Медико-биологический
информационный портал
для специалистов
 
БИОМЕДИЦИНСКИЙ ЖУРНАЛ Medline.ru

СОДЕРЖАНИЕ ЖУРНАЛА:
Физико-химическая биология

Клиническая медицина

Профилактическая медицина

Медико-биологические науки


АРХИВ:

Фундаментальные исследования

Организация здравохраниения

История медицины и биологии



Последние публикации

Поиск публикаций

Articles

Архив :  2000 г.  2001 г.  2002 г. 
               2003 г.  2004 г.  2005 г. 
               2006 г.  2007 г.  2008 г. 
               2009 г.  2010 г.  2011 г. 
               2012 г.  2013 г.  2014 г. 
               2015 г.  2016 г.  2017 г. 
               2018 г.  2019 г. 

Редакционная информация:
        Опубликовать статью
        Наша статистика


 РЕДАКЦИЯ:
Главный редактор

Заместители главного редактора

Члены редколлегии
Специализированные редколлегии


 УЧРЕДИТЕЛИ:
Федеральное государственное бюджетное учреждение науки
"Институт токсикологии Федерального медико-биологического агентства"
(ФГБУН ИТ ФМБА России)

Институт теоретической и экспериментальной биофизики Российской академии наук.

ООО "ИЦ КОМКОН".




Адрес редакции и реквизиты

199406, Санкт-Петербург, ул.Гаванская, д. 49, корп.2

ISSN 1999-6314

Российская поисковая система
Искать: 


«
Vol. 18, Art. 32 (pp. 474-487)    |    2017       
»

Immunohistochemistry of Transcription Factors NeuroD1, Pit-1 and Pitx-1 in Different Human Pituitary Adenomas
Raspopova O.M., Galkovsky B.E., Mitrofanova L.B.

Federal Almazov North-West Medical Research Center, St. Petersburg, Russian Federation



Brief summary

we carried out a comparative clinicopathologic study including immunohistochemistry of 39 different pituitary adenomas (7 plurihormonal adenomas, 8 corticotropinomas, 8 mammosomatotropinomas, 3 prolactinomas, 5 gonadotropinomas, 8 null-cell pituitary adenomas) and 9 normal anterior pituitary glands. The average number of cells with expression of transcription factors in all 39 adenomas was significantly different compared to that in the normal anterior pituitary glands (р=0,008 for Pit-1, р=0,028 for Pitx-1 and р=0,006 for NeuroD1). In addition, NeuroD1 expression was significantly higher in all adenomas than in the normal anterior pituitary glands. NeuroD1 expression was observed in more than 70% of cells in all pituitary adenomas, but expression of Pit-1 and Pitx-1 varied from 0 to 100%. After undertaken correlation analysis between the average cell number with expression of transcription factors of 6 anterior pituitary hormones and Ki-67, there have been statistically significant correlations between NeuroD1 and Pit-1 (r=0,43, p<0,05), Pitx-1 and luteinizing hormone (r=0,46, p<0,05), Pitx-1 and follicle-stimulating hormone (r=0,41, p<0,05), Pitx-1 and thyroid-stimulating hormone (r=0,6, p<0,05). There has been a moderate correlation between the average cell number with hormone expression and the level of hormones in blood (r=0,32, p<0,05), and a strong correlation for adrenocorticotropic hormone (r=0,66, p<0,05) individually. Conclusion: The transcription factors NeuroD1, Pit1 and Pitx1 are expressed in all types of functioning and non-functioning pituitary adenomas, and in the normal anterior pituitary glands as well. It is worth noting that the expression levels of NeuroD1 and Pitx1are significantly higher in adenomas, but the expression level of Pit1 is significantly higher in the normal anterior pituitary gland. In our opinion, NeuroD1 plays a key role in the pathogenesis of all pituitary adenomas. The level of proliferative activity (Ki-67 expression) of tumorous pituicytes does not depend on the level of transcription factors and that of hormones.


