Медико-биологический
информационный портал
для специалистов
 
Medline.ru

СОДЕРЖАНИЕ ЖУРНАЛА:
Физико-химическая биология

Клиническая медицина

Профилактическая медицина

Медико-биологические науки


АРХИВ:

Фундаментальные исследования

Организация здравохраниения

История медицины и биологии



Последние публикации

Поиск публикаций

Articles

Архив :  2000 г.  2001 г.  2002 г. 
               2003 г.  2004 г.  2005 г. 
               2006 г.  2007 г.  2008 г. 
               2009 г.  2010 г.  2011 г. 
               2012 г.  2013 г.  2014 г. 
               2015 г.  2016 г.  2017 г. 
               2018 г.  2019 г.  2020 г.  2021 г.  2022 г.  2023 г. 

Редакционная информация:
        Опубликовать статью
        Наша статистика


 РЕДАКЦИЯ:
Главный редактор

Заместители главного редактора

Члены редколлегии
Специализированные редколлегии


 УЧРЕДИТЕЛИ:
Институт теоретической и экспериментальной биофизики Российской академии наук.

ООО "ИЦ КОМКОН".




Адрес редакции и реквизиты

199406, Санкт-Петербург, ул.Гаванская, д. 49, корп.2

ISSN 1999-6314

Российская поисковая система
Искать: 


«
Vol. 23, Art. 27 (pp. 432-480)    |    2022       
»

Selenium metabolism disorders in orthopedic diseases (literature review)
Khalchitsky S.E.1, Buslov K.G.1, Li A.O.1, Komov Yu.V.2, Batotsyrenova E.G.2, Kashuro V.A.2,3,4

1 H.Turner National Medical Research Center for Children's Orthopedics and Trauma Surgery
2 St. Petersburg State Pediatric Medical University, St. Petersburg, Russia
3 Herzen State Pedagogical University of Russia, Saint Petersburg, Russia
4 Saint Petersburg State University, Saint Petersburg, Russia



Brief summary

Selenium (Se) is considered an essential micronutrient because it is a structural component of antioxidant enzymes; however, its concentration can be affected by diet, medications, and genetic polymorphisms. The role of selenium is mainly played by selenoproteins synthesized by the selenium metabolism system. Selenoproteins perform a wide range of cellular functions, including the regulation of selenium transport, thyroid hormones, immunity, and redox homeostasis. Selenium deficiency contributes to the development of orthopedic diseases such as osteoarthritis (OA) and rheumatoid arthritis (RA), etc. The review discusses various aspects of selenium deficiency, the impact on pathological processes in the body, as well as nutritional and pharmacological methods for correcting pathological conditions.


Key words

selenium, selenoproteins, osteoarthritis, rheumatoid arthritis, nutritional and pharmacological correction.





(The article in PDF format. For preview need Adobe Acrobat Reader)



Open article in new window

Reference list

1. Hatfield, D. L. & Gladyshev, V. N. How selenium has altered our understanding of the genetic code // Mol. Cell Biol. - 2002. - Vol. 22. - P. 3565-3576.


2. Rayman, M. P. Selenium and human health // Lancet. - 2012. - Vol. 379. - P. 1256-1268.


3. Arthur, J. R., McKenzie, R. C. & Beckett, G. J. Seleniumin the immune system // J. Nutr. - 2003. - Vol. 133. - P. 1457S-1459S.


4. Schomburg, L. Selenium, selenoproteins and the thyroid gland: interactions in health and disease // Nat. Rev. Endocrinol. - 2011. - Vol. 8. - P. 160-171.


5. Hawkes, W. C., Kelley, D. S. & Taylor, P. C. The effects of dietary selenium on the immune system in healthymen // Biol. Trace Elem. Res. - 2001. - Vol. 81. - P. 189-213.


6. Wood, S. M., Beckham, C., Yosioka, A., Darban, H. & Watson, R. R. beta-Carotene and selenium supplementation enhances immune response in aged humans // Integr. Med. - 2000. - Vol. 2. - P. 85-92.


7. Broome, C. S. et al. An increase in selenium intake improves immune function and poliovirus handling in adults with marginal selenium status // Am. J. Clin. Nutr. - 2004. - Vol. 80. - P. 154-162.


8. Nève, J. Selenium as a risk factor for cardiovascular diseases // J. Cardiovascular Risk. - 1996. - Vol. 3. - P. 42-47.


9. Alissa, E. M., Bahijri, S. M. & Ferns, G. A. The controversy surrounding selenium and cardiovascular disease: a review of the evidence // Med. Sci. Monitor. - 2003. - Vol. 9. - P. RA9-RA18.


10. Zhang, X., Liu, C., Guo, J. & Song, Y. Selenium status and cardiovascular diseases: meta-analysis of prospective observational studies and randomized controlled trials // Eur. J. Clin. Nutr. - 2016. - Vol. 70. - P. 162-169.


11. Chen, X. et al. Studies on the relations of selenium and Keshan disease // Biol. Trace Elem. Res. - 1980. - Vol. 2. - P. 91-107.


12. Loscalzo, J. Keshan disease, selenium deficiency, and the selenoproteome // N. Engl. J. Med. - 2014. - Vol. 370. - P. 1756-1760.


13. Hatfield, D. L., Tsuji, P. A., Carlson, B. A. & Gladyshev, V. N. Selenium and selenocysteine: roles in cancer, health, and development // Trends Biochem. Sci. - 2014. - Vol. 39. - P. 112-120.


14. Patrick, L. Selenium biochemistry and cancer: a review of the literature // Alternative Med. Rev. - 2004. - Vol. 9. - P. 239-258.


15. Willett, W. et al. Prediagnostic serum selenium and risk of cancer // Lancet. - 1983. - Vol. 322. - P. 130-134.


16. Navarro-Alarcon, M., de la Serrana, H. L.-G., Perez-Valero, V. & López-Martıńez, M. Selenium concentrations in serum of individuals with liver diseases (cirrhosis or hepatitis): relationship with some nutritional and biochemical markers // Sci. Total Environ. - 2002. - Vol. 291. - P. 135-141.


17. Guo, C. H., Chen, P. C. & Ko, W. S. Status of essential trace minerals and oxidative stress in viral hepatitis C patients with nonalcoholic fatty liver disease // Int. J. Med. Sci. - 2013. - Vol. 10. - P. 730-737.


18. Davis, C. D., Tsuji, P. A. & Milner, J. A. Selenoproteins and cancer prevention // Annu. Rev. Nutr. - 2012. - Vol. 32. - P. 73-95.


19. Clark, L. C. et al. Effects of selenium supplementation for cancer prevention in patients with carcinoma of the skin: a randomized controlled trial // JAMA. - 1996. - Vol. 276. P. 1957-1963.


20. Zhuo, H., Smith, A. H. & Steinmaus, C. Selenium and lung cancer: a quantitative analysis of heterogeneity in the current epidemiological literature // Cancer Epidemiol. Biomarkers Prev. - 2004. - Vol. 13. - P. 771-778.


21. Lawrence, R. A. & Burk, R. F. Glutathione peroxidase activity in seleniumdeficient rat liver // Biochem. Biophys. Res. Commun. - 1976. - Vol. 71. - P. 952-958.


22. Li, S., Cao, J., Caterson, B. & Hughes, C. E. Proteoglycan metabolism, cell death and Kashin-Beck disease // Glycoconj. J. - 2012. -Vol. 29. - P. 241-248.


23. Wang, Q. et al. Correlation between selenium and Kaschin-Beck disease: a meta-analysis // Clin. J. Evid. Based Med. - 2013. - Vol. 13. - P. 1421-1430.


24. Yang, L., Zhao, G.-h, Yu, F.-f, Zhang, R.-q & Guo, X. Selenium and iodine levels in subjects with Kashin-Beck disease: a meta-analysis // Biol. Trace Elem. Res. - 2016. - Vol. 170. - P. 43-54.


25. Wang, L. et al. Serious selenium deficiency in the serum of patients with Kashin-Beck disease and the effect of nano-selenium on their chondrocytes // Biological Trace Elem. Res. - 2019. - https://doi.org/10.1007/s12011-019-01759-7.


26. Jordan, J. M. An ongoing assessment of osteoarthritis in African Americans and Caucasians in North Carolina: The Johnston County Osteoarthritis Project // Trans. Am. Clin. Climatol. Assoc. - 2015. - Vol. 126. - P. 77-86.


27. Jordan, J. et al. 34 Low selenium levels are associated with increased odds of radiographic hip osteoarthritis in African American and white women // Osteoarthr. Cartil. - 2007. - Vol. 15. - P. C33.


28. Sasaki, S., Iwata, H., Ishiguro, N., Habuchi, O. & Miura, T. Low-selenium diet, bone, and articular cartilage in rats // Nutrition. - 1994. - Vol. 10. - P. 538-543.


29. Raisbeck, M. F. Selenosis // Vet. Clin. North Am.?Food Anim. Pract. - 2000. - Vol. 16. - P. 465-480.


30. Sutter, M. E., Thomas, J. D., Brown, J. &Morgan, B. Selenium toxicity: a case of selenosis caused by a nutritional supplement // Ann. Intern. Med. - 2008. - Vol. 148. - P. 970-971.


31. Loeser, R. F., Goldring, S. R., Scanzello, C. R. & Goldring, M. B. Osteoarthritis: a disease of the joint as an organ // Arthritis Rheumatism. - 2012. - Vol. 64. - P. 1697-1707.


