerona/glab259.


6. Kumar P., Osahon Ob W., Sekhar R.V. GlyNAC (Glycine and N-Acetylcysteine) Supplementation in Mice Increases Length of Life by Correcting Glutathione Deficiency, Oxidative Stress, Mitochondrial Dysfunction, Abnormalities in Mitophagy and Nutrient Sensing, and Genomic Damage. Nutrients. 2022; 14 (5): 1114. doi: 10.3390/nu14051114.


7. Liu D., Ouyang Y., Chen R. et al. Nutraceutical potentials of algal ulvan for healthy aging. Int. J. Biol. Macromol. 2022; 194. P. 422-434. doi: 10.1016/j.ijbiomac.2021.11.084.


8. Gaidamakova E.K., Sharma A., Matrosova V.Y. et al. Small-Molecule Mn Antioxidants in Caenorhabditis elegans and Deinococcus radiodurans Supplant MnSOD Enzymes during Aging and Irradiation. Mbio. 2022; 13: Issue 1 e03394-21


9. Harman D. The free radical theory of aging. Antioxid. Redox Signal. 2003; 5 (5): 557-561.


10. Duan J., Li Y., Gao J. et al. ROS-mediated photoaging pathways of nano- and micro-plastic particles under UV irradiation. Water Res. 2022; 216: 118320. doi: 10.1016/j.watres.2022.118320.


11. Ferrucci L., Fabbri E. Inflammageing: chronic inflammation in ageing, cardiovascular disease, and frailty. Nat. Rev. Cardiol. 2018; 15 (9): 505-522.


12. Beckman K.B., Ames B.N. The free radical theory of aging matures. Physiol. Res.1998; 78: 547-581.


13. Gordon C.A., Madamanchi N.R., Runge M.S., Jarstfer M.B. Effect of oxidative stress on telomere maintenance in aortic smooth muscle cells. Biochim. Biophys. Acta Mol. Basis Dis. 2022; 1868 (7): 166397. doi: 10.1016/j.bbadis.2022.166397.


14. Majewski M., Klett-Mingo M., Verdasco-Martín C.M. et al. Spirulina extract improves age-induced vascular dysfunction. Pharm. Biol. 2022; 60 (1): 627-637. doi: 10.1080/13880209.2022.2047209.


15. Zhang B., Pan C., Feng C. et al. Role of mitochondrial reactive oxygen species in homeostasis regulation. Redox Rep. 2022; 27 (1): 45-52. doi: 10.1080/13510002.2022.2046423.


16. He S., Zhou M., Zheng H. et al. Resveratrol inhibits the progression of premature senescence partially by regulating v-rel avian reticuloendotheliosis viral oncogene homolog A (RELA) and sirtuin 1 (SIRT1). Ren Fail. 2022; 44 (1): 171-183. doi: 10.1080/0886022X.2022.2029488.


17. Kopalli S.R., Cha K.M., Cho J.Y. et al. Cordycepin mitigates spermatogenic and redox related expression in H2O2-exposed Leydig cells and regulates testicular oxidative apoptotic signalling in aged rats. Pharm. Biol. 2022; 60 (1): 404-416. doi: 10.1080/13880209.2022.2033275.


18. de Oliveira Zanuso B., de Oliveira Dos Santos A.R., Miola V.F.B. et al. Panax ginseng and aging related disorders: A systematic review. Exp. Gerontol. 2022; 161: 111731. doi: 10.1016/j.exger.2022.111731.


19. Ou K., Li Y., Liu L. et al. Recent developments of neuroprotective agents for degenerative retinal disorders. Neural Regen Res. 2022; 17 (9): 1919-1928. doi: 10.4103/1673-5374.335140.


20. Sadrkhanloo M., Entezari M., Orouei S. et al. Targeting Nrf2 in ischemia-reperfusion alleviation: From signaling networks to therapeutic targeting. Life Sci. 2022; 300: 120561. doi: 10.1016/j.lfs.2022.120561.


21. Rodríguez E., Radke A., Hagen T.M., Blier P.U. Supercomplex Organization of the Electron Transfer System in Marine Bivalves, a Model of Extreme Longevity. J. Gerontol. A Biol. Sci. Med. Sci. 2022; 77 (2): 283-290. doi: 10.1093/gerona/glab363.


