Медико-биологический
информационный портал
для специалистов
 
БИОМЕДИЦИНСКИЙ ЖУРНАЛ Medline.ru

СОДЕРЖАНИЕ ЖУРНАЛА:
Физико-химическая биология

Клиническая медицина

Профилактическая медицина

Медико-биологические науки


АРХИВ:

Фундаментальные исследования

Организация здравохраниения

История медицины и биологии



Последние публикации

Поиск публикаций

Articles

Архив :  2000 г.  2001 г.  2002 г. 
               2003 г.  2004 г.  2005 г. 
               2006 г.  2007 г.  2008 г. 
               2009 г.  2010 г.  2011 г. 
               2012 г.  2013 г.  2014 г. 
               2015 г.  2016 г.  2017 г. 
               2018 г.  2019 г.  2020 г.  2021 г. 

Редакционная информация:
        Опубликовать статью
        Наша статистика


 РЕДАКЦИЯ:
Главный редактор

Заместители главного редактора

Члены редколлегии
Специализированные редколлегии


 УЧРЕДИТЕЛИ:
Федеральное государственное бюджетное учреждение науки
"Институт токсикологии Федерального медико-биологического агентства"
(ФГБУН ИТ ФМБА России)

Институт теоретической и экспериментальной биофизики Российской академии наук.

ООО "ИЦ КОМКОН".




Адрес редакции и реквизиты

199406, Санкт-Петербург, ул.Гаванская, д. 49, корп.2

ISSN 1999-6314

Российская поисковая система
Искать: 


«
Vol. 22, Art. 23 (pp. 328-343)    |    2021       
»

Classification of epidemiological forecasts and application of gradient boosting in preventive medicine
Federal Government State Establishment Main Center for State Sanitary and Epidemiological Surveillance (Special Purpose) of The Russian Federation Defense Ministry
Federal State Budjet Institution Saint_Peterburg Scientific-Research Institute for physical culture



Brief summary

The article proposes a new justified classification of epidemiological forecasts of acute respiratory infections. An overview of machine learning methods is presented. Examples of the use of the gradient boosting method in the field of clinical medicine for the purpose of predicting somatic morbidity are shown. The relevance of the use of gradient boosting in predicting the incidence of infectious diseases and respiratory diseases is highlighted. The development and implementation of the forecast of acute respiratory infections in organized teams of the Armed Forces of the Russian Federation with a preliminary definition of predictors is proposed.


Key words

machine learning, gradient boosting, retrospective epidemiological analysis, orecasting, prognosis of morbidity, acute respiratory infection, organized collectives, and the Armed Forces of the Russian Federation.





(The article in PDF format. For preview need Adobe Acrobat Reader)



Open article in new window

Reference list

1. Abramovich, M.S. Primenenie ansamblei derevev reshenii dlya prognozirovaniya effektivnosti lecheniya hronicheskoi serdechnoi nedostatochnosti / M.S. Abramovich, E.C. Atroshenko, D.V. Romanovskii, O.V. Koshlataya // Materiali mejdynarodnogo kongressa po informatike: informacionnie sistemi i tehnologii Minsk, 24-27 oktyabrya 2016 goda. Izdatelstvo: Belorysskii gosydarstvennii yniversitet, Minsk. 2016. S. 406-410.


2. Bochkarev, B.V. Issledovanie primenimosti metodov mashinnogo obycheniya na osnove reshaushih derevev dlya analiza elektrokardiosignalov / B.V. Bochkarev, A.A. Rakitskii // Trydi XVII Mejdynarodnoi konferencii DICR-2019, Novosibirsk, 3-6 dekabrya 2019 g. Novosibirsk 2019. S.42-47.


3. Vetrov, D.P. Baiesovskie metodi mashinnogo obycheniya: ychebnoe posobie po speckyrsy / D.P. Vetrov, D.A. Kropotov. - 2007.