32. Yang, S. et al. Hypoxia-inducible factor-2alpha is a catabolic regulator of osteoarthritic cartilage destruction // Nat. Med. - 2010. - Vol. 16. - P. 687-693.


33. Kim, J. H. et al. Regulation of the catabolic cascade in osteoarthritis by the zinc-ZIP8-MTF1 axis // Cell. - 2014. - Vol. 156. - P. 730-743.


34. Choi, W. S. et al. The CH25H-CYP7B1-ROR alpha axis of cholesterol metabolism regulates osteoarthritis // Nature. - 2019. - Vol. 566. - P. 254.


35. Kim, S. et al. Tankyrase inhibition preserves osteoarthritic cartilage by coordinating cartilage matrix anabolism via effects on SOX9 PARylation // Nat. Commun. - 2019. - Vol. 10. - P. 4898.


36. Kang, D. et al. Stress-activated miR-204 governs senescent phenotypes of chondrocytes to promote osteoarthritis development // Sci. Transl. Med. - 2019. - Vol. 11. - https://doi.org/10.1126/scitranslmed.aar6659.


37. Loeser, R. F., Collins, J. A. & Diekman, B. O. Ageing and the pathogenesis of osteoarthritis // Nat. Rev. Rheumatol. - 2016. - Vol. 12. - P. 412.


38. Felson, D. T. Osteoarthritis as a disease of mechanics // Osteoarthr. Cartil. - 2013. - Vol. 21. - P. 10-15.


39. Hui, W. et al. Oxidative changes and signalling pathways are pivotal in initiating age-related changes in articular cartilage // Ann. Rheum. Dis. - 2016. - Vol. 75. - P. 449-458.


40. Yudoh, K. et al. Potential involvement of oxidative stress in cartilage senescence and development of osteoarthritis: oxidative stress induces chondrocyte telomere instability and downregulation of chondrocyte function // Arthritis Res. Ther. - 2005. - Vol. 7. - P. R380-R391.


41. Ramiro, S.; Aletaha, D.; McInnes, I.B. Rheumatoid arthritis // Lancet. - 2016. - Vol. 388. - P. 2023-2038.


42. Ramiro, S.; Aletaha, D.; Barton, A.; Burmester, G.R.; Emery, P.; Firestein, G.S.; Kavanaugh, A.; McInnes, I.B.; Solomon, D.H.; Strand, V.; et al. Rheumatoid arthritis // Nat. Rev. Dis. Prim. - 2018. - 4. - P. 18001.


43. Firestein, G.; McInnes, I.B. Immunopathogenesis of rheumatoid arthritis // Immunity. - 2017. - Vol. 46. - P. 183-196.


44. Rodriguez, D.A.; Pluchino, N.; Canny, G.; Gabay, C.; Straub, R.H. The role of female hormonal factors in the development of rheumatoid arthritis // Rheumatology. - 2016. - Vol. 56. - P. 1254-1263.


45. Xu, B.; Lin, J. Characteristics and risk factors of rheumatoid arthritis in the United States: An NHANES analysis // PeerJ. - 2017. - Vol. 5. - P. e4035.


46. Skoczy´nska, M.; ´Swierkot, J. The role of diet in rheumatoid arthritis // Reumatologia. - 2018. - Vol. 56. - P. 259-267.


47. Zapatera, B.; Prados, A.; Gómez-Martínez, S.; Marcos, A. Immunonutrition: Methodology and applications // Nutr. Hosp. - 2015. - Vol. 31. - P. 145-154.


48. Suchner, U.; Kuhn, K.S.; Fürst, P. The scientific basis of immunonutrition // Proc. Nutr. Soc. - 2000. - Vol. 59. - P. 553-563.


49. Vetvicka, V.; Vetvickova, J. Concept of Immuno-Nutrition // J. Nutr. Food Sci. - 2016. - Vol. 6. - P. 500.


50. Khanna, S.; Jaiswal, K.S.; Gupta, B. Managing Rheumatoid Arthritis with Dietary Interventions // Front. Nutr. - 2017. - Vol. 4. - P. 52.


51. García-González, A.; Gaxiola-Robles, R.; Zenteno-Savín, T. Oxidative stress in patients with rheumatoid arthritis // Rev. Investig. Clin. - 2015. - Vol. 67. - P. 46-53.


52. Veselinovic, M.; Barudzic, N.; Vuletic, M.; Zivkovic, V.; Tomic-Lucic, A.; Djuric, D.; Jakovljevic, V. Oxidative stress in rheumatoid arthritis patients: Relationship to diseases activity // Mol. Cell. Biochem. - 2014. - Vol. 391. - P. 225-232.


53. Quiñonez-Flores, C.M.; González-Chávez, S.A.; Nájera, D.D.R.; Pacheco-Tena, C. Oxidative Stress Relevance in the Pathogenesis of the Rheumatoid Arthritis: A Systematic Review // Biomed. Res. Int. - 2016. - Vol. 2016. - P. 6097417.


54. Bodnar, M.; Konieczka, P.; Namie´snik, J. The properties, functions, and use of selenium compounds in living organisms // J. Environ. Sci. Health C Environ. Carcinog. Ecotoxicol. Rev. - 2012. - Vol. 30. - P. 225-252.


55. National Research Council. Chemistry. In Selenium in Nutrition, Revised ed.; The National Academies Press: Washington, DC, USA, - 1983. - P. 3-9.


56. Bhattacharya, P.T.; Misra, S.R.; Hussain, M. Nutritional Aspects of Essential Trace Elements in Oral Health and Disease: An Extensive Review // Scientifica. - 2016. - Vol. 2016. - P. 5464373.


57. Kryukov, G.V.; Castellano, S.; Novoselov, S.V.; Lobanov, A.V.; Zehtab, O.; Guigó, R.; Gladyshev, V.N. Characterization of mammalian selenoproteomes // Science. - 2003. - Vol. 300. - P. 1439-1443.


58. Labunsky, V.M.; Hatfield, L.L.; Gladyshev, V.N. Selenoproteins: Molecular Pathways and Physiological Roles // Physiol. Rev. - 2014. - Vol. 94. - P. 739-777.


59. Huang, Z.; Rose, A.H.; Homann, P.R. The role of selenium in inflammation and immunity: From molecular mechanisms to therapeutic opportunities // Antioxid. Redox Signal. - 2012. - Vol. 16. - P. 705-743.


60. Schomburg, L.; Schweizer, U. Hierarchical regulation of selenoprotein expression and sex-specific effects of selenium // Biochim. Biophys. Acta. - 2009. - Vol. 1790. - 1453-1462.


61. Liu, H.; Xu, H.; Huang, K. Selenium in the prevention of atherosclerosis and its underlying mechanisms // Metallomics. - 2017. - Vol. 9. - P. 21-37.


62. Oropeza-Moe, M.; Wislø_, H.; Bernhoft, A. Selenium deficiency associated porcine and human cardiomyopathies // J. Trace Elem. Med. Biol. - 2015. - Vol. 31. - P. 148-156.


63. Thomson, C.D. Selenium|Physiology. In Encyclopedia of Food Sciences and Nutrition, 2nd ed.; Elsevier: Dunedin, New Zeland. - 2003. - P. 5117-5124.


64. Roman, M.; Jitaru, P.; Barbante, C. Selenium biochemistry and its role for human health // Metallomics. - 2014. - 6. - P. 25-54.


65. Fairweather-Tait, S.; Bao, Y.; Broadley, M.R.; Collings, R.; Ford, D.; Hesketh, J.E.; Hurst, R. Selenium in human health and disease // Antioxid. Redox Signal. - 2011. - Vol. 14. P. 1337-1383.


66. Kiela, P.R.; Ghishan, F.K. Physiology of Intestinal Absorption and Secretion // Best Pract. Res. Clin. Gastroenterol. - 2016. - Vol. 30. P. 145-159.


67. Go, J.P. Invited review: Mineral absorption mechanisms, mineral interactions that a_ect acid-base and antioxidant status, and diet considerations to improve mineral status // J. Dairy Sci. - 2018. - Vol. 101. P. 2763-2813.


68. Kieliszek, M. Selenium-Fascinating Microelement, Properties and Sources in Food // Molecules. - 2019. - Vol. 24. - P. 1298.


69. Fairweather-Tait, S.; Hurrell, R.F. Bioavailability of minerals and trace elements // Nutr. Res. Rev. - 1996. - Vol. 9. P. 295-324.


70. Nickel, A.; Kottra, G.; Schmidt, G.; Danier, J.; Hofmann, T.; Daniel, H. Characteristics of transport of selenoamino acids by epithelial amino acid transporters // Chem. Biol. Interact. - 2009. - Vol. 177. - P. 234-241.


71. Drug Bank. Available online: https://www.drugbank.ca/drugs/DB11135 (accessed on 24 April 2020).


72. Fung, E.B. Nutritional deficiencies in patients with thalassemia // Ann. N. Y. Acad. Sci. - 2010. - Vol. 1202. - P. 188-196.


73. Sherief, L.M.; El-Salam, S.M.A.; Kamal, N.M.; El Safy, O.; Almalky, M.A.; Azab, S.F.; Morsy, H.M.; Gharieb, A.F. Nutritional biomarkers in children and adolescents with Beta-thalassemia-major: An Egyptian center experience // Biomed. Res. Int. - 2014. - Vol. 2014. - ID. 261761.


