БИОМЕДИЦИНСКИЙ ЖУРНАЛ МЕДЛАЙН.РУ
Содержание журнала

Архив

Редакция
Учредители

Федеральное государственное бюджетное учреждение «Научно-клинический центр токсикологии имени академика С.Н. Голикова Федерального медико-биологического агентства»


Федеральное государственное бюджетное учреждение науки
Институт теоретической и экспериментальной биофизики
Российской академии наук


ООО "ИЦ КОМКОН"

Адрес редакции и реквизиты

199406, Санкт-Петербург, ул.Гаванская, д. 49, корп.2

ISSN 1999-6314


Фундаментальные исследования • Патологическая физиология

Том: 22
Статья: « 14 »
Страницы:. 192-229
Опубликована в журнале: 15 марта 2021 г.

English version

Флуоресценция в онкологии

Ивашкина М.Д., Миронович А.А., Юдаева А.Д., Смирнов И.В.,
под редакцией д.м.н. Митрофановой Л.Б.

Образовательный центр Сириус, Сочи
Моско́вский госуда́рственный университе́т и́мени М. В. Ломоно́сова,
ФГБУ «НМИЦ им. В.А. Алмазова»


Резюме
В настоящее время во всeм мире ведутся работы по созданию новых эффективных и безопасных вариантов диагностики и лечения рака, среди которых флюоресцентная диагностика и фотодинамическая терапия занимают одно из лидирующих мест. Основная проблема и задача онкологов это правильный выбор фотосенсибилизаторов и методов их введения. В данном литературном обзоре представлены разрабатываемые, исследуемые и применяемые в клинической практике флюорохромы и фотосенсибилизаторы для флюоресцентной диагностики и фотодинамической терапии опухолей.


Ключевые слова
интраоперационная флуоресцентная навигация, опухоли, флуорохромы, фотодинамическая терапия



(статья в формате PDF. Для просмотра необходим Adobe Acrobat Reader)



открыть статью в новом окне

Список литературы

1. Hernot S., van Manen L., Debie P., et al. Latest developments in molecular tracers for fluorescence image-guided cancer surgery // The Lancet Oncology. - 2019. - Vol. 20. - 7. - P. e354-e367. doi: 10.1016/S1470-2045(19)30317-1


2. Dazhuang X., Lei L., Chengchao C., et al. Advances and perspectives in near-infrared fluorescent organic probes for surgical oncology // Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology. - 2020. - Vol. 12. - 5. - P. E1635. https://doi.org/10.1002/wnan.1635


3. Juarranz A., Jaen P., Sanz-Rodriguez F., Cuevas J., Gonzalez S. Photodynamic therapy of cancer: basic principles and applications. applications // Clinical and Translational Oncology. - 2008. - Vol. 10. - 3. - P. 148-154. doi: 10.1007/s12094-008-0172-2


4. Tampa M., Sarbu M., Matei C. et al. Photodynamic therapy: a hot topic in dermato-oncology. // Oncology letters. - 2019. - Vol. 17. - 5. - P. 4085-4093. doi: 10.3892/ol.2019.9939


5. Kwiatkowskia S., Knapb B., Przystupski D., et al. Photodynamic therapy-mechanisms, photosensitizers and combinations // Biomedicine & Pharmacotherapy. - 2018. - Vol. 106. - P. 1098-1107. doi: 10.1016/j.biopha.2018.07.049


6. Peterson J.D. Non-Invasive Quantitative In Vivo Imaging of Atherosclerosis Disease Progression and Treatment Response in ApoE Deficient Mice using Fluorescence Molecular Tomography and NIR Fluorescent Pre-clinical Imaging Agents. [Электронный ресурс] // PerkinElmer, Inc - URL: https://www.perkinelmer.com/lab-solutions/resources/docs/APP_009971_01%20Atherosclerosis_ProSense750_FMT.pdf


7. Shen Y., Sun Y., Yan R., et al Rational engineering of semiconductor QDs enabling remarkable O-1(2) production for tumor-targeted photodynamic therapy // Biomaterials. - 2017. - Vol. 148. - P. 31-40. doi: 10.1016/j.biomaterials.2017.09.026