22. Dilman V.M. Bolshie biologicheskie chasi. (Vvedenie v integralnyu mediciny). M.: Znanie, 1986.


23. Hajishengallis G., Li X., Divaris K., Chavakis T. Maladaptive trained immunity and clonal hematopoiesis as potential mechanistic links between periodontitis and inflammatory comorbidities. Periodontol. 2022; 89 (1): 215-230. doi: 10.1111/prd.12421.


24. Shimizu S., Nagao Y., Kurabayashi A. et al. Effects of losartan on bladder dysfunction due to aging-related severe hypertension in rats. Eur. J. Pharmacol. 2022; 922: 174911. doi: 10.1016/j.ejphar.2022.174911.


25. Tan D.X., Manchester L.C., Reiter R.J. CSF generation by pineal gland results in a robust melatonin circadian rhythm in the third ventricle as an unique light/dark signal. Med. Hypotheses. 2016; 86: 3-9. doi: 10.1016/j.mehy.2015.11.018.


26. Khizhkin E.A., Ilukha V.A., Vinogradova I.A. et al. Physiological and Biochemical Mechanisms of Lifespan Regulation in Rats Kept Under Various Light Conditions. Curr. Aging Sci. 2017; 10 (1): 49-55.


27. Horoshinina L.P. Geriatriya, glava: Neiroendokrinologicheskaya (elevacionnaya) teoriya stareniya i formirovaniya vozrastnoi patologii. Geriatriya. GEOTAR-Media. 2019.


28. Frolkis V.V. Stress-age syndrome. Mech. Ageing Dev. 1993; 69 (1-2): 93-107.


29. Heiflik L. Smertnost i bessmertie na kletochnom yrovne. Biohimiya. 1997; 11: 1380-1393.


30. Olovnikov A.M. Starenie est rezyltat ykorocheniya «differoteni» v telomeraze iz-za koncevoi nedoreplikacii. Izvestiya AN SSSR (Seriya biol.). 1992; ? 4. S. 641-643.


31. Olovnikov A.M. A theory of template margin in enzimic synthesis of polynucleotides and biological significance of the phenomenon. J. Theoretical Biology. 1973; 1 (41): 181-190.


32. Al-Daghri N.M., Sabico S., Ansari M.G.A. et al. Endotoxemia, vitamin D and premature biological ageing in Arab adults with different metabolic states. J. Biol. Sci. 2022; 29 (6): 103276. doi: 10.1016/j.sjbs.2022.03.026.


33. Fragkiadaki P., Renieri E., Kalliantasi K. et al. Τelomerase inhibitors and activators in aging and cancer: A systematic review. Mol. Med. Rep. 2022; 25 (5): 158. doi: 10.3892/mmr.2022.12674.


34. Li P., Wang Z.Y., Li Y. et al. Bsu polymerase-mediated fluorescence coding for rapid and sensitive detection of 8-oxo-7,8-dihydroguanine in telomeres of cancer cells. Talanta. 2022; 243: 123340. doi: 10.1016/j.talanta.2022.123340.


35. Phillippe M. Telomeres, Oxidative Stress and Timing for Spontaneous Term and Preterm Labor. Am. J. Obstet. Gynecol. 2022; S0002-9378(22)00303-9. doi: 10.1016/j.ajog.2022.04.024.


36. Olovnikov A.M. Pervoprichina stareniya zakluchaetsya v ykorochenii redymer - perihromosomnih lineinih molekyl DNK, a vovse ne telomer - «lineek» biologicheskogo vremeni. Fenomen i noymen vremeni. 2005; 2: 294-316.


37. Djagarov D.E. Epigenetika stareniya: prorivnoe napravlenie gerontologii? Yspehi gerontol. 2018; 31 (5): 628-631.


38. Gonzalo S. Epigenetic alterations in aging. J. applied Physiol. 2010; 109 (2): 586-597. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2928596/.