74. Pliakou, X.I.; Koutsouka, F.P.; Damigos, D.; Bourantas, K.L.; Briasoulis, E.C.; Voulgari, P.V. Rheumatoid arthritis in patients with hemoglobinopathies // Rheumatol. Int. - 2012. - Vol. 32. - P. 2889-2892.


75. Cardoso, B.R.; Roberts, B.; Bush, A.I.; Hare, D.J. Selenium, selenoproteins and neurodegenerative diseases // Metallomics. - 2015. - Vol. 7. - P. 1213-1228.


76. Seale, L.A. Selenocysteine _-Lyase: Biochemistry, Regulation and Physiological Role of the Selenocysteine Decomposition Enzyme // Antioxidants. - 2019. - Vol. 8. - P. 357.


77. Squires, J.E.; Berry, M.J. Eukaryotic selenoprotein synthesis: Mechanistic insight incorporating new factors and new functions for old factors // IUBMB Life. - 2008. - Vol. 60. - P. 232-235.


78. Zoidis, E.; Seremelis, I.; Kontopoulos, N.; Danezis, G. Selenium-Dependent Antioxidant Enzymes: Actions and Properties of Selenoproteins // Antioxidants. - 2018. - Vol. 7. - P. 66.


79. Lu, J. & Holmgren, A. Selenoproteins // J. Biol. Chem. - 2009. - Vol. 284. P. 723-727.


80. Kryukov, G. V. et al. Characterization of mammalian selenoproteomes // Science. 2003. Vol. 300. P. 1439-1443.


81. Pitts, M. W. & Hoffmann, P. R. Endoplasmic reticulum-resident selenoproteins as regulators of calcium signaling and homeostasis // Cell Calcium. - 2018. - Vol. 70. - P. 76-86.


82. Sreelatha, A. et al. Protein AMPylation by an evolutionarily conserved pseudokinase // Cell. - 2018. - Vol. 175. - P. 809-821 e819.


83. Brigelius-Flohe, R. Glutathione peroxidases and redox-regulated transcription factors // Biol. Chem. - 2006. - Vol. 387. - P. 1329-1335.


84. Ingold, I. et al. Selenium utilization by GPX4 is required to prevent hydroperoxide-induced ferroptosis // Cell. - 2018. - Vol. 172. P. 409-422. e421.


85. Arnér, E. S. & Holmgren, A. Physiological functions of thioredoxin and thioredoxin reductase // Eur. J. Biochem. - 2000. - Vol. 267. - P. 6102-6109.


86. Conrad, M. et al. Essential role for mitochondrial thioredoxin reductase in hematopoiesis, heart development, and heart function // Mol. Cell Biol. - 2004. - Vol. 24. - P. 9414-9423.


87. Jakupoglu, C. et al. Cytoplasmic thioredoxin reductase is essential for embryogenesis but dispensable for cardiac development // Mol. Cell Biol. - 2005. - Vol. 25. - P. 1980-1988.


88. Gereben, B. et al. Cellular and molecular basis of deiodinase-regulated thyroid hormone signaling // Endocr. Rev. - 2008. - Vol. 29. - P. 898-938.


89. Liang, Y. et al. Effect of selenium on selenoprotein expression in the adipose tissue of chickens // Biol. Trace Elem. Res. - 2014. - Vol. 160. - P. 41-48.


90. Christensen, M. J. & Burgener, K. W. Dietary selenium stabilizes glutathione peroxidase mRNA in rat liver // J. Nutr. - 1992. - Vol. 122. - P. 1620-1626.


91. Avissar, N., Kerl, E. A., Baker, S. S. & Cohen, H. Extracellular glutathione peroxidase mRNA and protein in human cell lines // Arch. Biochem. Biophys. - 1994. - Vol. 309. - P. 239-246.


92. Zhao, H., Whitfield, M. L., Xu, T., Botstein, D. & Brooks, J. D. Diverse effects of methylseleninic acid on the transcriptional program of human prostate cancer cells // Mol. Biol. Cell. - 2004. - Vol. 15. - P. 506-519.


93. Vunta, H. et al. Selenium attenuates pro‐inflammatory gene expression in macrophages // Mol. Nutr. Food Res. - 2008. - Vol. 52. - P. 1316-1323.


94. Kosik-Bogacka, D. I. et al. Effects of biological factors and health condition on mercury and selenium concentrations in the cartilage, meniscus and anterior cruciate ligament // J. Trace Elem. Med. Biol. - 2017. - Vol. 44. - P. 201-208.


95. Bissardon, C. et al. Sub-ppm level high energy resolution fluorescence detected X-ray absorption spectroscopy of selenium in articular cartilage // Analyst. - 2019. - Vol. 144. - P. 3488-3493.


96. Thompson, K. M., Haibach, H. & Sunde, R. A. Growth and plasma triiodothyronine concentrations are modified by selenium deficiency and repletion in second-generation selenium-deficient rats // J. Nutr. - 1995. - Vol. 125. - P. 864-873.


97. Yang, C., Wolf, E., Roser, K., Delling, G. & Muller, P. K. Selenium deficiency and fulvic acid supplementation induces fibrosis of cartilage and disturbs subchondral ossification in knee joints of mice: an animal model study of Kashin-Beck disease // Virchows Arch. A Pathol. Anat. Histopathol. - 1993. - Vol. 423. - P. 483-491.


98. Ren, F. L. et al. Effects of selenium and iodine deficiency on bone, cartilage growth plate and chondrocyte differentiation in two generations of rats // Osteoarthr. Cartil. - 2007. - Vol. 15. - P. 1171-1177.


99. Moreno-Reyes, R., Egrise, D., Neve, J., Pasteels, J. L. & Schoutens, A. Selenium deficiency-induced growth retardation is associated with an impaired bone metabolism and osteopenia // J. Bone Miner. Res. - 2001. - Vol. 16. - P. 1556-1563.


100. Cao, J. J., Gregoire, B. R. & Zeng, H. Selenium deficiency decreases antioxidative capacity and is detrimental to bone microarchitecture in mice // J. Nutr. - 2012. - Vol. 142. P. 1526-1531.


101. Xiong, Y. M. et al. Association study between polymorphisms in selenoprotein genes and susceptibility to Kashin-Beck disease // Osteoarthr. Cartil. - 2010. - Vol. 18. - P. 817-824.


102. Huang, L. et al. Association study of polymorphisms in selenoprotein genes and kashin-beck disease and serum selenium/iodine concentration in a tibetan population // PLoS ONE. - 2013. - Vol. 8. - P. e71411.


103. Du, X. et al. Role of selenoprotein S (SEPS1)-105G> A polymorphisms and PI3K/Akt signaling pathway in Kashin-Beck disease // Osteoarthr. Cartil. - 2015. - Vol. 23. - P. 210-216.


104. Wu, R. et al. The study on polymorphisms of sep15 and TrxR2 and the expression of AP-1 signaling pathway in Kashin-Beck disease // Bone. - 2019. - Vol. 120. - P. 239-245.


105. Lu, M. L. et al. The effects of mycotoxins and selenium deficiency on tissueengineered cartilage // Cells Tissues Organs. - 2012. - Vol. 196. - P. 241-250.


106. Min, Z. et al. Abnormality of epiphyseal plate induced by selenium deficiency diet in two generation DA rats // Apmis. - 2015. - Vol. 123. - P. 697-705.


107. Downey, C. M. et al. Osteo-chondroprogenitor-specific deletion of the selenocysteine tRNA gene, Trsp, leads to chondronecrosis and abnormal skeletal development: a putative model for Kashin-Beck disease // PLoS Genet. - 2009. - Vol. 5. - P. e1000616.


108. Guo, X. et al. Recent advances in the research of an endemic osteochondropathy in China: Kashin-Beck disease // Osteoarthr. Cartil. - 2014. - Vol. 22. - P. 1774-1783.


109. Zou, K., Liu, G., Wu, T. & Du, L. Selenium for preventing Kashin-Beck osteoarthropathy in children: a meta-analysis // Osteoarthr. Cartil. - 2009. - Vol. 17. - P. 144-151.


110. Glasson, S. S. et al. Deletion of active ADAMTS5 prevents cartilage degradation in a murine model of osteoarthritis // Nature. - 2005. - Vol. 434. - P. 644-648.


111. Blom, A. B. et al. Crucial role of macrophages in matrix metalloproteinasemediated cartilage destruction during experimental osteoarthritis: involvement of matrix metalloproteinase 3 // Arthritis Rheumatism. - 2007. - Vol. 56. - P. 147-157.


112. Little, C. B. et al. Matrix metalloproteinase 13-deficient mice are resistant to osteoarthritic cartilage erosion but not chondrocyte hypertrophy or osteophyte development // Arthritis Rheumatism. - 2009. - Vol. 60. - P. 3723-3733.


113. Marcu, K. B. et al. NF-kappa B signaling: multiple angles to target OA // Curr. Drug Targets. - 2010. - Vol. 11. - P. 599-613.


114. Berenbaum, F. Diabetes-induced osteoarthritis: from a new paradigm to a new phenotype // Ann. Rheum. Dis. - 2011. - Vol. 70. - P. 1354-1356.


115. Choi, W. S. et al. Critical role for arginase II in osteoarthritis pathogenesis // Ann. Rheum. Dis. - 2019. - Vol. 78. - P. 421-428.


116. Mobasheri, A. et al. The role of metabolism in the pathogenesis of osteoarthritis // Nat. Rev. Rheumatol. - 2017. - Vol. 13. - P. 302-311.


