Медико-биологический
информационный портал
для специалистов
 
БИОМЕДИЦИНСКИЙ ЖУРНАЛ Medline.ru

СОДЕРЖАНИЕ ЖУРНАЛА:
Физико-химическая биология

Клиническая медицина

Профилактическая медицина

Медико-биологические науки


АРХИВ:

Фундаментальные исследования

Организация здравохраниения

История медицины и биологии



Последние публикации

Поиск публикаций

Articles

Архив :  2000 г.  2001 г.  2002 г. 
               2003 г.  2004 г.  2005 г. 
               2006 г.  2007 г.  2008 г. 
               2009 г.  2010 г.  2011 г. 
               2012 г.  2013 г.  2014 г. 
               2015 г.  2016 г.  2017 г. 
               2018 г.  2019 г. 

Редакционная информация:
        Опубликовать статью
        Наша статистика


 РЕДАКЦИЯ:
Главный редактор

Заместители главного редактора

Члены редколлегии
Специализированные редколлегии


 УЧРЕДИТЕЛИ:
Федеральное государственное бюджетное учреждение науки
"Институт токсикологии Федерального медико-биологического агентства"
(ФГБУН ИТ ФМБА России)

Институт теоретической и экспериментальной биофизики Российской академии наук.

ООО "ИЦ КОМКОН".




Адрес редакции и реквизиты

199406, Санкт-Петербург, ул.Гаванская, д. 49, корп.2

ISSN 1999-6314

Российская поисковая система
Искать: 


«
ТОМ 19, СТ. 84 (стр. 1178-1203)   |   29 ноября 2018 г.   
»

Клиническая медицина » Терапия » Эндокринология

Когнитивные осложнения у больныx с сахарным диабетом: современные аспекты патогенеза и лечения
Салухов В.В., Ромашевский Б.В.

ФГБВОУ ВО "Военно-медицинская академия имени С.М. Кирова" МО РФ,
г. Санкт-Петербург, ул. Академика Лебедева, д. 6



Резюме

Сахарный диабет является независимым факторов риска развития когнитивных нару-шений. Возникновение когнитивных нарушений у больных диабетом связано с острой и хронической гипергликемией, инсулинорезистентностью, гиперинсулинемией, диа-бетическим кетоацидозом и гипогликемическими событиями. В настоящем обзоре освещены механизмы развития КН у больных СД, которые включают сочетания сосудистых заболеваний, окислительного стресса, нейровоспале-ния, митохондриальной дисфункции, апоптоза, снижения нейротрофических факторов, активацию ацетилхолинэстеразы (AChE), изменения нейротрансмиттеров, накопления амилоида β и фосфорилирования тау, нейродегенерации. Ряд экспериментальных и клинических исследований подтверждают наличие общих механизмов в патогенезе СД и когнитивных нарушений, что предполагает ис-пользование антидиабетических препаратов в профилактике и лечении этих заболева-ний. Представлены результаты исследований по влиянию антидиабетических препара-тов с нейропротекторным действием на когнитивную функцию у больных СД и нейро-дегеративными заболеваниями.


Ключевые слова

Сахарный диабет, когнитивные нарушения, клинические исследования, патогенез, ан-тидиабетические препараты





(статья в формате PDF. Для просмотра необходим Adobe Acrobat Reader)



открыть статью в новом окне

Список литературы

1. Cox DJ, Kovatchev BP, Gonder-Frederick LA, et al. Relationships between hypergly-cemia and cognitive performance among adults with type 1 and type 2 diabetes. Diabe-tes Care. 2005;28(1):71-77.


2. Vincent C, Hall PA. Executive function in adults with type 2 diabetes: a meta-analytic review. Psychosom Med. 2015;77(6):631-642.





3. Biessels GJ, Staekenborg S, Brunner E, Brayne C, Schel- tens P. Risk of dementia in diabetes mellitus: a systematic review. Lancet Neurol. 2006;5(1):64-74.


4. 4. Ott A, Stolk RP, Van harskamp F, Pols HA, Hofman A, Breteler MM. Diabetes mellitus and the risk of dementia: The Rotterdam Study. Neurology. 1999;53(9):1937-42.