4. Golybkov, A.V. Primenenie iskysstvennih neironnih setei v profilakticheskoi i klinicheskoi medicine (naychnii obzor) / A.V. Golybkov, M.P. Gavrilova // Profilakticheskaya i klinicheskaya medicina. 2020. 4 (77). S. 30-39. DOI: 10.47843/2074-9120_2020_4_30.


5. Gorshenin, A.K. Gibridnie modeli ekstremalnogo gradientnogo bystinga dlya vosstanovleniya propyshennih znachenii v dannih ob osadkah / A.K. Gorshenin, O.P. Martinov // Inform. i ee primen. 2019, T. 13. Vip. 3. S. 34-40. DOI: 10.14357/19922264190306


6. Demografiya v Rossii: Sbornik Federalnoi slyjbi gosydarstvennoi statistiki. https://rosstat.gov.ru/folder/12781/ (data obrasheniya: 09.03.2021)


7. Evdokimov, V.I. analiz pervichnoi zabolevaemosti voennoslyjashih po prizivy voenno-morskogo flota i syhopytnih voisk Rossii za poslednie 10 let (2010-2019 gg.) /V.I. Evdokimov, P.P. Sivashenko // Morskaya medicina. 2020. T. 6. 4. S. 63-72. DOI: 10.22328/2413-5747-2020-6-4-63-72.


8. Zdravoohranenie v Rossii - 2011 g. - URL: https://rosstat.gov.ru/bgd/regl/B11_34/Main.htm/ (data obrasheniya: 15.04.2021)


9. Zdravoohranenie v Rossii - 2013 g. - URL: https://rosstat.gov.ru/bgd/regl/B13_34/Main.htm/ (data obrasheniya: 15.04.2021)


10. Zdravoohranenie v Rossii - 2015 g. - URL: https://rosstat.gov.ru/bgd/regl/B15_34/Main.htm/ (data obrasheniya: 15.04.2021)


11. Zdravoohranenie v Rossii - 2017 g. - URL: https://rosstat.gov.ru/bgd/regl/B17_34/Main.htm/ (data obrasheniya: 15.04.2021)


12. Zdravoohranenie v Rossii - 2019 g. - URL: https://rosstat.gov.ru/bgd/regl/b19_34/Main.htm/ (data obrasheniya: 15.04.2021)


13. Zdravoohranenie v Rossii: Sbornik Federalnoi slyjbi gosydarstvennoi statistiki. https://rosstat.gov.ru/folder/210/document/13218/ (data obrasheniya: 09.03.2021)


14. Ilyasov, E.S. Primenenie modeli gradientnogo bystinga dlya prognozirovaniya razvitiya diabeta/ E.S. Ilyasov // Molodoi ychenii. 2016. 27. S. 1-5. - URL: https://moluch.ru/archive/131/36581/ (data obrasheniya: 20.03.2021)


15. Kitova, O.V. Metod mashin opornih vektorov dlya prognozirovaniya pokazatelei investicii / O.V. Kitova, I.B. Kolmakov, I.A. Penkov // Ekonomika, Statistika i Informatika. - 2016. - 4. - S. 27-30.


16. Kondratev, M.A. Metodi prognozirovaniya i modeli rasprostraneniya zabolevanii. / M.A. Kondratev. // Komputernie issledovaniya i modelirovanie. 2013. T. 5. 5. S. 863-882.


17. Melnichenko, P.I. Retrospektivnii epidemiologicheskii analiz i prognozirovanie zabolevaemosti lichnogo sostava Vooryjennih sil Rossiiskoi Federacii: metod. ykazaniya / P.I. Melnichenko [i dr.]. M.: Voenizdat, 2006. 143 s.


18. Nastavlenie po Globalnoi sisteme obrabotki dannih i prognozirovaniya. Dopolnenie IV k Tehnicheskomy reglamenty VMO. VMO- 485. Jeneva, Shveĭcariya. 2017. 123 s.


