БИОМЕДИЦИНСКИЙ ЖУРНАЛ МЕДЛАЙН.РУ
Содержание журнала

Архив

Редакция
Учредители

Федеральное государственное бюджетное учреждение «Научно-клинический центр токсикологии имени академика С.Н. Голикова Федерального медико-биологического агентства»


Федеральное государственное бюджетное учреждение науки
Институт теоретической и экспериментальной биофизики
Российской академии наук


ООО "ИЦ КОМКОН"

Адрес редакции и реквизиты

199406, Санкт-Петербург, ул.Гаванская, д. 49, корп.2

ISSN 1999-6314


Фундаментальные исследования • Экспериментальная токсикология

Том: 22
Статья: « 19 »
Страницы:. 271-292
Опубликована в журнале: 2 апреля 2021 г.

English version

Молекулярные аспекты цитотоксичности рицина

Чепур С.В., Аль-Шехадат Р.И., Гоголевский А.С., Пугач В.А.,
Мясников В.А., Анисенкова Е.В., Левчук Е.В., Тюнин М.А.

ФГБУ Государственный научно-исследовательский
испытательный институт военной медицины

OOO Иннова плюс


Резюме
На примере рицина охарактеризованы особенности токсичности рибосом-инактивирующих белков, сопряженные с их прямой пространственно ориентированной РНК-N-гликозидазной активностью, определяющей депуринизацию сарцин-рициновой петли и блокирование гидролиза гуанозинтрифосфата с последующим нарушением трансляции в синтезе белка. Эндоцитоз рицина и его транспорт через комплекс Гольджи определяет значимые конформации молекулы токсина, необходимые для ее выхода в активной форме в цитозоль и связывания с рибосомальными структурами. Полное или частичное ингибирование рицином функции рибосом активирует каскад провоспалительных реакций посредством индукции сигнальных путей транскрипционного фактора NF-κВ и митоген-активируемых протеинкиназ. Воздействие рицина на Толл-подобные рецепторы опосредует продукцию цитокинов, стимулируя воспалительные реакции. Прослежено, что цитотоксическое действие рицина сопряжено также с индукцией митохондрий-опосредованного апоптоза. Благодаря цитотоксическому действию рицин может быть использован для разработки новых лекарственных препаратов для лечения онкологических и аутоиммунных заболеваний. Вместе с тем, в качестве кандидатных средств, ограничивающих его токсическое действие, рассматривают блокаторы ретроградного транспорта, средства, блокирующие транспорт рицина в клетке, противовоспалительные препараты различной природы и ряд антибактериальных средств.


Ключевые слова
рицин, рибосомы, сарцин-рициновая петля, апоптоз, индукция воспаления



(статья в формате PDF. Для просмотра необходим Adobe Acrobat Reader)



открыть статью в новом окне

Список литературы

1. Polito L., Bortolotti M., Battelli M.G., Calafato G., Bolognesi A. Ricin: an ancient story for a timeless plant toxin // Toxins. 2019. Vol. 11. P. 324. doi: 10.3390/toxins11060324.


2. Lukey B.J. Chemical warfare agents: pharmacology, toxicology and therapeutics, 2007. 567 p.


3. Bolognesi A., Bortolotti M., Maiello S., Battelli M.G., Polito L. Ribosome-inactivating proteins from plants: a historical overview // Molecules. 2016. Vol. 21. P. 1627.


4. Olsnes S., Pihl A. Inhibition of peptide chain elongation // Nature. 1972. Vol. 238. P. 459-461. doi: 10.1038/238459a0.


5. Funatsu G., Yoshitake S., Funatsu M. Primary structure of Ile chain of ricin D // Agric. Biol. Chem. 1978. Vol. 42. P. 501-503. doi: 10.1080/00021369.1978.10863009.


6. Endo Y., Tsurugi K. RNA N-glycosidase activity of ricin A-chain. Mechanism of action of the toxic lectin ricin on eukaryotic ribosomes // J. Biol. Chem. 1987. Vol. 262. P. 8128-8130.