5. Curb JD, Rodriguez BL, Abbott RD, et al. Longitudinal association of vascular and Alzheimer?s dementias, diabetes, and glucose tolerance. Neurology. 1999;52(5):971-975.


6. Емелин, А.Ю. Сосудистые когнитивные нарушения / А.Ю. Емелин, В.Ю. Лоб-зин, И.С. Железняк, И.В. Бойков. - СПб.: 2016. - 80 с.


7. 11. Laws SM, Gaskin S, Woodfield A, et al. Insulin resistance is associated with re-ductions in specific cognitive domains and increases in CSF tau in cognitively normal adults. Sci Rep. 2017 Aug 29;7(1):9766.


8. 12. Shukla V, Shakya AK, Perez-Pinzon MA, Dave KR. Cerebral ischemic damage in diabetes: an inflammatory perspective. J Neuroinflammation. 2017 Jan 23;14(1):21.


9. Остроумова О.Д., Суркова Е.В., Ших Е.В., и др. Когнитивные нарушения у больных сахарным диабетом 2 типа: Распространенность, патогенетические ме-ханизмы, влияние противодиабетических препаратов. Сахарный диабет. 2018;21(4):307-318.


10. Definition and diagnosis of diabetes mellitus and intermediate hyperglycemia : Report of WHO/IDF Consultation / WHO; International Diabetes Federation. - 2006. - 46 p.


11. Jacobson, A. M., Ryan, C. M., Cleary, P. A., Waberski, B. H., Weinger, K., Musen, G., et all. Diabetes Control and Complications Trial/EDIC Research Group. Biomedi-cal risk factors for decreased cognitive functioning in type 1 diabetes: An 18 year fol-low-up of the Diabetes Control and Complications Trial (DCCT) cohort. Diabetologia. 201; 54, 245-255.


12. Ryan C. M., Geckle M. O., & Orchard T. J. Cognitive efficiency declines over time in adults with Type 1 diabetes: Effects of micro- and macrovascular complications. Di-abetologia. 2003; 46, 940-948.


13. Patton N, Aslam T, Macgillivray T, Pattie A , Deary I. J, & Dhillon B. Retinal vas-cular image analysis as a potential screening tool for cerebrovascular disease: A ra-tionale based on homology between cerebral and retinal microvasculatures. Journal of Anatomy. 2005; 206, 319- 348.


14. Moran C, Beare R, Phan TG, et al. Alzheimer?s Disease Neuroimaging Initiative (ADNI). Type 2 diabetes mellitus and bio- markers of neurodegeneration. Neurology. 2015;85(13):1123-1130.





15. Curb J.D, Rodriguez B.L, Abbott R.D, et al. Longitudinal association of vascular and Alzheimer?s dementias, diabetes, and glucose tolerance. Neurology. 1999;52(5):971-975.


16. Crane P.K, Walker R, Hubbard R.A, et al. Glucose levels and risk of dementia. N Engl J Med. 2013;369(6):540-548.





17. Biessels, G.J, Luchsinger. Pathobiology of Diabetic Encephalopathy in Animal Mod-els. Diabetes and the Brain Contemporary Diabetes/ - New York: Springer, LLC, 2010. - P. 409-431


18. Brands I. Diabetes and the brain: Cognitive performance in type 1 and type 2 diabetes mellitus . - Niederlands: Gildeprint Drukkerijen B.V., 2007. - 223 p.


19. Christopher M, Duinkerken E. Neurocognitive Consequences of Diabetes. American Psychologist. 2016, Vol. 71, No. 7, 563-576.


20. Barnea-Goraly N, Raman M., Mazaika P., Marzelli M, Hershey T., Weinzimer S. A. Diabetes Research in Children Network (Direc- Net). Alterations in white matter struc-ture in young children with type 1 diabetes. Diabetes Care.2014; 37, 332-340


21. Northam E. A, Anderson P. J, Werther G. A, Warne G. L, Adler R. G, & Andrewes D. Neuropsychological complications of IDDM in children 2 years after disease onset. Diabetes Care. 1998; 21, 379-384.