19. O sostoyanii sanitarno-epidemiologicheskogo blagopolychiya naseleniya v Rossiiskoi Federacii v 2012 gody: Gosydarstvennii doklad. M.: Federalnaya slyjba po nadzory v sfere zashiti prav potrebitelei i blagopolychiya cheloveka, 2013. 176 s. - URL: https://www.rospotrebnadzor.ru/upload/iblock/7cd/gosudarstvennyy-doklad-o-sostoyanii-sanitarno_epidemiologicheskogo-blagopoluchiya-naseleniya-v-rossiyskoy-federatsii-v-2012-godu.pdf/ (data obrasheniya: 15.04.2021)


20. O sostoyanii sanitarno-epidemiologicheskogo blagopolychiya naseleniya v Rossiiskoi Federacii v 2013 gody: Gosydarstvennii doklad. M.: Federalnaya slyjba po nadzory v sfere zashiti prav potrebitelei i blagopolychiya cheloveka, 2014. 191 s. - URL: https://www.rospotrebnadzor.ru/upload/iblock/3b8/gd_2013_dlya-sayta.pdf/ (data obrasheniya: 15.04.2021)


21. O sostoyanii sanitarno-epidemiologicheskogo blagopolychiya naseleniya v Rossiiskoi Federacii v 2014 gody: Gosydarstvennii doklad. M.: Federalnaya slyjba po nadzory v sfere zashiti prav potrebitelei i blagopolychiya cheloveka, 2015. 206 s. - URL: https://www.rospotrebnadzor.ru/upload/iblock/22c/gd_2014_seb_dlya-sayta.pdf/ (data obrasheniya: 15.04.2021)


22. O sostoyanii sanitarno-epidemiologicheskogo blagopolychiya naseleniya v Rossiiskoi Federacii v 2015 gody: Gosydarstvennii doklad. ? M.: Federalnaya slyjba po nadzory v sfere zashiti prav potrebitelei i blagopolychiya cheloveka, 2016. 200 s. - URL: https://www.rospotrebnadzor.ru/upload/iblock/486/gd_2015_ds.pdf/ (data obrasheniya: 15.04.2021)


23. O sostoyanii sanitarno-epidemiologicheskogo blagopolychiya naseleniya v Rossiiskoi Federacii v 2016 gody: Gosydarstvennii doklad. M.: Federalnaya slyjba po nadzory v sfere zashiti prav potrebitelei i blagopolychiya cheloveka, 2017. 220 s. - URL: https://www.rospotrebnadzor.ru/upload/iblock/0b3/gosudarstvennyy-doklad-2016.pdf/ (data obrasheniya: 15.04.2021)


24. O sostoyanii sanitarno-epidemiologicheskogo blagopolychiya naseleniya v Rossiiskoi Federacii v 2017 gody: Gosydarstvennii doklad. M.: Federalnaya slyjba po nadzory v sfere zashiti prav potrebitelei i blagopolychiya cheloveka, 2018. 268 s. - URL: https://www.rospotrebnadzor.ru/upload/iblock/d9d/gd_2017_seb.pdf/ (data obrasheniya: 15.04.2021)


25. O sostoyanii sanitarno-epidemiologicheskogo blagopolychiya naseleniya v Rossiiskoi Federacii v 2018 gody: Gosydarstvennii doklad. M.: Federalnaya slyjba po nadzory v sfere zashiti prav potrebitelei i blagopolychiya cheloveka, 2019. 254 s. - URL: https://www.rospotrebnadzor.ru/upload/iblock/798/gosudarstvennyy-doklad-o-sostoyanii-sanitarno_epidemiologicheskogo-blagopoluchiya-naseleniya-v-rossiyskoy-federatsii-v-2018-godu.pdf/ (data obrasheniya: 15.04.2021)


26. Prognozirovanie zabolevaemosti gemorragicheskoi lihoradkoi s pochechnim sindromom (Pyymala) s ispolzovaniem statitsticheskih metodov: ycheb.-metod. posobie dlya prakt. zanyatii / U.L. Minaev, V.G. Morozov, S.I. Kolominov, G.D. Korobov; NOY VPO SMI «REAVIZ» Samara: NOY VPO SMI «REAVIZ», 2011. 44 s.