7. Katzin B.J., Collins E.J., Robertus J.D. Structure of ricin A-chain at 2,5 A // Proteins 1991. Vol. 10. P. 251-259.


8. Montfort W., Villafranca J.E., Monzingo A.F., Ernst S.R., Katzin B. The three-dimensional structure of ricin at 2.8 A // J. of Biol. Chem. 1987. Vol. 262. P. 5398-5403.


9. Rutenber E., Ready M., Robertus J.D. Structure and evolution of ricin B chain // Nature. 1987. Vol. 326. P. 624-626. doi: 10.1038/326624a0.


10. Zentz C., Frenoy J.P., Bourrillon R. Binding of galactose and lactose to ricin. Equilibrium studies // Biochim. Biophys. Acta. 1978. Vol. 536. P. 18-26. doi: 10.1016/0005-2795(78)90047-8.


11. Connor S.J., Paraskevopoulos N., Newman R., Cuan N., Hampartzoumian T., Lloyd A.R., Grimm M.C. CCR2 expressing CD4+ T lymphocytes are preferentially recruited to the ileum in Crohn?s disease // Gut. 2004. Vol. 53. P. 1287-1294. doi: 10.1136/gut.2003.028225.


12. Sowa-Rogozińska N., Sominka H., Nowakowska-Gołacka J., Sandvig K., Słomińska-Wojewódzka M. Intracellular transport and cytotoxicity of the protein toxin Ricin // Toxins (Basel). 2019. Vol. 18. P. E350. doi: 10.3390/toxins11060350.


13. Olsnes S., Refsnes K., Pihl A. Mechanism of action of the toxic lectins abrin and ricin // Nature. 1974. Vol. 249. P. 627-631. doi: 10.1038/249627a0.


14. Simmons B.M., Stahl P.D., Russell J.H. Mannose receptor-mediated uptake of ricin toxin and ricin A chain by macrophages. Multiple intracellular pathways for a chain translocation // J. Biol. Chem. 1986. Vol. 261. P. 7912-7920.


15. Magnusson S., Kjeken R., Berg T. Characterization of two distinct pathways of endocytosis of ricin by rat liver endothelial cells // Exp. Cell Res. 1993. Vol. 205. P. 118-125. doi: 10.1006/excr.1993.1065.


16. Whitfield S.J.C., Griffiths G.D., Jenner D.C., Gwyther R.J., Stahl F.M., Cork L.J., Holley J.L., Green A.C., Clark G.C. Production, characterisation and testing of an ovine antitoxin against ricin; efficacy, potency and mechanisms of action // Toxins. 2017. Vol. 9. P. 329. doi: 10.3390/toxins9100329


17. Sandvig K., Olsnes S., Pihl A. Kinetics of binding of the toxic lectins abrin and ricin to surface receptors of human cells // J. Biol. Chem. 1976. Vol. 74. P. 85-99.


18. Olsnes S. Abrin and ricin structure and mechanism of action of two toxic lectins // Bull. de lInst. Paster. 1976. Vol. 74. P. 85-99.


19. Audi J., Belson M., Patel M., Schier J., Osterloh J. Ricin poisoning a comprehensive review // JAMA. 2005. Vol. 294. P. 2342-2351. doi: 10.1001/jama.294.18.2342.


20. Roy C.J., Song K., Sivasubramani S.K., Gardner D.J., Pincus S.H. Animal models of ricin toxicosis // Curr. Top. Microbiol. Immunol. 2012. Vol. 357. P. 243-257. doi: 10.1007/82_2011_173.


21. He X., Carter J.M., Brandon D.L., Cheng L.W., McKeon T.A. Application of a real time polymerase chain reaction method to detect castor toxin contamination in fluid milk and eggs // J. Agric. Food Chem. 2007. Vol. 55. P. 6897-6902. doi: 10.1021/jf0707738.