117. Won, Y. et al. Pleiotropic roles of metallothioneins as regulators of chondrocyte apoptosis and catabolic and anabolic pathways during osteoarthritis pathogenesis // Ann. Rheum. Dis. - 2016. - Vol. 75. - P. 2045-2052.


118. Matsuzaki, T. et al. FoxO transcription factors modulate autophagy and proteoglycan 4 in cartilage homeostasis and osteoarthritis // Sci. Transl. Med. - 2018. - Vol. 10. - https://doi.org/10.1126/scitranslmed.aan0746.


119. Cornelis, F. M. F. et al. ANP32A regulates ATM expression and prevents oxidative stress in cartilage, brain, and bone // Sci. Transl. Med. - 2018. - Vol. 10. - https://doi. org/10.1126/scitranslmed.aar8426.


120. Coleman, M. C. et al. Targeting mitochondrial responses to intra-articular fracture to prevent posttraumatic osteoarthritis // Sci. Transl. Med. - 2018. - Vol. 10. - https://doi.org/10.1126/scitranslmed.aan5372.


121. Regan, E. A., Bowler, R. P. & Crapo, J. D. Joint fluid antioxidants are decreased in osteoarthritic joints compared to joints with macroscopically intact cartilage and subacute injury // Osteoarthr. Cartil. - 2008. - Vol. 16. - P. 515-521.


122. Blanco, F. J., Lopez-Armada, M. J. & Maneiro, E. Mitochondrial dysfunction in osteoarthritis // Mitochondrion. - 2004. - Vol. 4. - P. 715-728.


123. Wang, Y., Zhao, X., Lotz, M., Terkeltaub, R. & Liu-Bryan, R. Mitochondrial biogenesis is impaired in osteoarthritis chondrocytes but reversible via peroxisome proliferator-activated receptor gamma coactivator 1alpha // Arthritis Rheumatol. - 2015. - Vol. 67. - P. 2141-2153.


124. McCulloch, K., Litherland, G. J. & Rai, T. S. Cellular senescence in osteoarthritis pathology // Aging Cell. - 2017. - Vol. 16. - P. 210-218.


125. Akhmedov, A. T. & Marin-Garcia, J. Mitochondrial DNA maintenance: an appraisal // Mol. Cell Biochem. - 2015. - Vol. 409. - P. 283-305.


126. Goyns, M. H. Genes, telomeres and mammalian ageing // Mech. Ageing Dev. - 2002. - Vol. 123. - P. 791-799.


127. Sun, M. et al. Maintenance of SOX9 stability and ECM homeostasis by selenium-sensitive PRMT5 in cartilage // Osteoarthr. Cartil. - 2019. - Vol. 27. - P. 932-944.


128. Kurz, B., Jost, B. & Schünke, M. Dietary vitamins and selenium diminish the development of mechanically induced osteoarthritis and increase the expression of antioxidative enzymes in the knee joint of STR/1N mice // Osteoarthr. Cartil. - 2002. - Vol. 10. - P. 119-126.


129. Cheng, A. W., Stabler, T. V., Bolognesi, M. & Kraus, V. B. Selenomethionine inhibits IL-1beta inducible nitric oxide synthase (iNOS) and cyclooxygenase 2(COX2) expression in primary human chondrocytes // Osteoarthr. Cartil. 2011. - Vol. 19. - P. 118-125.


130. Xue, J. et al. The hsa-miR-181a-5p reduces oxidation resistance by controlling SECISBP2 in osteoarthritis // BMC Musculoskelet. Disord. - 2018. - Vol. 19. - P. 355.


131. Aigner, T. et al. Large-scale gene expression profiling reveals major pathogeneticpathways of cartilage degeneration in osteoarthritis // Arthritis Rheumatism. - 2006. - Vol. 54. - P. 3533-3544.


132. Hosseinzadeh, A., Jafari, D., Kamarul, T., Bagheri, A. & Sharifi, A. M. Evaluating the protective effects andmechanisms of diallyl disulfide on interlukin-1betainduced oxidative stress and mitochondrial apoptotic signaling pathways incultured chondrocytes // J. Cell Biochem. - 2017. - Vol. 118. - P. 1879-1888.


133. Bateman, J. F. et al. Transcriptomics of wild-type mice and mice lackingADAMTS-5 activity identifies genes involved in osteoarthritis initiation and cartilage destruction // Arthritis Rheumatism. - 2013. - Vol. 65. - P. 1547-1560.


134. Bos, S. et al. The role of plasma cytokine levels, CRP and Selenoprotein S gene variation in OA // Osteoarthr. Cartil. - 2009. - Vol. 17. - P. 621-626.


135. Bos, S. D. et al. Increased type II deiodinase protein in OA-affected cartilage and allelic imbalance of OA risk polymorphism rs225014 at DIO2 in human OA joint tissues // Ann. Rheumatic Dis. - 2012. - Vol. 71. - P. 1254-1258.


136. Waarsing, J. H. et al. Osteoarthritis susceptibility genes influence the association between hip morphology and osteoarthritis // Arthritis Rheumatism. - 2011. - Vol. 63. - P. 1349-1354.


137. Meulenbelt, I. et al. Identification of DIO2 as a new susceptibility locus for symptomatic osteoarthritis // Hum. Mol. Genet. - 2008. - Vol. 17. - P. 1867-1875.


138. Bomer, N. et al. Underlying molecular mechanisms of DIO2 susceptibility in symptomatic osteoarthritis // Ann. Rheum. Dis. - 2015. - Vol. 74. - P. 1571-1579.


139. Meulenbelt, I. et al. Meta-analyses of genes modulating intracellular T3 bioavailability reveal a possible role for the DIO3 gene in osteoarthritis susceptibility // Ann. Rheum. Dis. - 2011. - Vol. 70. - P. 164-167.


140. Yazar, M., Sarban, S., Kocyigit, A. & Isikan, U. Synovial fluid and plasma selenium, copper, zinc, and iron concentrations in patients with rheumatoid arthritis and osteoarthritis // Biol. Trace Elem. Res. - 2005. Vol. 106. - P. 123-132.


141. de Oliveira El-Warrak, A., Rouma, M., Amoroso, A., Boysen, S. R. & Chorfi, Y. Measurement of vitamin A, vitamin E, selenium, and L-lactate in dogs with and without osteoarthritis secondary to ruptured cranial cruciate ligament // Can. Vet. J. - 2012. - Vol. 53. - P. 1285.


142. Hill, J. & Bird, H. Failure of selenium-ace to improve osteoarthritis // Rheumatology. - 1990. - Vol. 29. - P. 211-213.


143. Li, H. et al. Associations between dietary antioxidants intake and radiographic knee osteoarthritis // Clin. Rheumatol. - 2016. - Vol. 35. - P. 1585-1592.


144. Yan, J. D., Tian, J., Zheng, Y. W., Han, Y. & Lu, S. M. Selenium promotes proliferation of chondrogenic cell ATDC5 by increment of intracellular ATP content under serum deprivation // Cell Biochem. Funct. - 2012. - Vol. 30. - P. 657-663.


145. Ahmed, H. H., Aglan, H. A., Mabrouk, M., Abd-Rabou, A. A. & Beherei, H. H. Enhanced mesenchymal stem cell proliferation through complexation of selenium/titanium nanocomposites // J. Mater. Sci. Mater. Med. - 2019. - Vol. 30. - P. 24.


146. Yan, J. D., Fei, Y., Han, Y. & Lu, S. M. Selenoprotein O deficiencies suppress chondrogenic differentiation of ATDC5 cells // Cell Biol. Int. - 2016. - Vol. 40. - P. 1033-1040.


147. Yan, J. et al. GPx1 knockdown suppresses chondrogenic differentiation of ATDC5 cells through induction of reductive stress // Acta Biochim. Biophys. Sin. (Shanghai). - 2017. - Vol. 49. - P. 110-118.


148. James, C. G., Appleton, C. T. G., Ulici, V., Underhill, T. M. & Beier, F. Microarray analyses of gene expression during chondrocyte differentiation identifies novel regulators of hypertrophy // Mol. Biol. Cell. - 2005. - Vol. 16. - P. 5316-5333.


149. Hawkes, W. C. & Alkan, Z. Regulation of redox signaling by selenoproteins // Biol. Trace Elem. Res. - 2010. - Vol. 134. - P. 235-251.


150. Ramakrishnan, P. et al. Oxidant conditioning protects cartilage from mechanically induced damage // J. Orthop. Res. - 2010. - Vol. 28. - P. 914-920.


151. Henrotin, Y., Kurz, B. & Aigner, T. Oxygen and reactive oxygen species in cartilage degradation: friends or foes? // Osteoarthr. Cartil. - 2005. - Vol. 13. - P. 643-654.


152. Bigarella, C. L., Liang, R. & Ghaffari, S. Stem cells and the impact of ROS signaling // Development. - 2014. - Vol. 141. - P. 4206-4218.


153. Loeser, R. F. Aging and osteoarthritis: the role of chondrocyte senescence and aging changes in the cartilage matrix // Osteoarthr. Cartil. - Vol. 17. - P. 971-979.


154. Vaillancourt, F. et al. 4-Hydroxynonenal induces apoptosis in human osteoarthritic chondrocytes: the protective role of glutathione-S-transferase // Arthritis Res Ther. - 2008. - Vol. 10. - P. R107.


