Медико-биологический
информационный портал
для специалистов
 
Medline.ru

СОДЕРЖАНИЕ ЖУРНАЛА:
Физико-химическая биология

Клиническая медицина

Профилактическая медицина

Медико-биологические науки


АРХИВ:

Фундаментальные исследования

Организация здравохраниения

История медицины и биологии



Последние публикации

Поиск публикаций

Articles

Архив :  2000 г.  2001 г.  2002 г. 
               2003 г.  2004 г.  2005 г. 
               2006 г.  2007 г.  2008 г. 
               2009 г.  2010 г.  2011 г. 
               2012 г.  2013 г.  2014 г. 
               2015 г.  2016 г.  2017 г. 
               2018 г.  2019 г.  2020 г.  2021 г.  2022 г.  2023 г. 

Редакционная информация:
        Опубликовать статью
        Наша статистика


 РЕДАКЦИЯ:
Главный редактор

Заместители главного редактора

Члены редколлегии
Специализированные редколлегии


 УЧРЕДИТЕЛИ:
Институт теоретической и экспериментальной биофизики Российской академии наук.

ООО "ИЦ КОМКОН".




Адрес редакции и реквизиты

199406, Санкт-Петербург, ул.Гаванская, д. 49, корп.2

ISSN 1999-6314

Российская поисковая система
Искать: 


«
Vol. 22, Art. 28 (pp. 404-425)    |    2021       
»

Comparative analysis of modifications of the conditioned passive avoidance reflex test on sensitivity of scopolamin-induced amnesia detection in rats
Konovalov A.V., Yudin M.A., Chepur S.V., Buzmakova A.L., Potapova A.V., Subbotina S.N.

Federal State Budgetary Institution "State Research Testing Institute of Military Medicine" of the Ministry of Defense of the Russian Federation

Federal State-Funded Educational Institution of Higher Professional Education North-Western State Medical University named after I.I. Mechnikov (NWSMU), Ministry of Health of the Russian Federation



Brief summary

Nowadays the treatment of Alzheimer's disease, accompanied by the progression of cognitive impairment, and the problem of sufficiency of its modeling in the experiment in the search for effective drugs represent unsolved medical, theoretical and practical problems. The choice of conditioned passive avoidance reflex (CPAR) amnesia model in preclinical studies can strongly influence the observed biological responses and integral indicators. In this regard, a more profound study of the issue of experimental modeling of amnesia can improve the quality and reliability of experimental results. The use of scopolamine for the induction of short-term and long-term memory impairments in rodents is widespread. The comparison of sensitivity of various modifications of passive avoidance reaction test, simulating anterograde and retrograde amnesia with intravenous administration of scopolamine in the dose range 0,5 - 20 mg/kg was made. With regard to short-term memory the most sensitive was the model of anterograde amnesia, which was induced by the administration of scopolamine for 30 min at doses exceeding 1 mg/kg. The sensitivity of this technique was confirmed by statistically significant changes in effective doses of the model drug, the proportion of animals with amnesia, and the average time spent in the light chamber. In relation to long-term memory the model of anterograde amnesia was also recognized as the most sensitive. Administration of scopolamine at doses 1 - 2,5 mg/kg 24 h following electric pain stimulation led to statistically significant differences in the mean time spent by rats in the light chamber. Among the models of retrograde amnesia modification of the passive avoidance reflex test with repeated reminder was more sensitive than modification without reminding. The minimum value of the dose of scopolamine, that caused statistically significant changes in test parameters, in the model with repeated reminder was 10 mg/kg, while when using the model without a reminder, the administration of a cholinergic antagonist at a dose of 20 mg/kg turned out to be effective.


Key words

Alzheimer's disease, scopolamine, retrograde amnesia, anterograde amnesia





(The article in PDF format. For preview need Adobe Acrobat Reader)



Open article in new window

Reference list

1. Soria Lopez J.A., González H.M., Léger G.C.; Alzheimer's disease. Handb Clin Neurol; 2019; 167: 231-255.


2. Brookmeyer R., Johnson E., Ziegler-Graham K., Arrighi H.M. Forecasting the global burden of Alzheimer's disease. Alzheimers Dement. 2007; 3 (3): 186-191.


3. Esquerda-Canals, G.; Montoliu-Gaya, L.; Güell-Bosch, J., Villegas, S. Mouse models of Alzheimer?s disease. J. Alzheimer?s Dis. 2017; 57: 1171-1183.