22. Cato M. A, Mauras N, Ambrosino J, Bondurant A, Conrad A. L., et all. Diabetes Re-search in Children Network (DirecNet). Cognitive functioning in young children with type 1 diabetes. Journal of the International Neuropsychological Society.2014; 20, 238-247.


23. Cameron F. J., Wherrett D. K. Care of diabetes in children and adolescents: Contro-versies, changes, and consensus. The Lancet. 2015; 385, 2096-2106.


24. Ryan, C. M. Searching for the origin of brain dysfunction in diabetic children: Going back to the beginning. Pediatric Diabetes. 2008; 9, 527-530.


25. Ghetti S., Lee J. K., Sims C. E., Demaster D. M., Glaser N. S. Diabetic ketoacidosis and memory dysfunction in children with type 1 diabetes. The Journal of Pediatrics. 2010; 156, 109-114.


26. Kuhad A, Bishnoi M, Tiwari V, et al. Suppression of NF-kappabeta signaling pathway by tocotrienol can prevent diabetes associated cognitive deficits. Pharmacol Biochem Behav. 2009;92(2):251-259.





27. Wang T, Fu FH, Han B, et al. Long-term but not short-term aspirin treatment attenu-ates diabetes-associated learning and memory decline in mice. Exp Clin Endocrinol Diabetes. 2011;119(1):36-40.





28. Jafari Anarkooli I, Barzegar Ganji H, Pourheidar M. The protective effects of insulin and natural honey against hippocampal cell death in streptozotocin-induced diabetic rats. J Diabetes Res. 2014;2014:491571.





29. Van Dam PS, Van Asbeck BS, Erkelens DW, et al. The role of oxidative stress in neu-ropathy and other diabetic complications. Diabetes Metab Rev. 1995;11(3):181-192.





30. El-Kossi AE, Abdellah MM, Rashad AM, et al. The effectiveness of evening primrose in glycemic control and improvement of nerve structure and function in diabetic rats. J Clin Exper Invest. 2011;2 (2):133-150.


31. Bekyarova GY, Ivanova DG, Madjova VH. Molecular mechanisms associating oxida-tive stress with endothelial dysfunction in the development of various vascular compli-cations in diabetes mellitus. Folia Med (Plovdiv). 2007;49(3-4):13-19.





32. Fishel MA, Watson GS, Montine TJ, et al. Hyperinsulinemia provokes synchronous increases in central inflammation and beta-amyloid in normal adults. Arch Neurol. 2005;62(10):1539-1544.


33. Ghetti S, Lee JK, Sims CE, et al. Diabetic ketoacidosis and memory dysfunction in children with type 1 diabetes. J Pediatr. 2010;156 (1):109-114.





34. Nett S.T, Noble J.A, Levin D.L, et al. Biomarkers and genetics of brain injury risk in diabetic ketoacidosis: A pilot study. J Pediatr Intensive Care. 2014;3:2.





35. Hamed S, Metwally K.A, Farghaly H.S, et al. Serum levels of neuron- specific enolase in children with diabetic ketoacidosis. J Child Neurol. 2017; 45(1): 265-272.


36. Cameron F.J, Scratch S.E, Nadebaum C, et al. Neurological conse- quences of diabetic ketoacidosis at initial presentation of type 1 diabetes in a prospective cohort study of children. Diabetes Care. 2014;37(6):1554-1562.


37. Glaser N, Ngo C, Anderson S, et al. Effects of hyperglycemia and effects of ketosis on cerebral perfusion, cerebral water distribution, and cerebral metabolism. Diabetes. 2012;61(7):1831-1837.


38. Blasetti A, Chiuri R.M, Tocco A.M, et al. The effect of recurrent severe hypoglycemia on cognitive performance in children with type 1 diabetes: a meta-analysis. J Child Neurol. 2011;26(11):1383-1391.


39. Hershey T, Bhargava N, Sadler M, et al. Conventional versus inten- sive diabetes ther-apy in children with type 1 diabetes: effects on memory and motor speed. Diabetes Care. 1999;22(8):1318-1324.


