МЕДЛАЙН.РУ
Содержание журнала

Архив

Редакция
Учредители

Федеральное государственное бюджетное учреждение науки
Институт теоретической и экспериментальной биофизики
Российской академии наук


ООО "ИЦ КОМКОН"

Адрес редакции и реквизиты

192012, Санкт-Петербург, ул.Бабушкина, д.82 к.2, литера А, кв.378

ISSN 1999-6314


Клиническая медицина » Терапия • Иммунология

Том: 15
Статья: « 44 »
Страницы:. 540-564
Опубликована в журнале: 2 сентября 2014 г.

English version

Иммунохимические тест-системы для внелабораторной диагностики

Н.А. Таранова, А.В. Жердев, Б.Б. Дзантиев

Институт биохимии им. А.Н. Баха РАН, 119071 Москва, Ленинский проспект, 33


Резюме
Обзор посвящен характеристике существующего разнообразия иммунохимических аналитических систем для внелабораторной диагностики. Определены требования к внелабораторным аналитическим системам. Охарактеризованы тенденции их развития, связанные с обеспечением экспрессности и производительности тестирования. Описаны общие принципы иммуноаналитических методов, реализуемых во внелабораторных условиях, включая иммунохроматографию, иммунофильтрацию, иммуноаффинные колонки, микрофлюидные тест-системы, портативные варианты иммуноферментного и поляризационного флуоресцентного иммуноанализа, оптические методы иммуноанализа на основе резонансного переноса энергии, агглютинационный иммуноанализ. Представлена сравнительная оценка преимуществ и ограничений этих методов.


Ключевые слова
экспресс диагностика, тест-системы, иммуноанализ.



(статья в формате PDF. Для просмотра необходим Adobe Acrobat Reader)



открыть статью в новом окне

Список литературы

1. Von Lode P. Point-of-care immunotesting: Approaching the analytical performance of central laboratory methods // Clinical Biochemistry. 2005. Т. 38. № 7. — P. 591-606.


2. Hu J., Wang S., Wang L., Li F., Pingguan-Murphy B., Lu T.J., Xu F. Advances in paper-based point-of-care diagnostics // Biosensors and Bioelectronics. 2014. V. 54. — P. 585-597.


3. Зверева Е.А., Бызова Н.А., Жердев А.В., Дзантиев Б.Б. Экспрессное иммунохроматографическое определение антибиотиков в продуктах питания // Биозащита и Биобезопасность. 2013. Т.5. №1. — С. 24-27.


4. Dzantiev B.B., Byzova N.A., Urusov A.E., Zherdev A.V. Immunochromatographic methods in food analysis // Trends in Analytical Chemistry. 2014. V. 55. — P. 81-93.


5. Wild D. The Immunoassay Handbook. Amsterdam: Elsevier, 2005.


6. Золотов Ю.А., Иванов В.М., Амелин В.Г. Химические методы анализа. — М.: «Едиториал УРСС», 2002.


7. Campbell R.L., O\'Connell J.P.W., D.B. Solid phase assay with visual readout. — Patent, USA No 0154749, 1987.


8. Bloomster T.G., Rosenstein R.W. Solid phase assay emploing capillary flow. — Patent, USA No 0291176 B1, 1989.


9. Wong R.C., Tse H.Y. Lateral Flow Immunoassay. — New York: Humana Press, 2009.


10. Linares E.M., Kubota L.T., Michaelis J., Thalhammer S. Enhancement of the detection limit for lateral flow immunoassays: evaluation and comparison of bioconjugates // J Immunol Methods. 2012. V. 375. № 1-2. — P. 264-270.


11. Parolo C., de la Escosura-Muñiz A., Merkoçi A. Enhanced lateral flow immunoassay using gold nanoparticles loaded with enzymes // Biosensors and Bioelectronics. 2013. V. 40. № 1. — P. 412-416.


12. Jin S., Chang Z.Y., Ming X., Min C.L., Wei H., Sheng L.Y., Hong G.X. Fast dipstick dye immunoassay for detection of immunoglobulin G (IgG) and IgM antibodies of human toxoplasmosis // Clinical and Diagnostic Laboratory Immunology. 2005. V. 12. № 1. — P. 198-201.


13. Hoile R., Yuen M., James G., Gilbert G.L. Evaluation of the rapid analyte measurement platform (RAMP) for the detection of Bacillus anthracis at a crime scene // Forensic Science International. 2007. V. 171. № 1. — P. 1-4.