4. Lobzin S.V., Sokolova M.G., Nalkin S.A. Vliyanie disfynkcii holinergicheskoi sistemi golovnogo mozga na sostoyanie kognitivnih fynkcii (obzor literatyri). Vestn. Sev.-zap. gos. med. yn-ta. 2017; 9 (4): 53 58.


5. Tang K.S. The cellular and molecular processes associated with scopolamine-induced memory deficit: A model of Alzheimer's biomarkers. Life Sci. 2019; 15: 233.


6. Haam J., Yakel J.L. Cholinergic modulation of the hippocampal region and memory function J. Neurochem. 2017; 142 (2): 111 121.


7. Aitta-Aho T., Hay Y.A., Phillips B.U. Basal Forebrain and Brainstem Cholinergic Neurons Differentially Impact Amygdala Circuits and Learning-Related Behavior. Curr. Biol. 2018; 28 (16): 2557 2569.


8. Rykovodstvo po provedeniu doklinicheskih issledovanii lekarstvennih sredstv. Chast pervaya: Moskva: Grif i K; 2012.


9. Safar M.M., Arab H.H., Rizk S.M., El-Maraghy S.A. Bone marrow-derived endothelial progenitor cells protect against scopolamine-induced Alzheimer-like pathological aberrations. Mol. Neurobiol. 2016; 53: 1403-1418.


10. Zhang S.J., et al. Ethyl acetate extract components of Bushen-Yizhi formula provides neuroprotection against scopolamine-induced cognitive impairment. Sci. 2017; 7: 9824.


11. Puangmalai N., et al. Neuroprotection of N-benzylcinnamide on scopolamine-induced cholinergic dysfunction in human SH-SY5Y neuroblastoma cells. Neural Regen. 2017; 12: 1492-1498.


12. Fateev I.V., Sybbotina S.N., Kyrpyakova A.F., Tunin M.A. Izychenie vozmojnosti primeneniya stryktyrnogo analoga aminostigmina dlya lecheniya kognitivnih rasstroistv toksicheskogo geneza. Bulleten eksperimentalnoi biologii i medicini. 2013; 156 (9): 331-334.


13. Metodiki i osnovnie eksperimenti po izycheniu mozga i povedeniya: Moskva: «Visshaya shkola»; 1991.


14. Suárez-Pereira I., Canals S., Carrión A.M. Adult newborn neurons are involved in learning acquisition and long-term memory formation: the distinct demands on temporal neurogenesis of different cognitive tasks. Hippocampus. 2015; 25 (1): 51-61.


15. Llorca-Torralba M., Suárez-Pereira I., Bravo L., Camarena-Delgado C., Garcia-Partida J.A., Mico J.A., Berrocoso E. Chemogenetic Silencing of the Locus Coeruleus-Basolateral Amygdala Pathway Abolishes Pain-Induced Anxiety and Enhanced Aversive Learning in Rats. Biol Psychiatry. 2019; 85 (12): 1021-1035.


16. Klinkenberg I, Blokland A. The validity of scopolamine as a pharmacological model for cognitive impairment: a review of animal behavioral studies. Neurosci Biobehav. 2010; 34 (8): 1307-1350.


17. Galvin V.C., Arnsten A.F.T., Wang M. Involvement of Nicotinic Receptors in Working Memory Function. Curr Top Behav Neurosci. 2020; 45: 89-99.


18. Parikh V, Ji J, Decker MW, Sarter M. Prefrontal beta2 subunit-containing and alpha7 nicotinic acetylcholine receptors differentially control glutamatergic and cholinergic signaling. J Neurosci. 2010; 30 (9): 3518-3530.


19. Schmeller, T., Sporer, F., Sauerwein, M., Wink, M. Binding of tropane alkaloids to nicotinic and muscarinic acetylcholine receptors. Pharmazie. 1995; 50: 493-495.


20. Yang Y., Paspalas C.D., Jin L.E., Picciotto M.R., Arnsten A.F., Wang M. Nicotinic alpha7 receptors enhance NMDA cognitive circuits in dorsolateral prefrontal cortex. Proc Natl Acad Sci USA. 2013; 110 (29): 12078-12083.