8. Te Velde E.A., Veerman Th., Subramaniam V., Ruers Th. The use of fluorescent dyes and probes in surgical oncology // European Journal of Surgical Oncology (EJSO). - 2010. - Vol. 36. - 1. - P. 6-15. doi:10.1016/j.ejso.2009.10.014


9. Alander J.T., Kaartinen I., Laakso A. et al. A Review of indocyanine green fluorescent imaging in surgery // International Journal of Biomedical Imaging. - 2012. - Vol. 2012. - P. 940585. doi: 10.1155/2012/940585


10. Ogata F., Azuma R., Kikuchi M. et al. Novel lymphography using indocyanine green dye for near-infrared fluorescence labeling // Annals of plastic surgery. - 2007. - Vol. 58. - 6. - P. 652- 655. doi: 10.1097/01.sap.0000250896.42800.a2


11. Motomura K., Inaji H., Komoike Y. et al. Sentinel node biopsy guided by indocyanin green dye in breast cancer patients // Japanese Journal of Clinical Oncology. - 1999. - Vol. 29. - 12. - P. 604- 607. doi: 10.1093/jjco/29.12.604


12. Kitai T., Inomoto T., Miwa M., Shikayama T. Fluorescence navigation with indocyanine green for detecting sentinel lymph nodes in breast cancer // Breast cancer. - 2005. - Vol. 12. - 3. - P. 211-215. doi: 10.2325/jbcs.12.211.


13.Ohnishi S., Lomnes S.J., Laurence R.G. et al. Organic alternatives to quantum dots for intraoperative near-infrared fluorescent sentinel lymph node mapping // Molecular Imaging. - 2005. - Vol. 4. - 3. - P. 172-181. doi.org/10.1162/15353500200505127


14. Klein Jan G.H., van Werkhoven E., van den Berg N.S. et al. The best of both worlds: a hybrid approach for optimal pre-and intraoperative identification of sentinel lymph nodes // European journal of nuclear medicine and molecular imaging. - 2018. - Vol. 45. - 11. - P. 1915-1925. doi: 10.1007/s00259-018-4028-x


15. Unkart J.T., Chen S.L., Wapnir I.L., Gonzalez J.E., Harootunian A., Wallace A.M. Intraoperative tumor detection using a ratiometric activatable fluorescent peptide: a first-in-human phase 1 study //Annals of surgical oncology. - 2017. - Vol. 24. - 11. - P. 3167-3173. doi: 10.1245/s10434-017-5991-3


16. Shen Y., Sun Y., Yan R., et al. Rational engineering of semiconductor QDs enabling remarkable 1O2 production for tumor-targeted photodynamic therapy // Biomaterials. - 2017. - Vol. 148. - P. 31- 40. doi: 10.1016/j.biomaterials.2017.09.026


17. Zhang Z., Li H., Liu Q. et al. Metabolic imaging of tumors using intrinsic and extrinsic fluorescent markers // Biosensors and Bioelectronics. - 2004. - Vol. 20. - 3. - P. 643-650. doi: 10.1016/j.bios.2004.03.034.


18. Сheng Z., Levi J., Xiong Z., Gheysens O., Keren S., Chen X., Gambhir S.S. Near-infrared fluorescent deoxyglucose analogue for tumor optical imaging in cell culture and living mice // Bioconjugate chemistry. - 2006. - Vol. 17. - 3. - P. 662-669. doi:10.1021/bc050345c


19. Josephson L., Mahmood U., Wunderbaldinger P. et al. Pan and Sentinel Lymph Node Visualization Using a Near-Infrared Fluorescent Probe // Molecular imaging. - 2003. - Vol. 2. - 1. - P. 18-23. doi: 10.1162/153535003765276255


20. Figueiredo J.-L., Alencar H., Weissleder R., Mahmood U. Near infrared thoracoscopy of tumoral protease activity for improved detection of peripheral lung cancer // International journal of cancer. - 2006. - Vol. 118. - 11. - P. 2672-2677. doi:10.1002/ijc.21713


21. Jaffer F.A, Libby P., Weissleder R. Molecular imaging of cardiovascular disease // Circulation. - 2007. - Vol. 116. - 9. - P. 1052-1061. https://doi.org/10.1161/CIRCULATIONAHA.106.647164


22. Choi Y., Weissleder R., Tung C.H. Selective antitumor effect of novel protease-mediated photodynamic agent // Cancer research. - 2006. - Vol. 66. - 14. - P. 7225-7229. doi: 10.1158/0008-5472.CAN-06-0448.