155. Brandl, A. et al. Oxidative stress induces senescence in chondrocytes // J. Orthop. Res. - Vol. 29. - P. 1114-1120.


156. Cha, B. H., Lee, J. S., Kim, S. W., Cha, H. J. & Lee, S. H. The modulation of the oxidative stress response in chondrocytes by Wip1 and its effect on senescence and dedifferentiation during in vitro expansion // Biomaterials. - Vol. 34. - P. 2380-2388.


157. Henrotin, Y. E., Bruckner, P. & Pujol, J. P. The role of reactive oxygen species in homeostasis and degradation of cartilage // Osteoarthr. Cartil. - Vol. 11. - P. 747-755.


158. Johnson, K. et al. Mitochondrial oxidative phosphorylation is a downstream regulator of nitric oxide effects on chondrocyte matrix synthesis and mineralization // Arthritis Rheumatism. - 2000. - Vol. 43. - P. 1560-1570.


159. Tiku, M. L., Gupta, S. & Deshmukh, D. R. Aggrecan degradation in chondrocytes is mediated by reactive oxygen species and protected by antioxidants // Free Radic. Res. - 1999. - Vol. 30. - P. 395-405.


160. Ebert, R. et al. Selenium supplementation restores the antioxidative capacity and prevents cell damage in bone marrow stromal cells in vitro // Stem Cells. - Vol. 24. - P. 1226-1235.


161. Chen, J. H. et al. Oxidant damage in Kashin‐Beck disease and a rat Kashin-Beck disease model by employing T-2 toxin treatment under selenium deficient conditions // J. Orthop. Res. - Vol. 30. - P. 1229-1237.


162. Chi, Q., Luan, Y., Zhang, Y., Hu, X. & Li, S. The regulatory effects of miR-138-5p on selenium deficiency-induced chondrocyte apoptosis are mediated by targeting SelM // Metallomics. - 2019. - Vol. 11. - P. 845-857.


163. Gao, H., Liu, C., Song, S. & Fu, J. Effects of dietary selenium against lead toxicity on mRNA levels of 25 selenoprotein genes in the cartilage tissue of broiler chicken // Biol. Trace Elem. Res. - 2016. - Vol. 172. - P. 234-241.


164. Yu, F.-F. et al. Identified molecular mechanism of interaction between environmental risk factors and differential expression genes in cartilage of Kashin-Beck disease // Medicine. - 2016. - Vol. 95. - P. e5669.


165. Wang, W.-Z. et al. Comparative analysis of gene expression profiles between the normal human cartilage and the one with endemic osteoarthritis // Osteoarthr. Cartil. - 2009. - Vol. 17. - P. 83-90.


166. Rose, J. et al. DNA damage, discoordinated gene expression and cellular senescence in osteoarthritic chondrocytes // Osteoarthr. Cartil. - 2012. - Vol. 20. - P. 1020-1028.


167. Grishko, V. I., Ho, R., Wilson, G. L. & Pearsall, A. W. Diminished mitochondrial DNA integrity and repair capacity in OA chondrocytes // Osteoarthr. Cartil. - 2009. - Vol. 17. P. 107-113.


168. Baliga, M. S., Wang, H., Zhuo, P., Schwartz, J. L. & Diamond, A. M. Selenium and GPx-1 overexpression protect mammalian cells against UV-induced DNA damage // Biol. Trace Elem. Res. - 2007. - Vol. 115. - P. 227-241.


169. de Rosa, V. et al. Low doses of selenium specifically stimulate the repair of oxidative DNA damage in LNCaP prostate cancer cells // Free Radic. Res. - 2012. - Vol. 46. - P. 105-116.


170. Seo, Y. R., Sweeney, C. & Smith, M. L. Selenomethionine induction of DNA repair response in human fibroblasts // Oncogene. - 2002. - Vol. 21. - P. 3663-3669.


171. Fischer, J. L., Lancia, J. K., Mathur, A. & Smith, M. L. Selenium protection from DNA damage involves a Ref1/p53/Brca1 protein complex // Anticancer Res. - 2006. - Vol. 26. - P. 899-904.


172. Fischer, J. L., Mihelc, E. M., Pollok, K. E. & Smith, M. L. Chemotherapeutic selectivity conferred by selenium: a role for p53-dependent DNA repair // Mol. Cancer Ther. - 2007. - Vol. 6. - P. 355-361.


173. Wang, L.;Wang, F.-S.; Gershwin, M.E. Human autoimmune diseases: A comprehensive update // J. Intern. Med. - 2015. - Vol. 278. - P. 369-395.


174. Reedy, J.; Lerman, J.L.; Krebs-Smith, S.M.; Kirkpatrick, S.I.; Pannucci, T.;Wilson, M.M.; Subar, A.F.; Kahle, L.L.; Tooze, J.A. Evaluation of the Healthy Eating Index-2015 // J. Acad. Nutr. Diet. - 2018. - Vol. 118. - P. 1622-1633.


175. Krebs-Smith, S.M.; Pannucci, T.; Subar, A.F.; Kirkpatrick, S.I.; Lerman, J.L.; Tooze, J.A.;Wilson, M.M.; Reedy, J.Update of the Healthy Eating Index: HEI-2015 // J. Acad. Nutr. Diet. - 2018. - Vol. 118. - P. 1591-1602.


176. Comee, L.; Taylor, C.A.; Nahikian-Nelms, M.; Ganesan, L.P.; Krok-Schoen, J.L. Dietary patterns and nutrient intake of individuals with rheumatoid arthritis and osteoarthritis in the United States // Nutrition. - 2019. - Vol. 67-68. - P. 110533.


177. Grimstvedt, M.E.; Woolf, K.; Milliron, B.-J.; Manore, M.M. Lower Healthy Eating Index-2005 dietary quality scores in older women with rheumatoid arthritis v. healthy controls // Public Health Nutr. - 2010. - Vol. 13. - P. 1170-1177.


178. Berube, L.T.; Kiely, M.;Woolf, K.; Yazici, Y. Diet quality of individuals with rheumatoid arthritis using the Healthy Eating Index (HEI)-2010 // Nutr. Health. - 2017. - Vol. 23. - P. 17-24.


179. Bärebring, L.; Winkvist, A.; Gjertsson, I.; Lindqvist, H.M. Poor Dietary Quality Is Associated with Increased Inflammation in Swedish Patients with Rheumatoid Arthritis // Nutrients. - 2018. - Vol. 10. - P. 1535.


180. Maggini, S.; Pierre, A.; Calder, P.C. Immune function and micronutrient requirements change over the life course // Nutrients. - 2018. - P. 10. - P. 1531.


181. Duntas, L.H. Selenium and inflammation: Underlying anti-inflammatory mechanisms. Horm. Metab. Res. - 2009. - Vol. 41. - P. 443-447.


182. Hariharan, S.; Dharmaraj, S. Selenium and selenoproteins: It?s role in regulation of inflammation // Inflammopharmacology. - 2020. - Vol. 28. - P. 667-695.


183. Hejazi, J.; Mohtadinia, J.; Kolahi, S.; Bakhtiyari, M.; Delpisheh, A. Nutritional status of Iranian women with rheumatoid arthritis: An assessment of dietary intake and disease activity. // Womens Health. - 2011. - Vol. 7. - P. 599-605.


184. Arablou, T.; Aryaeian, N.; Djalali, M.; Shahram, F.; Rasouli, L. Association between dietary intake of some antioxidant micronutrients with some inflammatory and antioxidant markers in active Rheumatoid Arthritis patients // Int. J. Vitam. Nutr. Res. - 2019. - Vol. 89. - P. 238-245.


185. Stone, J.; Doube, A.; Dudson, D.;Wallace, J. Inadequate calcium, folic acid, vitamin E, zinc, and selenium intake in rheumatoid arthritis patients: Results of a dietary survey // Semin. Arthritis Rheum. - 1997. - Vol. 27. - P. 180-185.


186. Silva, B.N.S.; De Araújo Ísis, L.S.B.; Queiroz, P.M.A.; Duarte Ângela, L.B.P.; Burgos, M.G.P.D.A. Intake of antioxidants in patients with rheumatoid arthritis // Rev. Assoc. Med. Bras. - 2014. - Vol. 60. - P. 555-559.


187. Hagfors, L.; Leandersson, P.; Sköldstam, L.; Andersson, J.; Johansson, G. Antioxidant intake, plasma antioxidants and oxidative stress in a randomized, controlled, parallel, Mediterranean dietary intervention study on patients with rheumatoid arthritis // Nutr. J. - 2003. - Vol. 2. - P. 5-15.


188. Pedersen, M.; Stripp, C.; Klarlund, M.; Olsen, S.F.; Tjønneland, A.; Frisch, M. Diet and risk of rheumatoid arthritis in a prospective cohort // J. Rheumatol. - 2005. - Vol. 32. - P. 1249-1252.


189. Knekt, P.; Heliövaara, M.; Aho, K.; Alfthan, G.; Marniemi, J.; Aromaa, A. Serum selenium, serum alpha-tocopherol, and the risk of rheumatoid arthritis // Epidemiology. - 2000. - Vol. 11. - P. 402-405.


190. Cerhan, J.R.; Saag, K.G.; Merlino, L.A.; Mikuls, T.R.; Criswell, L.A. Antioxidant micronutrients and risk of rheumatoid arthritis in a cohort of older women // Am. J. Epidemiol. - 2003. - Vol. 157. - P. 345-354.