22. Olsnes S. The history of ricin, abrin and related toxins // Toxicon. 2004. Vol. 44. P. 361-370. doi: 10.1016/j.toxicon.2004.05.003.


23. Worbs S., Köhler K., Pauly D., Avondet M.A., Schaer M., Dorner M.B., Dorner B.G. Ricinus communis intoxications in human and veterinary medicine-a summary of real cases // Toxins. 2011. Vol. 3. P. 1332-1372. doi: 10.3390/toxins3101332.


24. Moshiri M., Hamid F., Etemad L. Ricin toxicity: clinical and molecular aspects // Rep. Biochem. Mol. Biol. 2016. Vol. 4. P. 60-65.


25. Sandvig K., Spilsberg B., Lauvrak S.U., Torgersen M.L., Iversen T.-G., van Deurs B.O. Pathways followed by protein toxins into cells // Int. J. Med. Microbiol. 2004. Vol. 293. P. 483-490. doi: 10.1078/1438-4221-00294.


26. Van Deurs B., Pedersen L.R., Sundan A., Olsnes S., Sandvig K. Receptor-mediated endocytosis of a ricin-colloidal gold conjugate in Vero cells. Intracellular routing to vacuolar and tubulo-vesicular portions of the endosomal system // Exp. Cell Res. 1985. Vol. 159. P. 287-304. doi: 10.1016/s0014-4827(85)80003-3.


27. Moya M., Dautry-Varsat A., Goud B., Louvard D., Boquet P. Inhibition of coated pit formation in Hep2 cells blocks the cytotoxicity of diphtheria toxin but not that of ricin // J. Cell Biol. 1985. Vol. 101. P. 548-559. doi: 10.1083/jcb.101.2.548.


28. Van Deurs B., Sandvig K., Petersen O.W., Olsnes S., Simons K., Griffiths G. Routing of internalised ricin and ricin conjugates to the Golgi complex // J. Cell Biol. 1986. Vol. 102. P. 37-47. doi: 10.1083/jcb.102.1.37.


29. Sandvig K., van Deurs B. Endocytosis, intracellular transport, and cytotoxic action of Shiga toxin and ricin // Physiol. Rev. 1996. Vol. 76. P. 949-966. doi: 10.1152/physrev.1996.76.4.949.


30. Cosson P., Letourneur F. Coatamer interaction with di-lysine endoplasmic reticulum retention motifs // Science. 1994. Vol. 263. P. 1629-1631. doi: 10.1126/science.8128252.


31. Chen A., Hu T., Mikoryak C., Draper R.K. Retrograde transport of protein toxins under conditions of COPI dysfunction // Biochim. Biophys. Acta. 2002. Vol. 1589. P. 124-139. doi: 10.1016/s0167-4889(02)00163-5.


32. Sandvig K., Bergan J., Kavaliauskiene S., Skotland T. Lipid requirements for entry of protein toxins into cells // Prog. Lipid Res. 2014. Vol. 54. P. 1-13. doi: 10.1016/j.plipres.2014.01.001.


33. Wesche J., Rapak A., Olsnes S. Dependence of ricin toxicity on translocation of the toxin A-chain from the endoplasmic reticulum to the cytosol // J. Biol. Chem. 1999. Vol. 274. P. 34443-34449. doi: 10.1074/jbc.274.48.34443.


34. Roberts L.M., Smith D.C. Ricin: The endoplasmic reticulum connection // Toxicon. 2004. Vol. 44. P. 469-472. doi: 10.1016/j.toxicon.2004.07.002.


35. Deeks E.D., Cook J.P., Day P.J., Smith D.C., Roberts L.M., Lord J.M. The low lysine content of ricin A chain reduces the risk of proteolytic degradation after translocation from the endoplasmic reticulum to the cytosol // Biochemistry. 2002. Vol. 41. P. 3405-3413. doi: 10.1021/bi011580v


36. Spooner R.A., Lord J.M. How ricin and Shiga toxin reach the cytosol of target cells: retrotranslocation from the endoplasmic reticulum // Curr. Top. Microbiol. Immunol. 2012. Vol. 357. P. 19-40. doi: 10.1007/82_2011_154.