23. Leary S., Blatt J.E., Cohen A.R. et al. A phase II/III randomized, blinded study of tozuleristide for fluorescence imaging detection during neurosurgical resection of pediatric primary central nervous system (CNS) tumors: PNOC012 (Pacific Pediatric Neuro-oncology Consortium) // Journal of Clinical Oncology. - 2020. - Vol. 38. - 15. suppl. - P. TPS2575.


24. Dintzis S.M., Hansen S., Harrington K.M. et al. Real-time visualization of breast carcinoma in pathology specimens from patients receiving fluorescent tumor-marking agent tozuleristide // Archives of pathology & laboratory medicine. - 2019. - Vol. 143. - 9. - P. 1076-1083. doi:10.5858/ arpa.2018-0197-OA.


25. Lyons S.A., O'Neal J., Sontheimer H. Chlorotoxin, a scorpion‐derived peptide, specifically binds to gliomas and tumors of neuroectodermal origin // Glia. - 2002. - Vol. 39. - ?. 2. - P. 162-173. doi: 10.1002/glia.10083.


26. Fidel J., Kennedy K., Dernell W. et al. Preclinical validation of the utility of BLZ-100 in providing fluorescence contrast for imaging spontaneous solid tumors // Cancer research. - 2015. - Vol. 75. - ?. 20. - P. 4283-4291. doi: 10.1158/0008-5472.CAN-15-0471


27. Deshane J., Garner C.C., Sontheimer H. Chlorotoxin inhibits glioma cell invasion via matrix metalloproteinase-2 // Journal of biological chemistry. - 2003. - Vol. 278. - 6. - P. 4135-4144. doi: 10.1074/jbc.M205662200


28. Veiseh M., Gabikian P., Bahrami S.B. et al. Tumor paint: a chlorotoxin: Cy5. 5 bioconjugate for intraoperative visualization of cancer foci // Cancer research. - 2007. - Vol. 67. - 14. - P. 6882-6888. doi: 10.1158/0008-5472.CAN-06-3948


29. Kesavan K., Ratliff J., Johnson E.W. et al. Annexin A2 is a molecular target for TM601, a peptide with tumor-targeting and anti-angiogenic effects // Journal of Biological Chemistry. - 2010. - Vol. 285. - 7. - P. 4366-4374. doi:10.1074/jbc.m109.066092


30 Liu Z., Wang F., Chen X. Integrin αvβ3‐targeted cancer therapy // Drug development research. - 2008. - Vol. 69. - 6. - P. 329-339. doi: 10.1002/ddr.20265


31. Huang C., Chu C., Wang X. et al. Ultra-high loading of sinoporphyrin sodium in ferritin for single-wave motivated photothermal and photodynamic co-therapy // Biomaterials science. - 2017. - Vol. 5. - 8. - P. 1512-1516. doi:10.1039/c7bm00302a


32. Wang W., Ke S., Wu Q. et al. Near-infrared optical imaging of integrin alphavbeta3 in human tumor xenografts // Molecular Imaging. - 2004. - Vol. 3. - 4. - P. 343-351. doi: 10.1162/1535350042973481


33. Chen X., Conti P.S., Moats R.A. In vivo near-infrared fluorescence imaging of integrin αvβ3 in brain tumor xenografts // Cancer research. - 2004. - Vol. 64. - 21. - P. 8009-8014. doi:10.1158/0008-5472.can-04-1956


34. Cai W., Shin D.-W., Chen K. et al. Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects // Nano letters. - 2006. - Vol. 6. - 4. - P. 669-676. doi:10.1021/nl052405t


35. Wu Y. , Cai W., Chen X. Near-infrared fluorescence imaging of tumor integrin α v β 3 expression with Cy7-labeled RGD multimers // Molecular Imaging and Biology. - 2006. - Vol. 8. - 4. - P. 226-236. doi: 10.1007/s11307-006-0041-8