191. Tarp, U.; Overvad, K.; Thorling, E.B.; Graudal, H.; Hansen, J.C. Selenium treatment in rheumatoid arthritis // Scand. J. Rheumatol. - 1985. - Vol. 14. - P. 364-368.


192. Jäntti, J.; Vapaatalo, H.; Seppala, E.; Ruutsalo, H.M.; Isomaki, H. Treatment of rheumatoid arthritis with fish oil, selenium, Vitamins A and E, and placebo // Scand. J. Rheumatol. - 1991. - Vol. 20. - P. 225.


193. Peretz, A.; Neve, J.; Duchateau, J.; Famaey, J.P. Adjuvant treatment of recent onset rheumatoid arthritis by selenium supplementation: Preliminary observations // Br. J. Rheumatol. - 1992. - Vol. 31. - P. 281-282.


194. Heinle, K.; Adam, A.; Gradl, M.; Wiseman, M.; Adam, O. Selenkonzentration in den Erythrozyten bei Patienten mit rheumatoider Arthritis // Med. Klin. - 1997. - Vol. 92. - P. 29-31.


195. Peretz, A.; Siderova, V.; Nève, J. Selenium supplementation in rheumatoid arthritis investigated in a double blind, placebo-controlled trial // Scand. J. Rheumatol. - 2001. - Vol. 30. - P. 208-212.


196. Canter, P.; Wider, B.; Ernst, E. The antioxidant vitamins A, C, E and selenium in the treatment of arthritis: A systematic review of randomized clinical trials // Rheumatology. - 2007. - Vol. 46. - P. 1223-1233.


197. Malhotra, S.;Welling, M.N.; Mantri, S.B.; Desai, K. In vitro and in vivo antioxidant, cytotoxic, and anti-chronic inflammatory arthritic effect of selenium nanoparticles // J. Biomed. Mater. Res. B Appl. Biomater. - 2016. - Vol. 104. - P. 993-1003.


198. Ren, S.-X.; Zhang, B.; Lin, Y.; Ma, D.-S.; Yan, H. Selenium Nanoparticles Dispersed in Phytochemical Exert Anti-Inflammatory Activity by Modulating Catalase, GPx1, and COX-2 Gene Expression in a Rheumatoid Arthritis Rat Model // Med. Sci. Monit. - 2019. - Vol. 25. - P. 991-1000.


199. Liua, J.; Ma, L.; Zhou, H.; Zhu, X.; Yu, Q.; Chen, X.; Zhao, Y.; Liu, J. Polypeptide nano-Se targeting inflammation and theranostic rheumatoid arthritis by anti-angiogenic and NO activating AMPK_ signaling pathway // J. Mater. Chem. B. - 2018. - Vol. 6. - P. 3497-3514.


200. Hitchon, C.A.; El-Gabalawy, H.S. Oxidation in rheumatoid arthritis // Arthritis Res. Ther. - 2004. - Vol. 6. - P. 265-278.


201. Cejka, D.; Hayer, S.; Niederreiter, B.; Sieghart,W.; Fuereder, T.; Zwerina, J.; Schett, G. Mammalian target of rapamycin signaling is crucial for joint destruction in experimental arthritis and is activated in osteoclasts from patients with rheumatoid arthritis // Arthritis Rheum. - 2010. - Vol. 62. - P. 2294-2302.


202. Camargo, S.M.R.; Singer, D.; Makrides, V.; Huggel, K.; Pos, K.M.; Wagner, C.A.; Kuba, K.; Danilczyk, U.; Skovby, F.; Kleta, R.; et al. Tissue-specific amino acid transporter partners ACE2 and collectrin di_erentially interact with hartnup mutations // Gastroenterology. - 2009. - Vol. 136. - P. 872-882.


203. Seow, H.-F.; Bröer, S.; Broer, A.; Bailey, C.G.; Potter, S.J.; Cavanaugh, J.A.; Rasko, J.E.; Br, S. Hartnup disorder is caused by mutations in the gene encoding the neutral amino acid transporter SLC6A19 // Nat. Genet. - 2004. - Vol. 36. - P. 1003-1007.


204. Popovska-Jankovic, K.; Tasic, V.; Bogdanovic, R.; Miljkovic, P.; Golubovic, E.; Soylu, A.; Saraga, M.; Pavicevic, S.; Baskin, E.; Akil, I.; et al. Molecular characterization of cystinuria in south-eastern European countries // Urolithiasis. - 2013. - Vol. 41. - P. 21-30.


205. Calonge, M.J.; Gasparini, P.; Chillarón, J.; Chillón, M.; Gallucci, M.; Rousaud, F.; Zelante, L.; Testar, X.; Dallapiccola, B.; Di Silverio, F.; et al. Cystinuria caused by mutations in rBAT, a gene involved in the transport of cystine // Nat. Genet. - 1994. - Vol. 6. - P. 420-425.


206. Karunasinghe, N.; Han, D.Y.; Zhu, S.; Yu, J.; Lange, K.; Duan, H.; Medhora, R.; Singh, N.; Kan, J.; Alzaher, W.; et al. Serum selenium and single-nucleotide polymorphisms in genes for selenoproteins: Relationship to markers of oxidative stress in men from Auckland, New Zealand // Genes Nutr. - 2012. - Vol. 7. - P. 179-190.


207. Donadio, J.L.S.; Guerra-Shinohara, E.M.; Rogero, M.M.; Cozzolino, S.M.F. Influence of Gender and SNPs in GPX1 Gene on Biomarkers of Selenium Status in Healthy Brazilians // Nutrients. - 2016. - Vol. 8. - P. 81.


208. Donadio, J.L.S.; Rogero, M.M.; Guerra-Shinohara, E.M.; Barbosa, F., Jr.; Desmarchelier, C.; Borel, P.; Sneddon, A.A.; Hesketh, J.E.; Cozzolino, S.M.F. Genetic variants in selenoprotein genes modulate biomarkers of selenium status in response to Brazil nut supplementation (the SU.BRA.NUT study) // Clin. Nutr. - 2019. - Vol. 38. - P. 539-548.


209. Meplan, C.; Crosley, L.K.; Nicol, F.; Beckett, G.J.; Howie, A.F.; Hill, K.E.; Horgan, G.; Mathers, J.C.; Arthur, J.R.; Hesketh, J.E. Genetic polymorphisms in the human selenoprotein P gene determine the response of selenoprotein markers to selenium supplementation in a gender-specific manner (the SELGEN study) // FASEB J. - 2007. - Vol. 21. - P. 3063-3074.


210. Kopp, T.I.; Outzen, M.; Olsen, A.; Vogel, U.B.; Ravn-Haren, G. Genetic polymorphism in selenoprotein P modifies the response to selenium-rich foods on blood levels of selenium and selenoprotein P in a randomized dietary intervention study in Danes // Genes Nutr. - 2018. - Vol. 13. - P. 20.


211. Alfthan, G.; Neve, J. Reference values for serum selenium in various areas-evaluated according to the TRACY protocol // J. Trace Elem. Med. Biol. - 1996. - Vol. 10. - P. 77-87.


212. National Research Council. Distribution. In Selenium in Nutrition, Revised ed.; The National Academies Press: Washington, DC, USA. - 1983. - P. 10-39.


213. Xia, Y.; E Hill, K.; Li, P.; Xu, J.; Zhou, D.; Motley, A.K.; Wang, L.; Byrne, D.W.; Burk, R.F. Optimization of selenoprotein P and other plasma selenium biomarkers for the assessment of the selenium nutritional requirement: A placebo-controlled, double-blind study of selenomethionine supplementation in selenium-deficient Chinese subjects // Am. J. Clin. Nutr. - 2010. - Vol. 92. - P. 525-531.


214. Müller, S.M.; Dawczynski, C.;Wiest, J.; Lorkowski, S.; Kipp, A.P.; Schwerdtle, T. Functional Biomarkers for the Selenium Status in a Human Nutritional Intervention Study // Nutrients. - 2020. - Vol. - 12. - P. 676.


215. Bredholt, M.; Frederiksen, J.L. Zinc in Multiple Sclerosis: A Systematic Review and Meta-Analysis // ASN Neuro. - 2016. - Vol. 8. - P. 1759091416651511.


216. Sahebari, M.; Abrishami-Moghaddam, M.; Moezzi, A.;Avan, A.; Mirfeizi, Z.; Esmaily, H.; Ferns, G. Association between serum trace element concentrations and the disease activity of systemic lupus erythematosus // Lupus. - 2014. - Vol. 23. - P. 793-801.


217. Sanna, A.; Davide, F.; Zavattari, P.; Valera, P. Zinc Status and Autoimmunity: A Systematic Review and Meta-Analysis // Nutrients. - 2018. - Vol. 10. - P. 68.


218. Sahebari, M.; Rezaieyazdi, Z.; Khodashahi, M. Selenium and Autoimmune Diseases: A Review Article // Curr. Rheumatol. Rev. - 2019. - Vol. 15. P. 123-134.


219. Aaseth, J.; Munthe, E.; Førre, Ø.; Steinnes, E. Trace elements in serum and urine of patients with rheumatoid arthritis // Scand. J. Rheumatol. - 1978. - Vol. 7. - P. 237-240.


220. Hannonen, P.; Möttönen, T.; Oka, M. Serum selenium and rheumatoid arthritis // Scand. J. Rheumatol. - 1985. - Vol. 14. - P. 440.