14. Bai Z., Luo Y., Xu W., Gao H., Han P., Liu T., Wang H., Chen A., Huang K. Development of a new fluorescence immunochromatography strip for detection of chloramphenicol residue in chicken muscles // Journal of the Science of Food and Agriculture. 2013. V. 93. № 15. — P. 3743-3747.


15. Gordon J., Michel G. Analytical sensitivity limits for lateral flow immunoassays // Clinical Chemistry. 2008. V. 54. № 7. — P. 1250-1261.


16. Berlina A.N., Taranova N.A., Zherdev A.V., Vengerov Y.Y., Dzantiev B.B. Quantum dot-based lateral flow immunoassay for detection of chloramphenicol in milk // Analytical and Bioanalytical Chemistry. 2013. V. 405. № 14. — P. 4997-5000.


17. Сотников Д.В., Бызова Н.А., Староверова Н.П., Жердев А.В., Дзантиев Б.Б. Применение иммунохроматографического анализа для серодиагностики бруцеллеза крупного рогатого скота // Российский ветеринарный журнал. Сельскохозяйственные животные. 2013. №3. — С. 15-18.


18. Старовойтова Т.А., Зайко В.В., Туголуков А.Е., Венгеров Ю.Ю., Жердев А.В., Дзантиев Б.Б. Видеоцифровая регистрация в лабораторной диагностике: аппаратно-программные комплексы и тест-системы // Справочник заведующего КДЛ. 2012. № 6. — C. 35-43.


19. Coskun A.F., Wong J., Khodadadi D., Nagi R., Tey A., Ozcan A. A personalized food allergen testing platform on a cellphone // Lab on a Chip. 2013. V. 13. № 4. — P. 636-640.


20. O\'Driscoll S., MacCraith B.D., Burke C.S. A novel camera phone-based platform for quantitative fluorescence sensing // Analytical Methods. 2013. V. 5. № 8. — P. 1904-1908.


21. Eriksson M., Iqbal Z. Two measurement modes for mobile phone optical sensing // Sensors and Actuators B: Chemical. 2014. V. 195. — P. 63-70.


22. Morais S., Maquieira A., Puchades R. Selection and characterisation of membranes by means of an immunofiltration assay. Application to the rapid and sensitive determination of the insecticide carbaryl // Journal of Immunological Methods. 1999. V. 224. № 1-2. — P. 101-109.


23. Cleveland P.H., Richman D.D., Oxman M.N., Wickham M.G., Binder P.S., Worthen D.M. Immobilization of viral antigens on filter paper for a [125I]staphylococcal protein A immunoassay: a rapid and sensitive technique for detection of herpes simplex virus antigens and antiviral antibodies // Journal of Immunological Methods. 1979. V. 29. № 4. — P. 369-386.


24. Dykman L.A., Bogatyrev V.A. Use of the dot-immunogold assay for the rapid diagnosis of acute enteric infections // FEMS Immunology & Medical Microbiology. 2000. V. 27. № 2. — P. 135-137.


25. Nadala Jr E.C.B., Loh P.C. Dot-blot nitrocellulose enzyme immunoassays for the detection of white-spot virus and yellow-head virus of penaeid shrimp // Journal of Virological Methods. 2000. V. 84. № 2. — P. 175-179.


26. Wang C., Liu D., Wang Z. Gold nanoparticle based dot-blot immunoassay for sensitively detecting Alzheimer\'s disease related beta-amyloid peptide // Chemical Communication (Camb). 2012. V. 48. № 67. — P. 8392-4.


27. Thiruppathiraja C., Kamatchiammal S., Adaikkappan P., Alagar M. An advanced dual labeled gold nanoparticles probe to detect Cryptosporidium parvum using rapid immuno-dot blot assay // Biosensors and Bioelectronics. 2011. V. 26. № 11. — P. 4624-4627.


28. Hacker G.W., Muss W.H., Hauser-Kronberger C., Danscher G., Rufner R., Gu J., Su H., Andreasen A., Stoltenberg M., Dietze O. Electron microscopical autometallography: immunogold-silver staining (IGSS) and heavy-metal histochemistry // Methods. 1996. V. 10. № 2. — P. 257-269.


29. Ma Z., Sui S.F. Naked-eye sensitive detection of immunoglubulin G by enlargement of Au nanoparticles in vitro // Angewandte Chemie International Edition. 2002. V. 41. № 12. — P. 2176-9.


30. Yazynina E.V., Zherdev A.V., Dzantiev B.B., Izumrudov V.A., Gee S.J., Hammock B.D. Immunoassay techniques for detection of the herbicide simazine based on use of oppositely charged water-soluble polyelectrolytes // Analytical Chemistry. 1999. V. 71. № 16. — P. 3538-3543.