37. Polito L., Bortolotti M., Pedrazzi M., Mercatelli D., Battelli M.G., Bolognesi A. Apoptosis and necroptosis induced by stenodactylin in neuroblastoma cells can be completely prevented through caspase inhibition plus catalase or necrostatin-1 // Phytomedicine. 2016. Vol. 23. P. 32-41. doi: 10.1016/j.phymed.2015.11.006.


38. Sokołowska I., Wälchli S., Wegrzyn G., Sandvig K., Słomi´nska-Wojewódzka M. A single point mutation in ricin A-chain increases toxin degradation and inhibits EDEM1-dependent ER retrotranslocation // Biochem. J. 2011. Vol. 436. P. 371-385. doi: 10.1042/BJ20101493.


39. Sokołowska I., Piłka E.S., Sandvig K., Wegrzyn G., Słomi´nska-Wojewódzka M. Hydrophobicity of protein determinants influences the recognition of substrates by EDEM1 and EDEM2 in human cells // BMC Cell Biol. 2015. Vol. 16. P. 1. doi: 10.1186/s12860-015-0047-7


40. Becker B., Schnöder T., Schmitt M.J. Yeast reporter assay to identify cellular components of ricin toxin A chain trafficking // Toxins. 2016. Vol. 8. P. 366. doi: 10.3390/toxins8120366.


41. Lewis M.J., Pelham H.R.B. A new yeast endosomal SNARE related to mammalian syntaxin 8 // Traffic. 2002. Vol. 3. P. 922-929. doi: 10.1034/j.1600-0854.2002.31207.x.


42. Spooner R.A., Watson P.D., Marsden C.J., Smith D.C., Moore K.A.H., Cook J.P., Lord J.M., Roberts L.M. Protein disulphide-isomerase reduces ricin to its A and B chains in the endoplasmic reticulum // Biochem. J. 2004. Vol. 383. P. 285-293. doi: 10.1042/BJ20040742.


43. Richardson P.T., Westby M., Roberts L.M., Gould J.H., Colman A., Lord J.M. Recombinant proricin binds galactose but does not depurinate 28 S ribosomal RNA // FEBS Lett. 1989. Vol. 255. P. 15-20. doi: 10.1016/0014-5793(89)81052-x.


44. Spooner R.A., Lord J.M. Ricin trafficking in cells // Toxins. 2015. Vol. 7. P. 49-65. doi: 10.3390/toxins7010049.


45. Argent R.H., Parrott A.M., Day P.J., Roberts L.M., Stockley P.G., Lord J.M., Radford S.E. Ribosome-mediated folding of partially unfolded ricin A-chain // J. Biol. Chem. 2000. Vol. 275. P. 9263-9269. doi: 10.1074/jbc.275.13.9263.


46. Slomi´nska-Wojewódzka M., Pawlik A., Sokołowska I., Antoniewicz J., Wegrzyn G., Sandvig K. The role of EDEM2 compared with EDEM1 in ricin transport from the endoplasmic reticulum to the cytosol // Biochem. J. 2014. Vol. 457. P. 485-496. doi: 10.1042/BJ20130155.


47. Grela P., Szajwaj M., Horbowicz-Drożdżal P., Tchórzewski M. How ricin damages the ribosome // Toxins (Basel). 2019. Vol. 11. P. E241. doi: 10.3390/toxins11050241.


48. Grela P., Sawa-Makarska J., Gordiyenko Y., Robinson C.V., Grankowski N., Tchórzewski M. Structural properties of the human acidic ribosomal P proteins forming the P1-P2 heterocomplex // J. Biochem. 2008. Vol. 143. P. 169-177. doi: 10.1093/jb/mvm207.


