Медико-биологический
информационный портал
для специалистов
 
Medline.ru

СОДЕРЖАНИЕ ЖУРНАЛА:
Физико-химическая биология

Клиническая медицина

Профилактическая медицина

Медико-биологические науки


АРХИВ:

Фундаментальные исследования

Организация здравохраниения

История медицины и биологии



Последние публикации

Поиск публикаций

Articles

Архив :  2000 г.  2001 г.  2002 г. 
               2003 г.  2004 г.  2005 г. 
               2006 г.  2007 г.  2008 г. 
               2009 г.  2010 г.  2011 г. 
               2012 г.  2013 г.  2014 г. 
               2015 г.  2016 г.  2017 г. 
               2018 г.  2019 г.  2020 г.  2021 г.  2022 г.  2023 г. 

Редакционная информация:
        Опубликовать статью
        Наша статистика


 РЕДАКЦИЯ:
Главный редактор

Заместители главного редактора

Члены редколлегии
Специализированные редколлегии


 УЧРЕДИТЕЛИ:
Институт теоретической и экспериментальной биофизики Российской академии наук.

ООО "ИЦ КОМКОН".




Адрес редакции и реквизиты

199406, Санкт-Петербург, ул.Гаванская, д. 49, корп.2

ISSN 1999-6314

Российская поисковая система
Искать: 


«
Vol. 23, Art. 14 (pp. 217-229)    |    2022       
»

Increasing the bioavailability of biotechnology-derived pharmaceuticals and immunobiologicals using chitosan microspheres (literature review)
Ustinova T.M., Vengerovich N.G., Chalykh S.N., Gusak T.I.

State scientific-research test Institute of military medicine of Defense Ministry of the Russian Federation



Brief summary

Nanoencapsulation technology adoption moves to the forefront as one of the approaches to the therapeutic proteins/peptides and vaccines delivery. The advantages of this direction include controlled release, active pharmaceutical ingredients protection from enzymatic degradation and their localized retention. In addition, an inherent advantage is that the derivatization techniques in operation are easily scalable. The review presents developments in the field of peptides? and vaccines nanoencapsulation over the past 5-7 years in the world literature. Chitosan-based nano- and microparticles are considered as carriers for the peptide and vaccine delivery by oral administration, due to the following polymers distinctions: the ability to penetrate the mucous membranes, low toxicity, mucoadhesion, and tunable physical properties. Over the period, many studies have been conducted on improving the oral bioavailability of peptide drugs. The main disadvantage of oral administration of such drugs is supposed to be their rapid destruction in the gastrointestinal tract. One of the most common and avoiding significant economic costs for the chitosan nano- and microsphere preparation are electrospray or emulsion methods using various crosslinking agents. Due to the high efficiency of encapsulation in chitosan microparticles, being as from 80%, the polymer can be considered as a promising delivery agent capable of increasing the bioavailability of immunobiologicals and biotechnology-derived pharmaceuticals. The resulting particles allowed the peptides and vaccine protection from enzymatic degradation, and increased the mucous layer permeability. The studied vaccines provided high antigen-specific responses, and controlled release.


Key words

chitosan, vaccines, oral administration, delivery microparticle, peptide, nanoparticles, Immunobiological drug, biotech drug





(The article in PDF format. For preview need Adobe Acrobat Reader)



Open article in new window

Reference list

1. Mohammed MA, Syeba JTM, Vasan EK. An Overview of Chitosan Nanoparticles and its application in non-Parental Drug delivery. Pharmaceutical. 2017; Nov 20; 9(4): 53. doi: 10.3390/pharmaceutics9440053;


2. Aibani N, Rai R, Patel P, Guddihi G, Wasan EK. Chitosan Nanoparticles at the biological interface: implications for drug delivery. Pharmaceutics 2021; 13: 1686. doi.org/10.3390/pharmaceuticals 13101686;


3. Jhaveri J; Raichura Z, Khan T. Chitosan nanoparticles-insight into properties, functionalization and applications in drug delivery and theranostics. Molecules. 2021; 26: 272;


4. Yedi Herdiana, Nesrul Wathoni, Shaharum Shamsuddin, Muchtaridi Muchtaridi. Drug release study of the chitosan-based nanoparticles.Helion. 2022; 8 (1): e08674. doi.org/10.1016/j.helion.2021.e08674;


5. Lui S, Yang S, Ho P.C. Intranasal administration of carbamazepine-loaded carboxymethyl chitosan nanoparticles for drug delivery to the brain. Asian J. Pharm. Sci. 2018; 13(1): 72-81. doi: 10.1016/j.aips.2017.09.001;