27. Prognostika: terminologiya / Akad. nayk SSSR, Kom. naych.-tehn. terminologii; otv. red. V. I. Siforov. - Moskva: Nayka, 1990. 2019 54 s. - ISBN 5-02-006645-1.


28. RD 52.27.724-2019. Nastavlenie po kratkosrochnim prognozam pogodi obshego naznacheniya: data vvedeniya 2019-06-25 / Federalnaya slyjba po gidrometeorologii i monitoringy okryjaushei sredi. Izd. Oficialnoe. - Moskva: FGBY «Gidrometcentr Rossii», 2019. 66 s.


29. Salahytdinova, K.I. Algoritm gradientnogo bystinga derevev resheniĭ v zadache identifikacii programmnogo obespecheniya / K.I. Salahytdinova, I.S. Lebedev, I.E. Krivcova // Naychno-tehnicheskii vestnik informacionnih tehnologii, mehaniki i optiki. 2018. T. 18. 6. S. 1016-1022. DOI: 10.17586/2226-1494-2018-18-6-1016-1022.


30. Sahibgareeva, M.V. razrabotka sistemi prognozirovaniya diagnozov zabolevanii na osnove iskysstvennogo intellekta / M.V. Sahibgareeva , A.U. Zaozerskii // Vestnik RGMY. 2017. 6. S.


31. Slobodenuk, A.V. Epidemiologicheskii analiz: ycheb. posobie / A.V. Slobodenuk, A.A. Kosova, R.N. An; GBOY VPO YGMY. - Ekaterinbyrg: izd-vo GBOY VPO YGMY, 2015. - 36 s.


32. Socialno-ekonomicheskoe polojenie Rossii. Yanvar 2020 (1): Sbornik Federalnoi slyjbi gosydarstvennoi statistiki. - URL: https://rosstat.gov.ru/storage/mediabank/osn-01-2020.pdf/ (data obrasheniya: 24.04.2021)


33. Tysaeva, A.R. Primenenie korrelyacionno-regressionnogo metoda v ocenke yrovnya zabolevaemosti Kyrskoi oblasti. / A.R. Tysaeva, A.V. Gavrilova. // Molodoi ychenii. 2017. 4 (138). S. 541-544. URL: https://moluch.ru/archive/138/38666/ (data obrasheniya: 02.05.2021).


34. Frolov, A.I. Analiz algoritma gradientnogo bystinga dlya celei prognozirovaniya / A.I. Frolov // Almanah naychnih rabot molodih ychenih Yniversiteta ITMO. XLVIII naychnaya i ychebno-metodicheskaya konferenciya Yniversiteta ITMO / Izdatelstvo: FGAOY VO «Nacionalnii issledovatelskii yniversitet ITMO» Sankt-Peterbyrg, 2019. S. 285-288.


35. Shylgin, S.G. Otbor peremennih dlya analiza i prognozirovaniya nestabilnosti s pomoshu modelei gradientnogo bystinga / S.G. Shylgin // Sistemnii monitoring globalnih i regionalnih riskov. Socialno-politicheskaya i ekonomicheskaya destabilizaciya: analiz stranovih i regionalnih sityacii v mir-sistemnom aspekte / Izdatelstvo «Ychitel» Volgograd, 2018. T. 9. S. 115?153.


36. Yanchevskaya, E.U. Matematicheskoe modelirovanie i prognozirovanie v epidemiologii infekcionnih zabolevaniĭ / E.U. Yanchevskaya, O.A. Mesnyankina // Vestnik Rossiiskogo yniversiteta dryjbi narodov. Seriya: Medicina. 2019. T. 23. 3 S. 328-334. DOI: 10.22363/2313-0245-2019-23-3-328-334.