221. Borglund, M.; Akesson, A.; Akesson, B. Distribution of selenium and glutathione peroxidase in plasma compared in healthy subjects and rheumatoid arthritis patients // Scand. J. Clin. Lab. Investig. - 1988. - Vol. 48. - P. 27-32.


222. Bacon, M.C.; White, P.H.; Raiten, D.J.; Craft, N.; Margolis, S.; Levander, O.A.; Taylor, M.L.; Lipnick, R.N.; Sami, S. Nutritional status and growth in juvenile rheumatoid arthritis // Semin. Arthritis Rheum. - 1990. - Vol. 20. - P. 97-106.


223. Jacobsson, L.; Lindgärde, F.; Manthorpe, R.; Akesson, B. Correlation of fatty acid composition of adipose tissue lipids and serum phosphatidylcholine and serum concentrations of micronutrients with disease duration in rheumatoid arthritis // Ann. Rheum. Dis. - 1990. - Vol. 49. - P. 901-905.


224. O?Dell, J.R.; Lemley-Gillespie, S.; Palmer,W.R.; Weaver, A.L.; Moore, G.F.; Klassen, L.W. Serum selenium concentrations in rheumatoid arthritis // Ann. Rheum. Dis. - 1991. - Vol 50. - P. 376-378.


225. Heliövaara, M.; Knekt, P.; Aho, K.; Aaran, R.K.; Alfthan, G.; Aromaa, A. Serum antioxidants and risk of rheumatoid arthritis // Ann. Rheum. Dis. - 1994. - Vol. 53. - P. 51-53.


226. Köse, K.; Doˆgan, P.; Karda¸s, Y.; Saraymen, R. Plasma selenium levels in rheumatoid arthritis // Biol. Trace Elem. Res. - 1996. - Vol. 53. - P. 51-56.


227. Witkowska, A.M.; Kuryliszyn-Moskal, A.; Borawska, M.H.; Hukałowicz, K.; Markiewicz, R. A study on soluble intercellular adhesion molecule-1 and selenium in patients with rheumatoid arthritis complicated by vasculitis // Clin. Rheumatol. - 2003. - Vol. 22. - P. 414-419.


228. Yazar, M.; Sarban, S.; Kocyigit, A.; Isikan, U.E. Synovial fluid and plasma selenium, copper, zinc, and iron concentrations in patients with rheumatoid arthritis and osteoarthritis // Biol. Trace Elem. Res. - 2005. - Vol. 106. - P. 123-132.


229. Pemberton, P.W.; Ahmad, Y.; Bodill, H.; Lokko, D.; Hider, S.L.; Yates, A.P.; Walker, M.G.; Laing, I.; Bruce, I. Biomarkers of oxidant stress, insulin sensitivity and endothelial activation in rheumatoid arthritis: A cross-sectional study of their association with accelerated atherosclerosis // BMC Res. Notes. - 2009. - Vol. 2. - P. 83.


230. Onal, S.; Nazıro˘ glu, M.; Çolak, M.; Bulut, V.; Flores-Arce, M.F. E_ects of di_erent medical treatments on serum copper, selenium and zinc levels in patients with rheumatoid arthritis // Biol. Trace Elem. Res. - 2011. - Vol. 142. - P. 447-455.


231. Li, J.; Liang, Y.; Mao, H.; Deng, W.; Zhang, J. E_ects of B-lymphocyte dysfunction on the serum copper, selenium and zinc levels of rheumatoid arthritis patients // Pak. J. Med. Sci. - 2014. - Vol. 30. - P. 1064-1067.


232. Afridi, H.I.; Talpur, F.N.; Kazi, T.G.; Brabazon, D. Estimation of toxic elements in the samples of di_erent cigarettes and their e_ect on the essential elemental status in the biological samples of Irish smoker rheumatoid arthritis consumers // Environ. Monit. Assess. - 2015. - Vol. 187. - P. 157.


233. Sahebari, M.; Ayati, R.; Mirzaei, H.; Sahebkar, A.; Hejazi, S.; Saghafi, M.; Saadati, N.; Ferns, G.A.; Avan, A. Serum Trace Element Concentrations in Rheumatoid Arthritis // Biol. Trace Elem. Res. - 2016. - Vol. 171. - P. 237-245.


234. Ma, Y.; Zhang, X.; Fan, D.; Xia, Q.; Wang, M.; Pan, F. Common trace metals in rheumatoid arthritis: A systematic review and meta-analysis // J. Trace Elem. Med. Biol. - 2019. - Vol. 56. - P. 81-89.


235. Mian, A.N.; Ibrahim, F.; Scott, D.L. A systematic review of guidelines for managing rheumatoid arthritis // BMC Rheumatol. - 2019. - Vol. 3. - P. 42.


236. Cheung, J.M.; Scarsbrook, D.; Klinkho, A.V. Characterization of patients with arthritis referred for gold therapy in the era of biologics // J. Rheumatol. - 2012. - Vol. 39. - P. 716-719.


237. Jackson-Rosario, S.; Cowart, D.; Myers, A.; Tarrien, R.; Levine, R.L.; Scott, R.A.; Self, W.T. Auranofin disrupts selenium metabolism in Clostridium difficile by forming a stable Au-Se adduct // J. Biol. Inorg. Chem. - 2009. - Vol. 14. - P. 507-519.


238. Radenkovic, F.; Holland, O.; Vanderlelie, J.J.; Perkins, A. Selective inhibition of endogenous antioxidants with Auranofin causes mitochondrial oxidative stress which can be countered by selenium supplementation // Biochem. Pharmacol. - 2017. - Vol. 146. - P. 42-52.


239. Roder, C.; Thomson, M.J. Auranofin: Repurposing an old drug for a golden new age // Drugs R D. - 2015. - Vol. 15. - P. 13-20.


240. Chaudiere, J.; Wilhelmsen, E.C.; Tappel, A.L. Mechanism of selenium-glutathione peroxidase and its inhibition by mercaptocarboxylic acids and other mercaptans // J. Biol. Chem. - 1984. - Vol. 259. - P. 1043-1050.


241. Gra˙zyna, G.; Agata, K.; Adam, P.; Tomasz, L.; Agata, W.-C.; Karolina, D.; Grzegorz, C.; Anna, C.; Gromadzka, G.; Karpi ´ nska, A.; et al. Treatment with D-penicillamine or zinc sulphate a_ects copper metabolism and improves but not normalizes antioxidant capacity parameters in Wilson disease // Biometals. - 2014. - Vol. - 27. - P. 207-215.


242. Peretz, A.; Neve, J.; Vertongen, F.; Famaey, J.P.; Molle, L. Selenium status in relation to clinical variables and corticosteroid treatment in rheumatoid arthritis // J. Rheumatol. - 1987. - Vol. 14. - 1104-1107.


243. Marano, G.; Fischioni, P.; Graziano, C.; Iannone, M.; Morisi, G. Increased serum selenium levels in patients under corticosteroid treatment // Pharmacol. Toxicol. - 1990. - Vol. 67. - P. 120-122.


244. Honkanen, V.E. The factors a_ecting plasma glutathione peroxidase and selenium in rheumatoid arthritis: A multiple linear regression analysis // Scand. J. Rheumatol. - 1991. - Vol. 20. - P. 385-391.


245. Deyab, G.; Hokstad, I.; Aaseth, J.; Småstuen, M.C.; Whist, J.E.; Agewall, S.; Lyberg, T.; Tveiten, D.; Hjeltnes, G.; Ghanbari, A.; et al. E_ect of anti-rheumatic treatment on selenium levels in inflammatory arthritis // J. Trace Elem. Med. Biol. - 2018. - Vol. 49. - P. 91-97.


246. Ghashut, R.A.; McMillan, D.C.; Kinsella, J.; Vasilaki, A.T.; Talwar, D.; Duncan, A. The e_ect of the systemic inflammatory response on plasma zinc and selenium adjusted for albumin // Clin. Nutr. - 2016. - Vol. - 35. - P. 381-387.


247. Duncan, A.; Talwar, D.; McMillan, D.C.; Stefanowicz, F.; O?Reilly, D.S.J.; O?Reilly, D.S.J. Quantitative data on the magnitude of the systemic inflammatory response and its e_ect on micronutrient status based on plasma measurements // Am. J. Clin. Nutr. - 2012. - Vol. 95. - P. 64-71.


248. Braunstein, M.; Kusmenkov, T.; Zuck, C.; Angstwurm, M.; Becker, N.-P.; Böcker,W.; Schomburg, L.; Bogner, V. Selenium and Selenoprotein P Deficiency Correlates with Complications and Adverse Outcome after Major Trauma // Shock. - 2020. - Vol. 53. P. 63-70.


249. Heyland, D.K.; Dhaliwal, R.; Day, A.G.; Muscedere, J.; Drover, J.; Suchner, U.; Cook, D.; Canadian Critical Care Trials Group. REducing Deaths due to OXidative Stress (The REDOXS Study): Rationale and study design for a randomized trial of glutamine and antioxidant supplementation in critically-ill patients // Proc. Nutr. Soc. - 2006. - Vol. 65. P. 250-263.


250. Mateo, G.F.; Navas-Acien, A.; Pastor-Barriuso, R.; Guallar, E. Selenium and coronary heart disease: A meta-analysis // Am. J. Clin. Nutr. - 2006. - Vol. 84. - P. 762-773.