39. Smirnov V.V., Leonov G.E. Epigenetika: teoreticheskie aspekti i prakticheskoe znachenie. Lechashii vrach. 2016; 12.


40. Teschendorff A.E., J. West, S. Beck. Age-associated epigenetic drift: implications, and a case of epigenetic thrift? Hum. Mol. Genet. 2013; 22 (R1): R7-R15. doi: 10.1093/hmg/ddt375


41. Veisman A. Lekcii po evolucionnoi teorii, chitannie v Yniversitete vo Freibyrge (v Breisgay) prof. Avgystom Veismanom. Pg., 1918.


42. Skylachev V.P. Fenoptoz: zaprogrammirovannaya smert organizma. Biohimiya. 1999; 64 (12): 1418-1426.


43. Yampolskii L.I., Galimov Ya.R. Evolucionnaya teoriya stareniya y Daphnia. J. obshei biologii. 2005; 66 (5): 416-424.


44. E.D. Bazhanova, V.N. Anisimov. Participation of FAS- and TNF-Dependent Pathways in Apoptosis Mechanisms in Hypothalamus in Physiological and Pathological Aging. Advances in Gerontology. 2020; 10 (4): 382-387. DOI: 10.1134/S2079057020040037


45. Kim S.H., Kang Y.J., Sung B. et al. MHY-449, a novel dihydrobenzofuro[4,5-b][1,8]naphthyridin-6-one derivative, mediates oxidative stress-induced apoptosis in AGS human gastric cancer cells. Oncol. Rep. 2015; 34: 288-294. https://doi.org/10.3892/or.2015.3984


46. Matsui Y. Pathological state or cause of sarcopenia. Clin. Calcium. 2017; 27: 45-52. https://doi.org/10.CliCa17014552


47. Bazhanova E.D., Teply D.L., Khuzhakhmetova L.K., Anisimov V.N. AKT, ERK and NFKB Signaling Pathways in Neurons of Hypothalamic Supraoptic and Paraventricular Nuclei in Aging Transgenic Mice with HER2/neu Overexpression. J. Evolutionary Biochemistry and Physiology. 2020; 56: 499-508.


48. Kameda M., Mikawa T., Yokode M. et al. Senescence research from historical theory to future clinical application. Geriatr. Gerontol. Int. 2021; 21 (2): 125-130. doi: 10.1111/ggi.14121.


49. Abdiev V.K., Dashinimaev E.B., Nekludova I.V. i dr. Sovremennie tehnologii polycheniya pervichnih polovih kletok cheloveka in vitro. Biohimiya. 2019; 84 (3): 330 - 342.


50. Bigildeev A.E., Pilynov A.M., Sac N.V. i dr. Klonalnii sostav myltipotentnih mezenhimalnih stromalnih kletok cheloveka: primenenie geneticheskih shtrih-kodov dlya issledovaniya. Biohimiya. 2019; 84 (3): 365-379.


51. Ribcov S.A., Lagarkova M.A. Razvitie gemopoeticheskih kletok v rannem embrione mlekopitaushih. Biohimiya. 2019; 84. ?3. S. 297-313.


52. Kim W., Gwon Y., Park S. et al. Therapeutic strategies of three-dimensional stem cell spheroids and organoids for tissue repair and regeneration. Bioact. Mater. 2022; 19: 50-74. doi: 10.1016/j.bioactmat.2022.03.039.


53. Zheng A., Bilbao M., Sookram J. et al. Epigenetic drugs induce the potency of classic chemotherapy, suppress post-treatment re-growth of breast cancer, but preserve the wound healing ability of stem cells. Cancer Biol. Ther. 2022; 23 (1): 254-264. doi: 10.1080/15384047.2022.2052540.


54. Kaplyn D.S., Fok R.E., Korostina V.S. i dr. Yvelichenie effektivnosti somaticheskogo reprogrammirovaniya pri nokayte gena Kaiso. Biohimiya. 2019; 84 (3): 404 -412.





Свидетельство о регистрации сетевого электронного научного издания N 077 от 29.11.2006
Журнал основан 16 ноября 2000г.
Выдано Министерством РФ по делам печати, телерадиовещания и средств массовых коммуникаций
(c) Перепечатка материалов сайта Medline.Ru возможна только с письменного разрешения редакции

Размещение рекламы

Rambler's Top100