36. Тахира А. «Волшебные пули»: моноклональные антитела в онкологии. [Электронный ресурс] // Провизор. - 2005. - 17. - URL: www.provisor.com.ua/archive/2005/N17/art_19.php


37. Wang J., Yong W.H., Sun Y. et al. Receptor-targeted quantum dots: fluorescent probes for brain tumor diagnosis // Journal of Biomedical Optics. - 2007. - Vol. 12. - 4. - P. 044021. doi:10.1117/1.2764463


38. Miller S.E., Tummers W.S., Teraphongphom N. et al. First-in-human intraoperative near-infrared fluorescence imaging of glioblastoma using cetuximab-IRDye800 // Journal of neuro-oncology. - 2018. - Vol. 139. - 1. - P. 135-143. doi: 10.1007/s11060-018-2854-0.


39. Gao R.W., Teraphongphom N.T., van den Berg N.S. et al. Determination of tumor margins with surgical specimen mapping using near-infrared fluorescence // Cancer research. - 2018. - Vol. 78. - 17. - P. 5144-5154. doi: 10.1158/0008-5472.CAN-18-0878


40. Gao R.W., Teraphongphom N., de Boer E. et al. Safety of panitumumab-IRDye800CW and cetuximab-IRDye800CW for Fluorescence-Guided Surgical Navigation in Head and Neck Cancers // Theranostics. - 2018. - Vol. 8. - 9. - P. 2488-2495. doi:10.2967/jnumed.118.222810.


41. Gao M., Su H., Lin G., Li S. et al. Targeted imaging of EGFR overexpressed cancer cells by brightly fluorescent nanoparticles conjugated with cetuximab // Nanoscale. - 2016. - Vol. 8. - 32. - P. 15027-15032. doi:10.1039/c6nr04439e


42. Aerts H.J.W.L., Dubois L., Hackeng T. M. et al. Development and evaluation of a cetuximab-based imaging probe to target EGFR and EGFRvIII // Radiotherapy and oncology. - 2007. - Vol. 83. - 3. - P. 326-332. doi:10.1016/j.radonc.2007.04.030


43. Gleysteen J.P., Newman J.R., Chhieng D. et al. Fluorescent labeled anti‐EGFR antibody for identification of regional and distant metastasis in a preclinical xenograft model // Head & neck. - 2008. - Vol. 30. - 6. - P. 782-789. doi:10.1002/hed.20782


44. Hilger I., Leistner Y., Berndt A. et al. Near-infrared fluorescence imaging of HER-2 protein over-expression in tumour cells // European radiology. - 2004. - Vol. 14. - 6. - P. 1124-1129. doi:10.1007/s00330-004-2257-9


45. Koyama Y., Hama Y., Urano Y. et al. Spectral fluorescence molecular imaging of lung metastases targeting HER2/neu // Clinical cancer research. - 2007. - Vol. 13. - 10. - P. 2936-2945. doi:10.1158/1078-0432.ccr-06-2240


46. Hassan M., Riley J., Chernomordik V. Fluorescence Lifetime Imaging System for In Vivo Studies //Molecular Imaging. - 2007. - Vol. 6. - 4. - P. 229-236. doi:10.2310/7290.2007.00019


47. Lee S.B., Hassan M., Fisher R. Affibody molecules for in vivo characterization of HER2-positive tumors by near-infrared imaging // Clinical Cancer Research. - 2008. - Vol. 14. - 12. - P. 3840-3849. doi:10.1158/1078-0432.ccr-07-4076


48. Hoogstins C.E., Tummers Q.R.J.G, Gaarenstroom K.N. et al. A novel tumor-specific agent for intraoperative near-infrared fluorescence imaging: a translational study in healthy volunteers and patients with ovarian cancer // Clinical Cancer Research. - 2016. - Vol. 22. - 12. - P. 2929-2938. doi: 10.1158/1078-0432


49.Tummers Q.R.J.G., Hoogstins C.E., Gaarenstroom K.N. et al. Intraoperative imaging of folate receptor alpha positive ovarian and breast cancer using the tumor specific agent EC17 // Oncotarget. - 2016. - Vol. 7. - 22. - P. 32144-32155. doi: 10.18632/oncotarget.8282


50. Scaranti M., Cojocaru E., Banerjee S., Banerji U. Exploiting the folate receptor α in oncology // Nat Rev Clin Oncol. - 2020. Vol.17. - 6. - P. 349-359. doi: 10.1038/s41571-020-0339-5. Epub 2020 Mar 9. PMID: 32152484.