49. Lee K.-M., Yu C.W.-H., Chiu T.Y.-H., Sze K.-H., Shaw P.-C., Wong K.-B. Solution structure of the dimerization domain of the eukaryotic stalk P1/P2 complex reveals the structural organization of eukaryotic stalk complex // Nucleic Acids Res. 2012. Vol. 40. P. 3172-3182. doi: 10.1093/nar/gkr1143.


50. Grela P., Li X.-P., Horbowicz P., D´zwierzy´nska M., Tchórzewski M., Tumer N.E. Human ribosomal P1-P2 heterodimer represents an optimal docking site for ricin A chain with a prominent role for P1 C-terminus // Sci. Rep. 2017. Vol. 7. P. 5608. doi: 10.1038/s41598-017-05675-5


51. Grela P., Li X.-P., Tchórzewski M., Tumer N.E. Functional divergence between the two P1-P2 stalk dimers on the ribosome in their interaction with ricin A chain // Biochem. J. 2014. Vol. 460. P. 59-67. doi: 10.1042/BJ20140014.


52. Li X.-P., Tumer N.E. Differences in ribosome binding and sarcin/ricin loop depurination by shiga and ricin holotoxins // Toxins. 2017. Vol. 9. P. 133. doi: 10.3390/toxins9040133.


53. Endo Y., Gluck A., Wool I.G. Ribosomal RNA identity elements for ricin A-chain recognition and catalysis // J. Mol. Biol. 1991. Vol. 221. P. 193-207. doi: 10.1016/0022-2836(91)80214-f.


54. Jasheway K., Pruet J., Anslyn E.V., Robertus J.D. Structure-based design of ricin inhibitors // Toxins (Basel). 2011. Vol. 3. P. 1233-1248. doi: 10.3390/toxins3101233.


55. Wahome P.G., Robertus J.D., Mantis N.J. Small-molecule inhibitors of ricin and Shiga toxins // Curr. Top. Microbiol. Immunol. 2012. Vol. 357. P. 179-207. doi: 10.1007/82_2011_177.


56. Kim Y., Mlsna D., Monzingo A.F., Ready M.P., Frankel A., Robertus J.D. Structure of a ricin mutant showing rescue of activity by a noncatalytic residue // Biochemistry. 1992. Vol. 31. P. 3294-3296. doi: 10.1021/bi00127a035.


57. Fabbrini M.S., Katayama M., Nakase I., Vago R. Plant ribosome-inactivating proteins: progesses, challenges and biotechnological applications (and a few digressions) // Toxins (Basel). 2017. Vol. 9. P. 314. doi: 10.3390/toxins9100314.


58. Szajwaj M, Wawiórka L, Molestak E, Michalec-Wawiórka B, Mołoń M, Wojda I, Tchórzewski M. The influence of ricin-mediated rRNA depurination on the translational machinery in vivo - new insight into ricin toxicity // Biochim. Biophys. Acta (BBA) - Molecular Cell Research. 2019. Vol. 1866. Is. 12. Art. 118554. doi: 10.1016/j.bbamcr.2019.118554


59. Sapoznikov A., Gal Y., Falach R., Sagi I., Ehrlich S., Lerer E., Makovitzki A., Aloshin A., Kronman C., Sabo T. Early disruption of the alveolar-capillary barrier in a ricin-induced ARDS mouse model: neutrophil-dependent and -independent impairment of junction proteins // Am. J. Physiol. Lung Cell Mol. Physiol. 2019. Vol. 316, 1. P. L255-L268. doi: 10.1152/ajplung.00300.2018.


60. Soler-Rodriguez A.S., Ghettie M., Oppenheimer-Marks N., Uhr J.W., Vitetta E.S. Ricin A-chain and ricin A-chain immunotoxins rapidly damage human endothelial cells: implications for vascular leak syndrome // Exp. Cell Res. 1993. Vol. 206. P. 227-234. doi: 10.1006/excr.1993.1142.