40. Wright R.J, Frier B.M, Deary I.J. Effects of acute insulin-induced hypoglycemia on spatial abilities in adults with type 1 diabetes. Diabetes Care. 2009;32(8):1503-1506.





41. Dore G.A, Elias M.F, Robbins M.A, et al. Presence of the APOE epsilon4 allele modi- fies the relationship between type 2 diabetes and cognitive performance: The Maine-Syracuse Study. Diabetologia. 2009;52:2551-60.





42. Patel A, MacMahon S, Chalmers J, et al. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med. 2008;358:2560- 72.


43. Zhang Z, Lovato J, Battapady H, et al. Effect of hypoglycemia on brain structure in people with type 2 diabetes: Epidemiological analysis of the ACCORD- MIND MRI trial. Diabetes Care. 2014;37:3279-85.


44. Whitmer RA, Karter AJ, Yaffe K, et al. Hypoglycemic episodes and risk of dementia in older patients with type 2 diabetes mellitus. JAMA. 2009;301(15):1565-1572.


45. Bruce DG, Davis WA, Casey GP, et al. Severe hypoglycaemia and cognitive impair-ment in older patients with diabetes: The Fremantle Diabetes Study. Diabetologia. 2009;52:1808-15.


46. Tatar M, Bartke A, Antebi A. The endocrine regulation


of aging by insulin-like sig-nals. Science. 2003;


299: 1346-51.





47. Costello DA, Claret M, Al-Qassab H, et al. Brain deletion of insulin receptor substrate 2 disrupts hippocampal synaptic plasticity and metaplasticity. PLoS One. 2012;7(2):e31124.


48. Bauduceau B, Doucet J, Lefloch JP, Verny C. Cardiovascular events and geriatric scale scores in elderly (70 years old and above) type 2 diabetic patients at inclusion in the GERODIAB c hort. Diabetes Care. 2014;37(1):304-11.


49. Derakhshan F, Toth C. Insulin and the brain. Curr Diabetes Rev. 2013;9(2):102-16.


50. Kleinridders A, Ferris HA, Cai W, Kahn CR. Insulin Action in Brain Regulates Sys-temic Metabolism and Brain Function. Diabetes. 2014;63(7):2232-2243.


51. Chiang, M.C.; Cheng, Y.C.; Chen, S.J.; Yen, C.H.; Huang, R.N. Metformin activation of AMPK-dependent pathways is neuroprotective in human neural stem cells against Amyloid-beta-induced mitochondrial dysfunction. Exp. Cell Res. 2016, 347, 322-331.





52. Kickstein, E.; Krauss, S.; Thornhill, P. et al. Biguanide metformin acts on tau phos-phorylation via mTOR/protein phosphatase 2A (PP2A) signaling. Proc. Natl. Acad. Sci. USA 2010, 107, 21830-21835.





53. Li, J.; Deng, J.; Sheng, W.; Zuo, Z. Metformin attenuates Alzheimer?s disease-like neuropathology in obese, leptin-resistant mice. Pharmacol. Biochem. Behav. 2012, 101, 564-574.


54. Hsu, C.C.; Wahlqvist, M.L.; Lee, M.S.; Tsai, H.N. Incidence of dementia is increased in type 2 diabetes and


reduced by the use of sulfonylureas and metformin. J. Alz-heimer?s Dis. JAD 2011, 24, 485-493.


55. Luchsinger,J.A.;Perez,T.;Chang,H.;Mehta,P.;Steffener,J.;Pradabhan,G.;Ichise,M.;Manly,J.;Devanand,D.P.;


Bagiella, E. Metformin in Amnestic Mild Cognitive Impair-ment: Results of a Pilot Randomized Placebo Controlled


Clinical Trial. J. Alz-heimer?s Dis. JAD 2016, 51, 501-514.





56. Herath, P.M.; Cherbuin, N.; Eramudugolla, R.; Anstey, K.J. The Effect of Diabetes Medication on Cognitive Function: Evidence from the PATH Through Life Study. Bi-oMed Res. Int. 2016, 2016, 720-84.