Key words

pituitary adenomas, immunohistochemistry, transcription factors.





(The article in PDF format. For preview need Adobe Acrobat Reader)



Open article in new window

Reference list

1)Mete O, Lopes MB. Overview of the 2017 WHO Classification of Pituitary Tumors. Endocr Pathol. Published online: 01 august 2017. https://doi.org/10.1007/s12022-017-9498-z


2)Suhardja A, Kovacs K, Rutka J. Role of transcription factors in the pathogenesis of pituitary adenomas: a review. J Neurooncol. 2001; 55: 185-193. https://doi.org/10.1023/a:1013819827162


3)Mete O, Gomez-Hernandez K, Kucharczyk W et al. Silent subtype 3 pituitary adenomas are not always silent and represent poorly differentiated monomorphous plurihormonal Pit-1 lineage adenomas. Mod Pathol. 2016 Feb; 29(2): 131-42. https://doi.org/10.1038/modpathol.2015.151.


4)Asa SL, Ezzat S. Molecular determinants of pituitary cytodifferentiation. Pituitary. 1999 May; 1(3-4): 159-68. https://doi.org/10.1023/a:1009948813587


5)de Moraes DC, Vaisman M, Conceição FL et al. Pituitary development: a complex, temporal regulated process dependent on specific transcriptional factors. J Endocrinol. 2012 Nov; 215(2): 239-45. https://doi.org/10.1530/JOE-12-0229.


6)Sanno N, Teramoto A, Matsuno A et al. In situ hybridization analysis of Pit-1 mRNA and hormonal production in human pituitary adenomas. Acta Neuropathol. 1996; 91: 263-268. https://doi.org/10.1007/s004010050424


7)Osamura RY, Tahara S, Kurotani R et al. Contributions of immunohistochemistry and in situ hybridization to the functional analysis of pituitary adenomas. J Histochem Cytochem. 2000 Apr; 48(4): 445-58. https://doi.org/10.1177/002215540004800401


8)Lamolet B, Pulichino AM, Lamonerie T et al. A pituitary cell-restricted T box factor, Tpit, activates POMC transcription in cooperation with Pitx homeoproteins. Cell. 2001 Mar 23; 104(6): 849-59. https://doi.org/10.1016/S0092-8674(01)00282-3


9)Umeoka K, Sanno N, Osamura RY et al. Expression of GATA-2 in human pituitary adenomas. Mod Pathol. 2002 Jan; 15(1): 11-7. https://doi.org/10.1038/modpathol.3880484


10)Yamada S, Takahashi M, Hara M et al. Pit-1 gene expression in human pituitary adenomas using the reverse transcription polymerase chain reaction method. Clin Endocrinol (Oxf). 1996 Sep; 45(3): 263-72. https://doi.org/10.1046/j.1365-2265.1996.00812.x


11)Lloyd RV, Jin L, Chandler WF et al. Pituitary specific transcription factor messenger ribonucleic expression in adenomatous and nontumorous human pituitary tissues. Lab Invest. 1993 Nov; 69(5): 570-5. PMID: 8246449


12)McDonald WC, Banerji N, McDonald KN. Steroidogenic Factor 1, Pit-1, and Adrenocorticotropic Hormone: A Rational Starting Place for the Immunohistochemical Characterization of Pituitary Adenoma. Arch Pathol Lab Med. 2017 Jan; 141(1): 104-112. https://doi.org/10.5858/arpa.2016-0082-OA


13)Davis SW, Castinetti F, Carvalho LR et al.Molecular mechanisms of pituitary organogenesis: In search of novel regulatory genes. Mol Cell Endocrinol. 2010 Jul 8; 323(1): 4-19. https://doi.org/10.1016/j.mce.2009.12.012


14)Mitrofanova LB, Konovalov PV, Krylova Jset al. Plurihormonal cells of normal anterior pituitary: Facts and conclusions. Oncotarget. 2017 Apr 25; 8(17): 29282-29299. https://doi.org/10.18632/oncotarget.16502.