31. Zherdev A.V., Byzova N.A., Izumrudov V.A., Dzantiev B.B. Rapid polyelectrolyte-based immunofiltration technique for testosterone detection in serum samples // Analyst. 2003. V. 128. № 10. — P. 1275-1280.


32. Dzantiev B.B., Byzova N.A., Zherdev A.V., Hennion M.C. Rapid polyelectrolyte-based membrane immunoassay for the herbicide butachlor // Journal of Immunoassay and Immunochemistry. 2005. V. 26. № 3. — P. 231-244.


33. Visconti A., Pascale M., Centonze G. Determination of ochratoxin A in wine by means of immunoaffinity column clean-up and high-performance liquid chromatography // J Chromatogr A. 1999. V. 864. № 1. — P. 89-101.


34. Beloglazova N.V., De Boevre M., Goryacheva I.Y., Werbrouck S., Guo Y., De Saeger S. Immunochemical approach for zearalenone-4-glucoside determination // Talanta. 2013. V. 106. — P. 422-430.


35. Sibanda L., De Saeger S., Barna-Vetro I., Van Peteghem C. Development of a solid-phase cleanup and portable rapid flow-through enzyme immunoassay for the detection of ochratoxin a in roasted coffee // Journal of Agricultural and Food Chemistry. 2002. V. 50. № 24. — P. 6964-6967.


36. Speranskaya E.S., Beloglazova N.V., Lenain P., De Saeger S., Wang Z.H., Zhang S.X., Hens Z., Knopp D., Niessner R., Potapkin D.V., Goryacheva I.Y. Polymer-coated fluorescent CdSe-based quantum dots for application in immunoassay // Biosensors and Bioelectronics. 2014. V. 53. — P. 225-231.


37. Njumbe Ediage E., Di Mavungu J.D., Goryacheva I.Y., Van Peteghem C., De Saeger S. Multiplex flow-through immunoassay formats for screening of mycotoxins in a variety of food matrices // Analytical and Bioanalytical Chemistry. 2012. V. 403. № 1. — P. 265-278.


38. Beloglazova N.V., Goryacheva I.Y., de Saeger S., Scippo M.L., Niessner R., Knopp D. New approach to quantitative analysis of benzo[a]pyrene in food supplements by an immunochemical column test // Talanta. 2011. V. 85. № 1. — P. 151-156.


39. Beloglazova N., Goryacheva I., Niessner R., Knopp D. A comparison of horseradish peroxidase, gold nanoparticles and qantum dots as labels in non-instrumental gel-based immunoassay // Microchimica Acta. 2011. V. 175. № 3. — P. 361-367.


40. Rokni M., Lesan S., Massoud J., Kia E., Gh. M. Comparative evaluation of fast enzyme linked immunosorbent assay (Fast-ELISA) and standard-ELISA For the diagnosis of human hydatidosis // Iranian Journal of Public Health2006. V. 35. № 2. — P. 29-32.


41. Золотов Ю.А., Беленький Б.Г., Курочкин В.Е., Комяк Н.И. Микрофлюидные системы для химического анализа. М.: Физматлит, 2011.


42. Chen S.P., Yu X.D., Xu J.J., Chen H.Y. Gold nanoparticles-coated magnetic microspheres as affinity matrix for detection of hemoglobin A1c in blood by microfluidic immunoassay // Biosensors and Bioelectronics. 2011. V. 26. № 12. — P. 4779-4784.


43. Sardesai N., Kadimisetty K., Faria R., Rusling J. A microfluidic electrochemiluminescent device for detecting cancer biomarker proteins // Analytical and Bioanalytical Chemistry. 2013. V. 405. № 11. — P. 3831-3838.


44. Chin C.D., Linder V., Sia S.K. Commercialization of microfluidic point-of-care diagnostic devices // Lab on a Chip. 2012. V. 12. № 12. — P. 2118-2134.


45. Gervais L., de Rooij N., Delamarche E. Microfluidic chips for point-of-care immunodiagnostics // Advanced Materials. 2011. V. 23. № 24. — P. H151-H176.


46. Han K.N., Li C.A., Seong G.H. Microfluidic chips for immunoassays // Annual Review of Analytical Chemistry. 2013. V. 6. № 1. — P. 119-141.


47. Liana D.D., Raguse B., Gooding J.J., Chow E. Recent advances in paper-based sensors // Sensors (Basel). 2012. V. 12. № 9. — P. 11505-11526.


48. Tekin H.C., Gijs M.A.M. Ultrasensitive protein detection: a case for microfluidic magnetic bead-based assays // Lab on a Chip. 2013. V. 13. № 24. — P. 4711-4739.