251. Bleys, J.; Navas-Acien, A.; Guallar, E. Serum selenium levels and all-cause, cancer, and cardiovascular mortality among US adults // Arch. Intern. Med. - 2008. - Vol. 168. - P. 404-410.


152. Alehagen, U.; Johansson, P.; Björnstedt, M.; Rosén, A.; Post, C.; Aaseth, J. Relatively high mortality risk in elderly Swedish subjects with low selenium status // Eur. J. Clin. Nutr. - 2016. - Vol. 70. - P. 91-96.


253. Suadicani, P.; Hein, H.; Gyntelberg, F. Serum selenium concentration and risk of ischaemic heart disease in a prospective cohort study of 3000 males // Atherosclerosis. - 1992. - Vol. 96. - P. 33-42.


254. Alehagen, U.; Alexander, J.; Aaseth, J. Supplementation with Selenium and Coenzyme Q10 Reduces Cardiovascular Mortality in Elderly with Low Selenium Status. A Secondary Analysis of a Randomised Clinical Trial // PLoS ONE. - 2016. - Vol. 11. - P. e0157541.


255. Gombart, A.F.; Pierre, A.; Maggini, S. A Review of Micronutrients and the Immune System-Working in Harmony to Reduce the Risk of Infection // Nutrients. - 2020. - Vol. 12. - P. 236.


256. Hoffmann, P.R.; Berry, M.J. The influence of selenium on immune responses // Mol. Nutr. Food Res. - 2008. - Vol. 52. - P. 1273-1280.


257. Da Fonseca, L.J.S.; Nunes-Souza, V.; Goulart, M.O.F.; Rabelo, L.A. Oxidative Stress in Rheumatoid Arthritis: What the Future Might Hold regarding Novel Biomarkers and Add-On Therapies // Oxid. Med. Cell. Longev. - 2019. - Vol. 2019. - P. 7536805.


258. Nakajima, A.; Aoki, Y.; Shibata, Y.; Sonobe, M.; Terajima, F.; Takahashi, H.; Saito, M.; Taniguchi, S.; Yamada, M.; Nakagawa, K. Identification of clinical parameters associated with serum oxidative stress in patients with rheumatoid arthritis // Mod. Rheumatol. - 2014. - Vol. 24. - P. 926-930.


259. Smallwood, M.J.; Nissim, A.; Knight, A.R.; Whiteman, M.; Haigh, R.; Winyard, P.G. Oxidative stress in autoimmune rheumatic diseases // Free Radic. Biol. Med. - 2018. - Vol. 125. - P. 3-14.


260. Khojah, H.M.; Ahmed, S.; Abdel-Rahman, M.S.; Hamza, A.-B. Reactive oxygen and nitrogen species in patients with rheumatoid arthritis as potential biomarkers for disease activity and the role of antioxidants // Free Radic. Biol. Med. - 2016. - Vol. 97. - P. 285-291.


261. Lingappan, K. NF-kB in Oxidative Stress // Curr. Opin. Toxicol. - 2017. - Vol. 7. - P. 81-86.


262. Mateen, S.; Moin, S.; Shahzad, S.; Khan, A.Q. Level of inflammatory cytokines in rheumatoid arthritis patients: Correlation with 25-hydroxy vitamin D and reactive oxygen species // PLoS ONE. - 2017. - Vol. 12. - P. e0178879.


263. Bala, A.; Mondal, C.; Haldar, P.K.; Khandelwal, B. Oxidative stress in inflammatory cells of patient with rheumatoid arthritis: Clinical efficacy of dietary antioxidants // Inflammopharmacology. - 2017. - Vol. 25. P. 595-607.


264. Morgan, M.J.; Liu, Z.G. Crosstalk of reactive oxygen species and NF-kB signaling // Cell Res. - 2011. - Vol. 21. - P. 103-115.


265. Mateen, S.; Moin, S.; Khan, A.Q.; Zafar, A.; Fatima, N. Increased Reactive Oxygen Species Formation and Oxidative Stress in Rheumatoid Arthritis // PLoS ONE. - 2016. - Vol. 11. - P. e0152925.


266. Taylor, P.C.; Sivakumar, B. Hypoxia and angiogenesis in rheumatoid arthritis // Curr. Opin. Rheumatol. - 2005. - Vol. 17. - P. 293-298.


267. Kretz-Remy, C.; Arrigo, A.P. Selenium: A key element that controls NF-kappa B activation and I kappa B alpha half life // Biofactors. - 2001. - Vol. 14. - P. 117-125.


268. Maehira, F.; Miyagi, I.; Eguchi, Y. Selenium regulates transcription factor NF-kappaB activation during the acute phase reaction // Clin. Chim. Acta. - 2003. - Vol. 334. - P. 163-171.


269. Alhasan, R.; Kharma, A.; Leroy, P.; Jacob, C.; Gaucher, C. Selenium Donors at the Junction of Inflammatory Diseases // Curr. Pharm. Des. - 2019. - Vol. 25. - P. 1707-1716.


270. Avery, J.C.; Hoffmann, P.R. Selenium, Selenoproteins, and Immunity // Nutrients. - 2018. - Vol. 10. - P. 1203.


271. National Agricultural Library. Selenium. Available online: https://www.nal.usda.gov/ fnic/selenium (accessed on 10 May 2020).


272. National Agricultural Library. Food Composition. Available online: https://www.nal.usda.gov/fnic/foodcomposition (accessed on 10 May 2020).


273. Alwarith, J.; Kahleova, H.; Rembert, E.; Yonas,W.; Dort, S.; Calcagno, M.; Burgess, N.; Crosby, L.; Barnard, N.D. Nutrition Interventions in Rheumatoid Arthritis: The Potential Use of Plant-Based Diets. A Review // Front. Nutr. - 2019. - Vol. 6. - P. 141.


274. Kreps, D.J.; Halperin, F.; Desai, S.P.; Zhang, Z.Z.; Losina, E.; Olson, A.T.; Karlson, E.W.; Bermas, B.L.; Sparks, J.A. Association of weight loss with improved disease activity in patients with rheumatoid arthritis: A retrospective analysis using electronic medical record data // Int. J. Clin. Rheumatol. - 2018. - Vol. 13. - P. 1-10.


275. Petersson, S.; Philippou, E.; Rodomar, C.; Nikiphorou, E. The Mediterranean diet, fish oil supplements and Rheumatoid arthritis outcomes: Evidence from clinical trials // Autoimmun. Rev. - 2018. - Vol. 17. - P. 1105-1114.


276. Forsyth, C.; Kouvari, M.; D?Cunha, N.M.; Georgousopoulou, E.N.; Panagiotakos, D.B.; Mellor, D.; Kellett, J.; Naumovski, N. The effects of the Mediterranean diet on rheumatoid arthritis prevention and treatment: A systematic review of human prospective studies // Rheumatol. Int. - 2018. - Vol. 38. - P. 737-747.


277. Hafstrom, I.; Ringertz, B.; Spångberg, A.; Von Zweigbergk, L.; Brannemark, S.; Nylander, I.; Rönnelid, J.; Laasonen, L.; Klareskog, L. A vegan diet free of gluten improves the signs and symptoms of rheumatoid arthritis: The effects on arthritis correlate with a reduction in antibodies to food antigens // Rheumatology. - 2001. - Vol. 40. - P. 1175-1179.


278. Caja, S.; Mäki, M.; Kaukinen, K.; Lindfors, K. Antibodies in celiac disease: Implications beyond diagnostics // Cell. Mol. Immunol. - 2011. - Vol. 8. - P. 103-109.


279. Horta-Baas, G.; Romero-Figueroa, M.D.S.; Montiel-Jarquín, A.J.; et al. Intestinal Dysbiosis and Rheumatoid Arthritis: A Link between Gut Microbiota and the Pathogenesis of Rheumatoid Arthritis // J. Immunol. Res. - 2017. - Vol. 2017. - P. 4835189.


280. Badsha, H. Role of Diet in Influencing Rheumatoid Arthritis Disease Activity // Open Rheumatol. J. - 2018. - Vol. 12. - P. 19-28.


281. Li, J.; Gang, D.; Yu, X.; Hu, Y.; Yue, Y.; Cheng,W.; Pan, X.; Zhang, P. Genistein: The potential for efficacy in rheumatoid arthritis // Clin. Rheumatol. - 2013. - Vol. 32. - P. 535-540.


282. Jalili, M.; Kolahi, S.; Aref-Hosseini, S.-R.; Mamegani, M.E.; Hekmatdoost, A. Beneficial role of antioxidants on clinical outcomes and erythrocyte antioxidant parameters in rheumatoid arthritis patients // Int. J. Prev. Med. - 2014. - Vol. 5. - P. 835-840.


283. Longo, V.D.; Mattson, M.P. Fasting: Molecular mechanisms and clinical applications // Cell. Metab. - 2014. - Vol. 19. - P. 181-192.


284. Kim, S.; Kim, B.; Park, S.-K. Selenocysteine mimics the e_ect of dietary restriction on lifespan via SKN-1 and retards age-associated pathophysiological changes in Caenorhabditis elegans // Mol. Med. Rep. - 2018. - Vol. 18. - P. 5389-5398.





Свидетельство о регистрации сетевого электронного научного издания N 077 от 29.11.2006
Журнал основан 16 ноября 2000г.
Выдано Министерством РФ по делам печати, телерадиовещания и средств массовых коммуникаций
(c) Перепечатка материалов сайта Medline.Ru возможна только с письменного разрешения редакции

Размещение рекламы

Rambler's Top100