21. Axmacher N. Rasch B. Cognitive neuroscience of memory consolidation: Switzerland: Springer, 2017.


22. Borodinova A.A, Zuzina A.B., Balaban P.M.; Rol atipichnih proteinkinaz v podderjanii dolgovremennoi pamyati i sinapticheskoi plastichnosti. Biohimiya. 2017; 82 (3): 372-388.


23. Polynina A.G., Brun E.A. Epizodicheskaya pamyat: nevrologicheskie i neiromediatornie mehanizmi; Annali klinicheskoi i eksperimentalnoi nevrologii; 2012; 6 (3): 53-60


24. Clark R.E., Martin S.J. Behavioral Neuroscience of Learning and Memory. Switzerland: Springer; 2018.


25. Bon E.I., Zimatkin S.M. Stroenie i razvitie gippokampa krisi. Jyrnal Grodnenskogo gosydarstvennogo medicinskogo yniversiteta. 2018; 16 (2): 132-138.


26. Buchanan K.A., Petrovic M.M., Chamberlain S.E-L., Marrion N.V., Mellor J.R. Facilitation of long-term potentiation by muscarinic M1 receptors is mediated by inhibition of SK channels. Neuron. 2010; 68: 948-963.


27. Catterall W.A., Wisedchaisri G., Zheng N. The chemical basis for electrical signaling. Nat. Chem. Biol. 2017; 13 (5): 455 463.


28. Cui E.D., Strowbridge B.W. Selective attenuation of Ether-a-go-go related K(+) currents by endogenous acetylcholine reduces spike-frequency adaptation and network correlation. Elife. 2019; 8: e44954.


29. Robinson L, Platt B, Riedel G. Involvement of the cholinergic system in conditioning and perceptual memory. Behav Brain Res. 2011; 221 (2): 443-465.


30. Nomura, Y., Nishiyama, N., Saito, H., Matsuki, N. Role of cholinergic neurotransmission in the amygdala on performances of passive avoidance learning in mice. Biological & Pharmaceutical Bulletin. 1994; 17: 490-494.





References


1. Soria Lopez J.A., González H.M., Léger G.C.; Alzheimer's disease. Handb Clin Neurol; 2019; 167: 231-255.


2. Brookmeyer R., Johnson E., Ziegler-Graham K., Arrighi H.M. Forecasting the global burden of Alzheimer's disease. Alzheimers Dement. 2007; 3 (3): 186-191.


3. Esquerda-Canals, G.; Montoliu-Gaya, L.; Güell-Bosch, J., Villegas, S. Mouse models of Alzheimer?s disease. J. Alzheimer?s Dis. 2017; 57: 1171-1183.


4. Lobzin S.V., Sokolova M.G., Nal'kin S.A. Influence of dysfunction of the cholinergic system of the brain on the state of cognitive functions (literature review). Vestn. Sev.-zap. gos. med. un-ta. 2017; 9 (4): 53 58.


5.Tang K.S. The cellular and molecular processes associated with scopolamine-induced memory deficit: A model of Alzheimer's biomarkers. Life Sci. 2019; 15: 233.


6. Haam J., Yakel J.L. Cholinergic modulation of the hippocampal region and memory function J. Neurochem. 2017; 142 (2): 111 121.


7. Aitta-Aho T., Hay Y.A., Phillips B.U. Basal Forebrain and Brainstem Cholinergic Neurons Differentially Impact Amygdala Circuits and Learning-Related Behavior. Curr. Biol. 2018; 28 (16): 2557 2569.


8. Part one: Moskva: Grif i K; 2012.9. Safar M.M., Arab H.H., Rizk S.M., El-Maraghy S.A. Bone marrow-derived endothelial progenitor cells protect against scopolamine-induced Alzheimer-like pathological aberrations. Mol. Neurobiol. 2016; 53: 1403-1418.


10. Zhang S.J., et al. Ethyl acetate extract components of Bushen-Yizhi formula provides neuroprotection against scopolamine-induced cognitive impairment. Sci. 2017; 7: 9824.


11. Puangmalai N., et al. Neuroprotection of N-benzylcinnamide on scopolamine-induced cholinergic dysfunction in human SH-SY5Y neuroblastoma cells. Neural Regen. 2017; 12: 1492-1498.


12. Fateyev I.V., Subbotina S.N., Kurpyakova A.F., Tyunin M.A. Study of the possibility of using a structural analogue of aminostigmine for the treatment of cognitive disorders of toxic genesisa. Byulleten' eksperimental'noy biologii i meditsiny. 2013; 156 (9): 331-334.