6. Singh R, Lilland J.W Jr. Nanoparticle-based targeted drug delivery. Exp. Mol. Pathol. 2009; 86: 215-223;


7. Lucio D, Martinez-Oharriz M.C. Chitosan: strategies to increase and modulate drug release rate. In: Biological activities and application of marine polisaccharides. Intechopen; 2017. doi. Org/10.05772/65714;


8. Mohammed Shuaib Khan, Pranav J Shan, Priya B. Dubey, Jaimini K. Gandhi. Chapter: Intraoral and peroral drug delivery systems. In: In-vitro and in-vivo tools in drug delivery research for optimum clinical outcomes edition 1st. CRC press; 2018. 26 p;


9. Sonal Gupta, Arushi Jain, Mainak Chakraborty and et.al. Oral delivery of therapeutic proteins and peptides: a review on recent developments. Drug Deliv. 2013; 20 (6): 237-246. doi: 10.3109/10717544.2013.819611;


10. Alessandra T. Zizzari, Dimanthi Pliatsika, Flavio M. Gall. New perspective in oral peptide delivery. Drug Discovery Today. 2021; vol. 26, issue 4: 1097-1105. doi: org/10/1016/j.drudis. 2021.01.020;


11. Vela Ramirez JE, Sharpe LA, Peppas NA. Current state and challenges in developing oral vaccines. Adv Drug Deliv Rev. 2018; May 15; 114: 116-131;


12. Lycke N, Bemark M. Mucosal adjuvants and long-term memory development with special focus on CTA1-DD and other ADP-ribosylating toxins. Mucosal Immunol. 2010; 3: 556 566;


13. Renukuntla J.et al Approaches for enhancing oral bioavailability of peptides and proteins Int J Pharm. 2013; Apr 15; 447 (1-2): 75-93. doi: 10.1016/j.ijpharm.2013.02.030;


14. Wang J, Thorson L, Stokes RW, and et.al. Single mucosal, but not parenteral, immunization with recombinant adenoviral-based vaccine provides potent protection from pulmonary tuberculosis. J. Immunol. 2004. 173 (10): 6357-6365. doi: 10.4049/j.immunol. 173/10/6357;


15. MeHung KJ, Guarecuco R, Langer R, Jaklenec A. Single-injection vaccines: progress, challenges, and oppurtunities. J. Control. Release. 2015; Dec10, 2019: 596-609. doi: 10.1016/j.jconrel. 2015.07.029;


16. Correia-Pinto JF, Csaba N, Alonso MJ. Vaccine delivery carries: insights and future perspectives. INT.J.Pharm. 2013; 440: 27-38. doi:10.1016/j.ijpharm.2012.04.047;


17. Jain S, Sharma RK, Vyas SP. Chitosan nanoparticles encapsulated vesicular systems for oral immunization: preparation, in-vitro and in-vivo characterization. J. Pharm. Pharmacol. 2006; 58: 303-310. doi:10.1211/jpp.58.3.0003;


18. Biswas S, Chattopadhyay M, Sen KK, Saha MK. Development and Characterisation of alginate coated low molecular weight chitosan nanoparticles as new carries for oral vaccine delivery in mice. CarboHydr. Polym. 2015;121:403-410. doi:10.1016/j.carbpol.2014.12.044;


19. Berrada M., Chitin and Chitosan - Phisicochemical properties and industrial application/ Intechopen. 2021. doi.org/10/5772/intechopen.91553;


20. Wang W, Yu C, Zhang B and et. al. improved oral delivery of insulin by PLGA nanoparticles coated with 5β-cholanic conjugating glycol chitosan // Biomed Mater. 2021. 16 (6). doi:10/1088/1748-605X/ca2a8c;


21. Chen N, Li S, Zhy W and et. al. Self-assembly pH-sensitive chitosan/alginate coated polyelectrolite complexes for oral delivery of insulin// J. Microincapsul. 2019. 36(1). 96 107. doi:10.1080/02652048.2019.1604846;


22. Barbari GR, Dorkoosh FA, amini M and et. al. A novel nanoemulsion-based method to produce ultrasmall, water-dispersible nanoparticles from chitosan, surface modified with cell-penetratig peptide for oral delivery of proteins and peptides. // Int. J. Nanomedicine. 2017. 12. 3471-3483. doi:10.214/IJN.S116063;


23. Liu L, Yao W, Xie X, Gao J and et.al. pH-sensetive dual drug loaded Janus nanoparticles by oral delivery for multimodal analgesia/ J. Nanobiotechnology. 2021. 19(1). 235. doi:10.1186/s12951-021-00974-6;