57. Moore, E.M.; Mander, A.G.; Ames, D.; Kotowicz, M.A.; Carne, R.P.; Brodaty, H.; Woodward, M.; Boundy, K.; Ellis, K.A.; Bush, A.I.; et al. Increased risk of cognitive impairment in patients with diabetes is associated with metformin. Diabetes Care 2013, 36, 2981-2987.





58. Luchsinger,J.A.;Ma,Y.;Christophi,C.A.;Florez,H.;Golden,S.H.;Hazuda,H.;Crandall,J.;Venditti,E.;


Watson, K.; Jeffries, S.; et al. Metformin, Lifestyle Intervention, and Cognition in the Diabetes Prevention


Program Outcomes Study. Diabetes Care 2017, 40, 958-965.


59. Fu H, Xie W, Curtis B, SchusterD.I dentifying factor sassociated with hypoglycemia-related hospitalizations among elderly patients with T2DM in the US: a novel approach using influential variable analysis. Curr Med Res Opin. 2014 Sep;30(9):1787-93.


60. Orkaby AR, Cho K, Cormack J, Gagnon DR, Driver JA. Metformin vs sulfonylurea use and risk of dementia in US veterans aged ≥65 years with diabetes. Neurology. 2017 Oct 31;89(18):1877-1885.


61. Landreth, G. Therapeutic use of agonists of the nuclear receptor PPARgamma in Alz-heimer?s disease.


Curr. Alzheimer Res. 2007, 4, 159-164.





62. Heneka, M.T.; Sastre, M.; Dumitrescu-Ozimek, L.; Hanke, A.; Dewachter, I.; Kuiperi, C.; O?Banion, K.;


Klockgether, T.; Van Leuven, F.; Landreth, G.E. Acute treatment with the PPARgamma agonist pioglitazone and ibuprofen reduces glial inflammation and Abeta1-42 levels in APPV717I transgenic mice. Brain J. Neurol. 2005, 128, 1442-1453.





63. Fernandez-Martos, C.M.; Atkinson, R.A.K.; Chuah, M.I.; King, A.E.; Vickers, J.C. Combination treatment with leptin and pioglitazone in a mouse model of Alzheimer?s disease. Alzheimer?s Dement. 2017, 3, 92-106.





64. Geldmacher,D.S.;Fritsch,T.;McClendon,M.J.;Landreth,G.A. Randomized pilot clinical trial of the safety of pioglitazone in treatment of patients with Alzheimer disease. Arch. Neurol. 2011, 68, 45-50.


65. Femminella,G.D.;Bencivenga,L.;Petraglia,L.;Visaggi,L.;Gioia,L.;Grieco,F.V.;deLucia,C.;Komici,K.;


Corbi, G.; Edison, P.; et al. Antidiabetic Drugs in Alzheimer?s Dis-ease: Mechanisms of Action and Future Perspectives. J. Diabetes Res. 2017, 2017, 7420796.





66. Drucker,D.J.;Sherman,S.I.;Gorelick,F.S.;Bergenstal,R.M.;Sherwin,R.S.;Buse,J.B. In-cretin-based therapies for the treatment of type 2 diabetes: Evaluation of the risks and benefits. Diabetes Care. 2010, 33, 428-433.





67. Cai H.Y.; Wang, Z.J.; Holscher, C.; Yuan, L.; Zhang, J.; Sun, P.; Li, J.; Yang, W.; Wu, M.N.; Qi, J.S. Lixisenatide attenuates the detrimental effects of amyloid beta pro-tein on spatial working memory and hippocampal neurons in rats. Behav. Brain Res. 2017, 318, 28-35.





68. Hansen, H.H.; Barkholt, P.; Fabricius, K.; Jelsing, J.; Terwel, D.; Pyke, C.; Knudsen, L.B.; Vrang, N. The GLP-1 receptor agonist liraglutide reduces pathology-specific tau phosphorylation and improves motor function in a transgenic hTauP301L mouse model of tauopathy. Brain Res. 2016, 1634, 158-170.