13. Methods and basic experiments for studying the brain and behavior: Moskva: «Vysshaya shkola»; 1991.


14. Suárez-Pereira I., Canals S., Carrión A.M. Adult newborn neurons are involved in learning acquisition and long-term memory formation: the distinct demands on temporal neurogenesis of different cognitive tasks. Hippocampus. 2015; 25 (1): 51-61.


15. Llorca-Torralba M., Suárez-Pereira I., Bravo L., Camarena-Delgado C., Garcia-Partida J.A., Mico J.A., Berrocoso E. Chemogenetic Silencing of the Locus Coeruleus-Basolateral Amygdala Pathway Abolishes Pain-Induced Anxiety and Enhanced Aversive Learning in Rats. Biol Psychiatry. 2019; 85 (12): 1021-1035.


16. Klinkenberg I, Blokland A. The validity of scopolamine as a pharmacological model for cognitive impairment: a review of animal behavioral studies. Neurosci Biobehav. 2010; 34 (8): 1307-1350.


17. Galvin V.C., Arnsten A.F.T., Wang M. Involvement of Nicotinic Receptors in Working Memory Function. Curr Top Behav Neurosci. 2020; 45: 89-99.


18. Parikh V, Ji J, Decker MW, Sarter M. Prefrontal beta2 subunit-containing and alpha7 nicotinic acetylcholine receptors differentially control glutamatergic and cholinergic signaling. J Neurosci. 2010; 30 (9): 3518-3530.


19. Schmeller, T., Sporer, F., Sauerwein, M., Wink, M. Binding of tropane alkaloids to nicotinic and muscarinic acetylcholine receptors. Pharmazie. 1995; 50: 493-495.


20. Yang Y., Paspalas C.D., Jin L.E., Picciotto M.R., Arnsten A.F., Wang M. Nicotinic alpha7 receptors enhance NMDA cognitive circuits in dorsolateral prefrontal cortex. Proc Natl Acad Sci USA. 2013; 110 (29): 12078-12083.


21. Axmacher N. Rasch B. Cognitive neuroscience of memory consolidation: Switzerland: Springer, 2017.


22. Borodinova A.A, Zyuzina A.B., Balaban P.M.; The role of atypical protein kinases in maintaining long-term memory and synaptic plasticity. Biokhimiya. 2017; 82 (3): 372-388.2017; 82 (3): 372-388.


23. Polunina A.G., Bryun Ye.A. Episodic memory: neurological and neurotransmitter mechanisms..Annaly klinicheskoy i eksperimental'noy nevrologii; 2012; 6 (3): 53-60


24. Clark R.E., Martin S.J. Behavioral Neuroscience of Learning and Memory. Switzerland: Springer; 2018.


25. Bon' E.I., Zimatkin S.M. The structure and development of the rat hippocampus. Zhurnal Grodnenskogo gosudarstvennogo meditsinskogo universiteta 2018; 16 (2): 132-138.


26. Buchanan K.A., Petrovic M.M., Chamberlain S.E-L., Marrion N.V., Mellor J.R. Facilitation of long-term potentiation by muscarinic M1 receptors is mediated by inhibition of SK channels. Neuron. 2010; 68: 948-963.


27. Catterall W.A., Wisedchaisri G., Zheng N. The chemical basis for electrical signaling. Nat. Chem. Biol. 2017; 13 (5): 455 463.


28. Cui E.D., Strowbridge B.W. Selective attenuation of Ether-a-go-go related K(+) currents by endogenous acetylcholine reduces spike-frequency adaptation and network correlation. Elife. 2019; 8: e44954.


29. Robinson L, Platt B, Riedel G. Involvement of the cholinergic system in conditioning and perceptual memory. Behav Brain Res. 2011; 221 (2): 443-465.


30. Nomura, Y., Nishiyama, N., Saito, H., Matsuki, N. Role of cholinergic neurotransmission in the amygdala on performances of passive avoidance learning in mice. Biological & Pharmaceutical Bulletin. 1994; 17: 490-494.





Свидетельство о регистрации сетевого электронного научного издания N 077 от 29.11.2006
Журнал основан 16 ноября 2000г.
Выдано Министерством РФ по делам печати, телерадиовещания и средств массовых коммуникаций
(c) Перепечатка материалов сайта Medline.Ru возможна только с письменного разрешения редакции

Размещение рекламы

Rambler's Top100