49. Adel Ahmed H., Azzazy H.M. Power-free chip enzyme immunoassay for detection of prostate specific antigen (PSA) in serum // Biosensors and Bioelectronics. 2013. V. 49. — P. 478-484.


50. Crowther J.R. The ELISA Guidebook. Vienna: Humana Press, 2001.


51. The Kinetic ELISA Advantage in Quantitative Assays // http://www.biotek.com/


52. Radoi A., Targa M., Prieto-Simon B., Marty J.L. Enzyme-linked immunosorbent assay (ELISA) based on superparamagnetic nanoparticles for aflatoxin M1 detection // Talanta. 2008. V. 77. № 1. — P. 138-143.


53. Tudorache M., Bala C. Sensitive aflatoxin B1 determination using a magnetic particles-based enzyme-linked immunosorbent assay // Sensors. 2008. V. 8. № 12. — P. 7571-7580.


54. Garden S.R., Strachan N.J.C. Novel colorimetric immunoassay for the detection of aflatoxin B1 // Analytica Chimica Acta. 2001. V. 444. № 2. — P. 187-191.


55. Fu J., Wang Y., Cao J., Yu Z., Zhang J. A sensitive, rapid chemiluminescence ELISA for the detection of 1, 4-bisdesoxycyadox residue in chicken muscle and liver // Analytical Methods. 2013. V. 5. № 16. — P. 3933-3941.


56. Ramachandran S., Fu E., Lutz B., Yager P. Long-term dry storage of an enzyme-based reagent system for ELISA in point-of-care devices // Analyst. 2014. V. 139. № 6. — P. 1452-1462.


57. Smith D.S., Eremin S.A. Fluorescence polarization immunoassays and related methods for simple, high-throughput screening of small molecules // Analytical and Bioanalytical Chemistry. 2008. V. 391. № 5. — P. 1499-1507.


58. Goryacheva I.Y., Rusanova T.Y., Burmistrova N.A., Saeger S. Immunochemical methods for the determination of mycotoxins // Journal of Analytical Chemistry. 2009. V. 64. № 8. — P. 768-785.


59. Xu Z.L., Wang Q., Lei H.T., Eremin S.A., Shen Y.D., Wang H., Beier R.C., Yang J.Y., Maksimova K.A., Sun Y.M. A simple, rapid and high-throughput fluorescence polarization immunoassay for simultaneous detection of organophosphorus pesticides in vegetable and environmental water samples // Analytica Chimica Acta. 2011. V. 708. № 1-2. — P. 123-129.


60. Lea W.A., Simeonov A. Fluorescence polarization assays in small molecule screening // Expert Opinion on Drug Discovery. 2011. V. 6. № 1. — P. 17-32.


61. Gall D., Nielsen K., Bermudez M.R., Moreno F., Smith P. Fluorescence polarization assay for detection of Brucella abortus antibodies in bulk tank bovine milk samples // Clinical and Diagnostic Laboratory Immunology. 2002. V. 9. № 6. — P. 1356-1360.


62. Cullum M.E., Lininger L.A., McArthur A.L., Schade S.Z., Simonson L.G. Fluorescence polarization instruments and methods for detection of exposure to biological materials by fluorescence polarization immunoassay of saliva, oral or bodily fluids. 2012.


63. Sahoo H. Förster resonance energy transfer – A spectroscopic nanoruler: Principle and applications // Journal of Photochemistry and Photobiology C: Photochemistry Reviews. 2011. V. 12. № 1. — P. 20-30.


64. Alexander P.D. Nanoparticles and nanocomposites for fluorescence sensing and imaging // Methods and Applications in Fluorescence. 2013. V. 1. № 2. — P. 022001.


65. Kreisig T., Hoffmann R., Zuchner T. Highly efficient forster resonance energy transfer in a fast, serum-compatible immunoassay // ChemBioChem. 2013. V. 14. № 6. — P. 699-702.


66. Piston D.W., Kremers G.J. Fluorescent protein FRET: the good, the bad and the ugly // Trends in Biochemical Sciences. 2007. V. 32. № 9. — P. 407-414.


67. Patterson G.H., Piston D.W., Barisas B.G. Forster distances between green fluorescent protein pairs // Analytical Biochemistry. 2000. V. 284. № 2. — P. 438-440.


68. Silverton E.W., Navia M.A., Davies D.R. Three-dimensional structure of an intact human immunoglobulin // Proc Natl Acad Sci U S A. 1977. V. 74. № 11. — P. 5140-5144.