61. Wong J., Korcheva V., Jacoby D.B., Magun B.E. Proinflammatory responses of human airway cells to ricin involve stress-activated protein kinases and NF-kappaB // Am. J. Physiol. Lung Cell Mol. Physiol. 2007. Vol. 293, 6. P. L1385-L1394. doi: 10.1152/ajplung.00207.2007.


62. Lindauer M., Wong J., Magun B. Ricin toxin activates the NALP3 inflammasome // Toxins (Basel). 2010. Vol. 2, 6. P. 1500-1514. doi: 10.3390/toxins2061500.


63. Dong M, Yu H, Wang Y, Sun C, Chang Y, Yin Q, Zhao G, Xu N, Liu W. Critical role of toll-like receptor 4 (TLR4) in ricin toxin-induced inflammatory responses in macrophages // Toxicol. Lett. 2020. Vol. 321. P. 54-60. doi: 10.1016/j.toxlet.2019.12.021.


64. Gal Y., Mazor O., Falach R., Sapoznikov A., Kronman C., Sabo T. Treatments for pulmonary ricin intoxication: current aspects and future prospects // Toxins (Basel). 2017. Vol. 9, 10. P. 311. doi: 10.3390/toxins9100311.


65. Tesh V.L. The induction of apoptosis by Shiga toxins and ricin // Curr. Top. Microbiol. Immunol. 2012. Vol. 357. P. 137-178. doi: 10.1007/82_2011_155.


66. Baluna R., Coleman E., Jones C., Ghetie V., Vitetta E.S. The Effect of a Monoclonal Antibody Coupled to Ricin A Chain-Derived Peptides on Endothelial Cells in Vitro: Insights into Toxin-Mediated Vascular Damage // Exp. Cell Res. 2000. Vol. 258. P. 417-424. doi: 10.1006/excr.2000.4954.


67. Hasegawa N., Kimura Y., Oda T., Komatsu N., Muramatsu T.H.-J. Isolated ricin B-chain-mediated apoptosis in U937 cells // Biosci. Biotechnol. Biochem. 2000. Vol. 64. P. 1422-1429. doi: 10.1271/bbb.64.1422.


68. Tyagi N., Tyagi M., Pachauri M., Ghosh P.C. Potential therapeutic applications of plant toxin-ricin in cancer: challenges and advances // Tumour Biol. 2015. Vol. 36, 11. P. 8239-8246. doi: 10.1007/s13277-015-4028-4.


69. Bich Loan N.T., Trung N.N., Le Na N.T., Thang N.D. Anticancer activities of ricin-liposome complexes on SKMEL-28 cells // Asian Pac. J. Cancer Prev. 2019. Vol. 20, 7. P. 2117-2123. doi: 10.1007/s13277-015-4028-4.


70. Lindauer M.L., Wong J., Iwakura Y., Magun B.E. Pulmonary inflammation triggered by ricin toxin requires macrophages and Il-1 signaling // J. Immunol. 2009. Vol. 183. P. 1419-1426. doi: 10.4049/jimmunol.0901119.


71. Gal Y., Mazor O., Alcalay R., Seliger N., Aftalion M., Sapoznikov A., Falach R., Kronman C., Sabo T. Antibody/doxycycline combined therapy for pulmonary ricinosis: attenuation of inflammation improves survival of ricin-intoxicated mice // Toxicol Rep. 2014. Vol. 1. P. 496-504. doi: 10.1016/j.toxrep.2014.07.013.


72. Gal Y., Sapoznikov A., Falach R., Ehrlich S., Aftalion M., Sabo T., Kronman C. Potent antiedematous and protective effects of ciprofloxacin in pulmonary ricinosis // Antimicrob. Agents Chemother. 2016. Vol. 60, 12. P. 7153-7158. doi: 10.1128/AAC.01696-16.