51. Harlaar N.J., Koller M., de Jongh S.J. et al. Molecular fluorescence-guided surgery of peritoneal carcinomatosis of colorectal origin: a single-centre feasibility study // Lancet Gastroenterol Hepatol. - 2016. - Vol.1. - P. 283-90. DOI: 10.1016/S2468-1253(16)30082-6]


52. Boogerd L.S..F, Hoogstins C.E.S., Schaap D.P. et al. Safety and effectiveness of SGM-101, a fluorescent antibody targeting carcinoembryonic antigen, for intraoperative detection of colorectal cancer: a dose-escalation pilot study // The Lancet Gastroenterology & Hepatology. - 2018. - Vol. 3. - 3. - P. 181-191. doi: 10.1016/s2468-1253(17)30395-3


53. Hoogstins C.E.S., Boogerd L.S.F., Sibinga Mulder B.G. et al. Image-guided surgery in patients with pancreatic cancer: first results of a clinical trial using SGM-101, a novel carcinoembryonic antigen-targeting, near-infrared fluorescent agent // Annals of surgical oncology. - 2018. - Vol. 25. - 11. - P. 3350-3357. doi: 10.1245/s10434-018-6655-7


54. McDonald P., Dedhar S. Carbonic anhydrase IX (CAIX) as a mediator of hypoxia-induced stress response in cancer cells // Carbonic Anhydrase: Mechanism, Regulation, Links to Disease, and Industrial Applications. - 2014. - P. 255-269. doi: 10.1007/978-94-007-7359-2_13


55. Hekman M.C., Rijpkema M., Muselaerset C.H. et al. Tumor-targeted Dual-modality Imaging to Improve Intraoperative Visualization of Clear Cell Renal Cell Carcinoma: A First in Man Study // Theranostics. - 2018. - Vol. 8. - 8. - P. 2161-2170. doi: 10.7150/thno.23335


56. Zhang J., Li D., Lang L. et al. 68Ga-NOTA-Aca-BBN (7-14) PET/CT in healthy volunteers and glioma patients // Journal of Nuclear Medicine. - 2016. - Vol. 57. - 1. - P. 9-14. doi: 10.2967/jnumed.115.165316


57. Li D., Zhang J., Chi C. et al. First-in-human Study of PET and Optical Dual-Modality Image-Guided Surgery in Glioblastoma Using 68 Ga-IRDye800CW-BBN // Theranostics. - 2018. - Vol. 8. - 9. - P. 2508-2520. doi: 10.7150/thno.25599


58. Carneiro F., Muniz Junqueira M., Carneiro M. et al. Anti EpCAM antibodies for detection of metastatic carcinoma in effusions and peritoneal wash // Oncology Letters. - 2019. - Vol. 18. - 2. - P. 2019-2024. doi:10.3892/ol.2019.10468


59. Feng L., Zhu J., Wang Z. Biological Functionalization of Conjugated Polymer Nanoparticles for Targeted Imaging and Photodynamic Killing of Tumor Cells // ACS Applied Materials & Interfaces. - 2016. - Vol. 8. - 30. - P. 19364-19370. doi:10.1021/acsami.6b06642


60. Hou J.T., Ko K.P., Shi H. et al. PLK1-targeted fluorescent tumor imaging with high signalto-background ratio // ACS Sensors. - 2017. - Vol. 2. - 10. - P. 1512-1516. doi:10.1021/acssensors.7b00544]


61. Sharma A., Kim E.J., Shi H. et al. Development of a theranostic prodrug for colon cancer therapy by combining ligand-targeted delivery and enzyme-stimulated activation // Biomaterials. - 2018. - Vol.155. - P. 145-151. DOI: 10.1016/j.biomaterials.2017.11.019


62. Kurbegovic S., Juhl K., Chen H. et al.). Molecular targeted NIR-II probe for image-guided brain tumor surgery // Bioconjugate Chemistry. - 2018. - Vol. 29. - 11. - P. 3833-3840. DOI: 10.1021/acs.bioconjchem.8b00669


63. Zhang J., Jiang C., Longo J.P.F. et al. An updated overview on the development of new photosensitizers for anticancer photodynamic therapy // Acta Pharm. Sinica B. - 2018. - Vol. 8. - 2. - P. 137-146. doi10.1016/j.apsb.2017.09.003.