15)Wu J, Li X, Liu X. Original Article Pit-1 mRNA and protein expression in human pituitary adenomas. Int J Clin Exp Pathol 2016; 9(7): 7060-7068 ISSN:1936-2625/IJCEP0028790


16)Osamura RY, Egashira N, Kajiya H et al. Pathology, pathogenesis and therapy of growth hormone (GH)-producing pituitary adenomas: technical advances in histochemistry and their contribution. Acta Histochem Cytochem. 2009 Aug 29; 42(4): 95-104. https://doi.org/10.1267/ahc.09004.


17)Mukdsi JH, De Paul AL, Muñoz S et al. Immunolocalization of Pit-1 in gonadotroph nuclei is indicative of the transdifferentiation of gonadotroph to lactotroph cells in prolactinomas induced by estrogen. Histochem Cell Biol.2004 Jun; 121(6): 453-62. https://doi.org/10.1007/s00418-004-0661-5


18)Takahashi Y, Bando H, Iguchi G. A Novel Clinical Entity "Anti-PIT-1 Antibody Syndrome"-Autoimmunity against a Transcription Factor. Rinsho Byori. 2015 Apr; 63(4): 491-7 PMID: 26536783


19)Jullien N, Roche C, Brue T et al. Dose-dependent dual role of PIT-1 (POU1F1) in somatolactotroph cell proliferation and apoptosis. PLoS One. 2015 Mar 30; 10(3): e0120010. https://doi.org/10.1371/journal.pone.0120010.


20)Pellegrini-Bouiller I, Morange-Ramos I, Barlier A et al. Pit-1 gene expression in human pituitary adenomas. Horm Res. 1997; 47(4-6): 251-8. PMID: 9167960


21)Hamada K, Nishi T, Kuratsu J et al. Expression and alternative splicing of Pit-1 messenger ribonucleic acid in pituitary adenomas. Neurosurgery. 1996 Feb;38(2):362-6. PMID: 8869065


22)Tahara S, Kurotani R, Sanno N et al. Expression of pituitary homeo box 1 (Ptx1) in human non-neoplastic pituitaries and pituitary adenomas. Mod Pathol. 2000 Oct; 13(10) :1097-108. https://doi.org/10.1038/modpathol.3880204


23)Oyama K, Sanno N, Teramoto A et al. Expression of neuro D1 in human normal pituitaries and pituitary adenomas. Mod Pathol. 2001 Sep; 14(9): 892-9. https://doi.org/10.1038/modpathol.3880408


24)Kurotani R, Tahara S, Sanno N et al. Expression of Ptx1 in the adult rat pituitary glands and pituitary cell lines: hormone-secreting cells and folliculo-stellate cells. Cell Tissue Res. 1999 Oct;298(1):55-61. PMID: 10555539


25)Lamonerie T, Tremblay JJ, Lanctôt C et al. Ptx1, a bicoid-related homeo box transcription factor involved in transcription of the pro-opiomelanocortin gene. Genes Dev. 1996 May 15; 10(10): 1284-95. PMID: 8675014


26)Cooper O, Ben-Shlomo A, Bonert V et al. Silent corticogonadotroph adenomas: clinical and cellular characteristics and long-term outcomes. Horm Cancer. 2010 Apr; 1(2): 80-92. https://doi.org/10.1007/s12672-010-0014-x.


27)Pataskar A, Jung J, Smialowski P et al. NeuroD1 reprograms chromatin and transcription factor landscapes to induce the neuronal program. EMBO J. 2016 Jan 4; 35(1): 24-45. https://doi.org/10.15252/embj.201591206



Свидетельство о регистрации сетевого электронного научного издания N 077 от 29.11.2006
Журнал основан 16 ноября 2000г.
Выдано Министерством РФ по делам печати, телерадиовещания и средств массовых коммуникаций
(c) Перепечатка материалов сайта Medline.Ru возможна только с письменного разрешения редакции

Размещение рекламы

Rambler's Top100