69. Gejl, M.; Gjedde, A.; Egefjord, L.; Moller, A.; Hansen, S.B.; Vang, K.; Rodell, A.; Braendgaard, H.; Gottrup, H.; Schacht, A.; et al. In Alzheimer?s Disease, 6-Month Treatment with GLP-1 Analog Prevents Decline of Brain Glucose Metabolism: Ran-domized, Placebo-Controlled, Double-Blind Clinical Trial. Front. Aging Neurosci. 2016, 8, 108.





70. Kosaraju, J.; Gali, C.C.; Khatwal, R.B.; Dubala, A.; Chinni, S.; Holsinger, R.M.; Madhunapantula, V.S.; Muthureddy Nataraj, S.K.; Basavan, D. Saxagliptin: A dipep-tidyl peptidase-4 inhibitor ameliorates streptozotocin induced Alzheimer?s disease. Neuropharmacology 2013, 72, 291-300.





71. Kornelius, E.; Lin, C.L.; Chang, H.H.; Li, H.H.; Huang, W.N.; Yang, Y.S.; Lu, Y.L.; Peng, C.H.; Huang, C.N. DPP-4 Inhibitor Linagliptin Attenuates Abeta-induced Cyto-toxicity through Activation of AMPK in Neuronal Cells. CNS Neurosci. Ther. 2015, 21, 549-557.





72. Rizzo,M.R.;Barbieri,M.;Boccardi,V.;Angellotti,E.;Marfella,R.;Paolisso,G. Dipeptidyl peptidase-4 inhibitors have protective effect on cognitive impairment in aged diabetic patients with mild cognitive impairment. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2014, 69, 1122-1131.





73. Lin B, Koibuchi N, Hasegawa Y, et al. Glycemic control with empagliflozin, a novel selective SGLT2 inhibitor, ameliorates cardiovascular injury and cognitive dysfunction in obese and type 2 diabetic mice. Cardiovasc Diabetol. 2014 Oct 26;13:148.


74. Rizvi SM, Shakil S, Biswas D, et al. Invokana (Canagliflozin) as a dual inhibitor of acetylcholinesterase and sodium glucose co-transporter 2: advancement in Alzheimer?s disease- diabetes type 2 linkage via an enzoinformatics study. CNS Neurol Disord Drug Targets. 2014;13(3):447-51.


75. Sa-Nguanmoo P, Tanajak P, Kerdphoo S, et al. SGLT2- inhibitor and DPP-4 inhibitor improve brain function via attenuating mitochondrial dysfunction, insulin resistance, inflammation, and apoptosis in HFD-induced obese rats. Toxicol Appl Pharmacol. 2017;333:43-50. doi: 10.1016/j.taap.2017.08.005.


76. 2010;288(1-2):112- 6.


77. Kern, W.; Peters, A.; Fruehwald-Schultes, B.; Deininger, E.; Born, J.; Fehm, H.L. Im-proving influence of insulin on cognitive functions in humans. Neuroendocrinology 2001, 74, 270-280.





78. Freiherr, J.; Hallschmid, M.; Frey, W.H., 2nd; Brunner, Y.F.; Chapman, C.D.; Holscher, C.; Craft, S.;


De Felice, F.G.; Benedict, C. Intranasal insulin as a treat-ment for Alzheimer?s disease: A review of basic research and clinical evidence. CNS Drugs. 2013, 27, 505-514.


79. Craft,S.;Claxton,A.;Baker,L.D.;Hanson,A.J.;Cholerton,B.;Trittschuh,E.H.;Dahl,D.;Caulder,E.;Neth,B.; Montine, T.J.; et al. Effects of Regular and Long-Acting Insulin on Cognition and Alzheimer?s Disease Biomarkers: A Pilot Clinical Trial. J. Alz-heimer?s Dis. JAD 2017, 57, 1325-1334.





Свидетельство о регистрации сетевого электронного научного издания N 077 от 29.11.2006
Журнал основан 16 ноября 2000г.
Выдано Министерством РФ по делам печати, телерадиовещания и средств массовых коммуникаций
(c) Перепечатка материалов сайта Medline.Ru возможна только с письменного разрешения редакции

Размещение рекламы

Rambler's Top100