37. Aler R., Galvan I. M., Ruiz-Arias J. A., Gueymard C. A. Improving the separation of direct and diffuse solar ra- diation components using machine learning by gradient boosting // Sol. Energy, 2017. Vol. 150. P. 558-569.


38. Blaser R., Fryzlewicz P. Random Rotation Ensembles // Journal of Machine Learning Research 17 / 2016. c. 1-26.


39. Chatzis, S.P., Siakoulis V., Petropoulos A., Stavroulakis E., Vlachogiannakis N. Forecasting stock market crisis events using deep and statistical machine learning techniques // Expert Syst. Appl., 2018. Vol. 112. P. 353-371.


40. Chen, T., and Guestrin, C. (2016). «XgBoost: A Scalable Tree Boosting System» in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 785-794. doi: 10.1145/2939672.2939785


41. Friedman, J.H. Greedy function approximation: a gradient boosting machine. The Annals of Statistics 2001; 29(5): 1189-1232 URL: https://doi.org/10.1214/aos/1013203451/ (data obrasheniya: 15.03.2021)


42. Harrell FE. Regression modeling strategies: With applications to linear models, logistic regression, and survival analysis. Springer, New York; 2001


43. Henzel, J. Gradient Boosting Application in Forecasting of Performance Indicators Values for Measuring the Efficiency of Promotions in FMCG Retail / J. Henzel, M. Sikora // arXiv:2006.04945v1 [cs.CY] 30 May 2020


44. Hosmer, D.W., Lemeshow, S. Applied Logistic Regression. New York:Wiley 1989.


45. Mustapha, I. B., and F. Saeed. Bioactive molecule prediction using extreme gradient boosting. Molecules 2016. 21(8):983.


46. Natekin A., Knoll A. Gradient boosting machines, a tutorial. Front Neurorobot 2013; 7: 21, https://doi.org/10.3389/ fnbot.2013.00021.


47. Paulo Celio Di Cellio Dias, Melissa Forti, Marc Witarsa // A comparison of Gradient Boosting with Logistic Regression in Practical Cases. - URL: https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-proceedings/2018/1857-2018.pdf/ (data obrasheniya: 19.04.2021)


48. Prokhorenkova, L., Gusev G., Vorobev A., Dorogush A.V., Gulin A. CatBoost: Unbiased boosting with categorical features. 2018. Adv. Neur. In. 31:6638-6648


49. Shalev-Shwartz S, Ben-David S. Understanding Machine Learning: From Theory to Algorithms. New York: Cambridge University Press; 2014. 410 p.


50. Hastie, T., Tibshirani R., Friedman J. The Elements of Statistical Learning: Prediction, Inference and Data Mining (Second Edition). Springer Verlag, New York, 2009.


51. Torres-Barran, A., Alonso A., Dorronsoro J. R. Regression tree ensembles for wind energy and solar radiation predic- tion // Neurocomputing, 2018. Vol. 326. P. 151-160.


52. Xia, Y., Liu C., Li Y., Liu N. A boosted decision tree approach using Bayesian hyper-parameter optimization for credit scoring // Expert Syst. Appl., 2017. Vol. 78. P. 225-241.


53. Zhang, D. A data-driven design for fault detection of wind turbines using random forests and XGboost / D. Zhang [et al.] // IEEE Access, 2018. Vol. 6. P. 21020-21031.


54. Zhang, Z. Predictive analytics with gradient boosting in clinical medicine / Z. Zhang [et al.] // Ann Transl Med 2019;7(7):152. doi: 10.21037/atm.2019.03.29.





Свидетельство о регистрации сетевого электронного научного издания N 077 от 29.11.2006
Журнал основан 16 ноября 2000г.
Выдано Министерством РФ по делам печати, телерадиовещания и средств массовых коммуникаций
(c) Перепечатка материалов сайта Medline.Ru возможна только с письменного разрешения редакции

Размещение рекламы

Rambler's Top100