64. Bellnier D.A., Greco W.R., Loewen G. M. et al. Clinical Pharmacokinetics of the PDT Photosensitizers Porfimer Sodium (Photofrin), 2-[1-Hexyloxyethyl]-2-Devinyl Pyropheophorbide-a (Photochlor) and 5-ALA-Induced Protoporphyrin IX // Lasers in Surgery and Medicine. - 2006. - Vol. 38. - 5. - P. 439-444. doi:10.1002/lsm.20340


65. Olson M., Ly Q., Mohs A. et al. Fluorescence Guidance in Surgical Oncology: Challenges, Opportunities, and Translation // Mol Imaging Biol. - 2019. - Vol. 21. - 2. - P. 200-218. DOI: 10.1007/s11307-018-1239-2


66. Pandey R.K., Goswami L.N., Chen Y. et al. Nature: a rich source for developing multifunctional agents. Tumor-imaging and photodynamic therapy // Lasers Surg Med. - 2006. - Vol. 38. - P. 445-467.


67. Mettath S., Shibata M., Alderfer J.L. et al. Synthesis and spectroscopic properties of novel benzochlorins derived from chlorophyll a // J Org Chem 1998. - Vol. 63. - P. 1646-1656.


68. Yoon I., Li J.Z., Shim Y.K. Advance in Photosensitizers and Light Delivery for Photodynamic Therapy // Clinical Endoscopy. - 2013. - Vol. 46. - 1. - P. 7-23. doi:10.5946/ce.


69. Zhang M., Zhang Z., Blessington D. et al. Pyropheophorbide 2-Deoxyglucosamide: A New Photosensitizer Targeting Glucose Transporters // Bioconjugate Chemistry. - 2003. - Vol. 14. - 4. - P. 709-714. doi:10.1021/bc034038n


70. Abrahamse H., Hamblin M.R. New photosensitizers for photodynamic therapy // Biochem J. - 2016. - Vol. 473. - 4. - P. 347-64. doi: 10.1042/BJ20150942. PMID: 26862179; PMCID: PMC4811612.


71. Zheng X., Morgan J., Pandey S.K., Chen Y. et al. Conjugation of 2-(1′-Hexyloxyethyl)-2-devinylpyropheophorbide-a (HPPH) to Carbohydrates Changes its Subcellular Distribution and Enhances Photodynamic Activity in Vivo// Journal of Medicinal Chemistry. - 2009. - Vol. 52. - 14. - P. 4306-4318. doi:10.1021/jm9001617.


72. Stefflova K., Li H., Chen J., Zheng G. Peptide-based pharmacomodulation of a cancer-targeted optical imaging and photodynamic therapy agent // Bioconjug Chem. - 2007. - Vol. - 18. - P. 379-388. doi 10.1021/bc0602578


73. Tarragó-Trani M.T., Jiang S., Harich K.C., Storrie B. Shiga-like Toxin Subunit B (SLTB)-Enhanced Delivery of Chlorin e6 (Ce6) Improves Cell Killing // Photochemistry and Photobiology. - 2006. - Vol. 82. - 2. - 527-37. doi:10.1562/2005-06-20-ra-583


74. Zheng G., Li H., Zhang M. et al. Low-Density Lipoprotein Reconstituted by Pyropheophorbide Cholesteryl Oleate as Target-Specific Photosensitizer // Bioconjugate Chemistry. - 2002. - Vol. 13. - 3. - P. 392-396. doi:10.1021/bc025516h


75. Chen G., Jaskula-Sztul R., Esquibel C.R., et al. Neuroendocrine tumor-targeted upconversion nanoparticle-based micelles for simultaneous nir-controlled combination chemotherapy and photodynamic therapy, and fluorescence imaging // Advanced Functional Materials. - 2017. - Vol. 27. - 8. - P. 1604671. doi: 10.1002/adfm.201604671]