24. Sedykina N, Kuskov A, Velonia K and et al. Modulation of Entrapment efficiency and in vitro release properties of BSA-loaded chitosan microparticles cross-linked with Citric acid as a potential protein-drug delivery system. // Materials (basel). 2020. 13(8). 1989. doi:10.33990/ma13081989;


25. Li Y, Wang X, Liu H and et.al. Fabrication of antimicrobial peptide-loaded PLGA/chitosan composite microspheres for long-acting bacterial resistance / Molecules. 2017. 22(10).1637. doi: 10.3390/molecules22101637;


26. Xu Y, Lu s, Liu Q and etal Preparation, intestinal segment stability, and mucoadhesion properties of novel thymopentin-loaded chitosan derivatives coated with poly(n-bytil)cyanoacrylate nanoparticles./ Int. J. nanomedicine. 2019. 14. 1659-1668. doi:10.2147/IJN.S194529;


27. Aquino RP, Auriemma G, Conte GM, and et al. Development of Chitosan/Mannitol Microparticles as Delivery System for the Oral Administration of a Spirulina Bioactive Peptide Extract. Molecules. 2020; Apr 29, 25(9): 2086. doi:10.3390/molecules25092086;


28.Moreno JAS, Panou DA, Stephansen K, and et al. Preparation and Characterization of an Oral Vaccine Formulation Using Electrosprayed Chitosan Microparticles. AAPS PharmSciTech. 2018; 19(8): 3770-3777. doi: 10.1208/s12249-018-1190-1;


29. Ling K, Wu H, Neish AS, Champion JA. Alginate/chitosan microparticles for gastric passage and intestinal release of therapeutic protein nanoparticles. J Control Release. 2019; Feb 10; 295: 174-186. doi:10.1016/j.jconrel.2018.123.017;


30. Bernkop-Schurch A. Scerbe-Saico. Synthesis and in vitro evalution of chitosan-EDTA-protease-inhibitor conjugates with might be useful in oral delivery of peptides and proteins. Pharm. Res. 1998; 15(2): 263-269. doi:10.1023/a:1011970703087;


31. Hassan A, Ikram A, Raza A and et al. Therapeutical potential of novel mastoparan-chitosan nanoconstructs against clinical MDR Acinetobacter baumanii: in silico, in vitro and in vivo studies.Int J Nanomedicine. 2021; 16: 3755-3773. doi:10.2147/j.JN.5296717;


32. Zainuddin S.Z., Hamid K.A. Chitosan-Based oral drug delivery system for peptide, protein and vaccine delivery. www.Intechopen.com. chapter 74871. doi:10.5772/intechopen.95771;


33. Onuigbo E, Iseghohimhen J, Chah K, Gyang M, Attama A. Chitosan/alginate microparticles for the oral delivery of fowl typhoid vaccine: Innate and acquired immunity. Vaccine. 2018; Aug 9;36(33): 4973-4978. doi:10.1016/j.vaccine.2018.05.087;


34. Renu S., Markazi A.D., Dhakal S. and et.al. Oral deliveradle mucoadgesive chitosan-salmonella subunit nanovaccine for layer chiken. Int J Nanomedicine. 2020; 15: 761-777 doi: 10.2147/IJN.S238445;


35. Acevedo-Vilanueva, K.Y., Lester B., Renu S. and et. al. Efficacy of chitosan-based nanoparticle vaccine administered to broiler birds challenged with Salmonella. PloS One. 2020; 15(2): 1-17. doi:10.1371/jairnal.pone.0231998;


36. Farris E, Brown DM, Ramer-Tait AE, Pannier AK. Chitosan-zein nano-in-microparticles capable of mediating in vivo transgene expression following oral delivery. J Control Release. 2017 Mar 10; 249: 150-161. doi:10.1016/j.jconrel.2017.01.035;


37. Ahmadivand S., Soltani M., Behdani M. and et al. Oral DNA vaccines based on CS-TPP nanoparticles and alginate microparticles confer high protection against infectious pancreatic necrosis virus (IPNV) infection in trout. Dev Comp Immunol. 2017; 74:178-189. doi:10.1016/j.dci.2017.05.004.





Свидетельство о регистрации сетевого электронного научного издания N 077 от 29.11.2006
Журнал основан 16 ноября 2000г.
Выдано Министерством РФ по делам печати, телерадиовещания и средств массовых коммуникаций
(c) Перепечатка материалов сайта Medline.Ru возможна только с письменного разрешения редакции

Размещение рекламы

Rambler's Top100