69. Willard D.M., Carillo L.L., Jung J., Van Orden A. CdSe−ZnS quantum dots as resonance energy transfer donors in a model protein−protein binding assay // Nano Letters. 2001. V. 1. № 9. — P. 469-474.


70. Chen G., Song F., Xiong X., Peng X. Fluorescent nanosensors based on fluorescence resonance energy transfer (FRET) // Industrial and Engineering Chemistry Research. 2013. V. 52. № 33. — P. 11228-11245.


71. Maruyama T., Sugishita H., Kujira H., Ichikawa M., Hattori Y., Motoyoshiya J. Chemiluminescence behavior of fluorescent aromatics tethered 9-methylidene-10-methylacridans involving chemiluminescence resonance energy transfer (CRET) quenching // Tetrahedron Letters. 2013. V. 54. № 11. — P. 1338-1343.


72. He Y., Cui H. Label free and homogeneous histone sensing based on chemiluminescence resonance energy transfer between lucigenin and gold nanoparticles // Biosensors and Bioelectronics. 2013. V. 47. — P. 313-317.


73. Huang X., Ren J. Nanomaterial-based chemiluminescence resonance energy transfer: A strategy to develop new analytical methods // Trends in Analytical Chemistry. 2012. V. 40. — P. 77-89.


74. Qin G., Zhao S., Huang Y., Jiang J., Liu Y.-M. A sensitive gold nanoparticles sensing platform based on resonance energy transfer for chemiluminescence light on detection of biomolecules // Biosensors and Bioelectronics. 2013. V. 46. — P. 119-123.


75. Algar W.R., Tavares A.J., Krull U.J. Beyond labels: a review of the application of quantum dots as integrated components of assays, bioprobes, and biosensors utilizing optical transduction // Analytica Chimica Acta. 2010. V. 673. № 1. — P. 1-25.


76. Freeman R., Girsh J., Willner I. Nucleic acid/quantum dots (QDs) hybrid systems for optical and photoelectrochemical sensing // ACS Applied Materials and Interfaces. 2013. V. 5. № 8. — P. 2815-2834.


77. Bi S., Zhao T., Luo B. A graphene oxide platform for the assay of biomolecules based on chemiluminescence resonance energy transfer // Chemical Communications. 2012. V. 48. № 1. — P. 106-108.


78. Mannila R., Pulli T., Saari H., Tappura K., Tuppurainen J., Valimaki H., Niskanen A. Fluorescence-based fast diagnostics platform for the direct and indirect immunodiagnostic analysis methods // Diagnostic Optical Spectroscopy in Biomedicine IV. 2007. Proc. SPIE 6628,


79. Plotz C.M., Singer J.M. The latex fixation test. I. Application to the serologic diagnosis of rheumatoid arthritis // American Journal of Medicine. 1956. V. 21. № 6. — P. 888-92.


80. Gella F.J., Serra J., Gener J. latex agglutination procedures in immunodiagnosis // Pure and Applied Chemistry. 1991. V. 63. № 8. — P. 1131-1134.


81. Dressler D., Dirnberger G. Botulinum toxin antibody testing: comparison between the immunoprecipitation assay and the mouse diaphragm assay // European Neurology. 2001. V. 45. № 4. — P. 257-260.


82. Ortega-Vinuesa J.L., Bastos-González D. A review of factors affecting the performances of latex agglutination tests // Journal of Biomaterials Science, Polymer Edition. 2001. V. 12. № 4. — P. 379-408.


83. Aoki K., Itoh Y., Yoshida T. Simultaneous determination of urinary methamphetamine, cocain and morphine using a latex agglutination inhibition reaction test with colored latex particles // Japanese Journal of Toxicology and Environmental Health. 1997. V. 43. № 5. — P. 285-292.


84. Gao H., Wang W., Wang Z., Han J., Fu Z. Amorphous carbon nanoparticle used as novel resonance energy transfer acceptor for chemiluminescent immunoassay of transferrin // Analytica Chimica Acta. 2014. V. 819. — P. 102-107.


85. Koivunen M.E., Krogsrud R.L. Principles of immunochemical techniques used in clinical laboratories // Lab Medicine. 2006. V. 37. № 8. — P. 490-497.


86. Fitzpatrick J., Fanning L., Hearty S., Leonard P., Manning B.M., Quinn J.G., O\'Kennedy R. Applications and recent developments in the use of antibodies for analysis // Analytical Letters. 2000. V. 33. № 13. — P. 2563-2609.


87. Aoki K., Kuroiwa Y. A screening method for urinary methamphetamine - latex agglutination inhibition reaction test // Forensic Science International. 1985. V. 27. № 1. — P. 49-56.