МЕДЛАЙН.РУ
Содержание журнала

Архив

Редакция
Учредители

Федеральное государственное бюджетное учреждение науки
Институт теоретической и экспериментальной биофизики
Российской академии наук


ООО "ИЦ КОМКОН"

Адрес редакции и реквизиты

192012, Санкт-Петербург, ул.Бабушкина, д.82 к.2, литера А, кв.378

ISSN 1999-6314


Клиническая медицина » Терапия • Кардиология

Том: 13
Статья: « 37 »
Страницы:. 456-474
Опубликована в журнале: 3 июня 2012 г.

English version

Клинико-лабораторные особенности интраоперационногометаболизма миокарда у пациентов с ишемической сердечной недостаточностью

Мороз-Водолажская Н.Н.

Республиканский научно-практический центр «Кардиология»


Резюме
Исследование уровня глюкозы, жирных кислот и лактата в артериальной крови и крови из коронарного синуса на этапах операции аорто-коронарного шунтирования (АКШ) проведено у 80 пациентов в возрасте 53,3±12,5 лет с хронической ишемической болезнью сердца и сердечной недостаточностью (СН) 2,52±0,71 функционального класса (ФК) по NYHA. Интраоперационный метаболический фенотип миокарда не связан с дооперационным ФК СН, фракцией выброса левого желудочка, наличием артериальной гипертензии (p>0,05 для всех). Потребление ЖК после контролируемой коронарной реперфузии операции АКШ сопровождается прогрессированием СН в периоперационном периоде (r=0,72; p<0,001). Метаболический фенотип миокарда на основе лактата в периоде после коронарной реперфузии является наиболее неблагоприятным в связи с высокой частотой развития летальных исходов в госпитальном периоде после операции АКШ (²=17,9; p=0,0012).


Ключевые слова
Ишемия миокарда, аорто-коронарное шунтирование, метаболизм миокарда.



(статья в формате PDF. Для просмотра необходим Adobe Acrobat Reader)



открыть статью в новом окне

Список литературы

1. Bleumink G.B., Knetsch A.M., Sturkenboom M., Straus S.M., Hofman A., Deckers J.W., Witteman J.C., Stricker B.H. Quantifyingthe heart failure epidemic: prevalence, incidence rate, lifetime riskand prognosis of heart failure. The Rotterdam Study // Eur Heart J 2004; 25; 18:1614-1619.


2. Jaswal JS , Keung W, Wang W, Ussher JR, Lopaschuk GD. Targeting fatty acid and carbohydrate oxidation – a novel therapeutic intervention in the ischemic and failing heart // Biochim Biophys Acta, 2011;1813;7:1333-1350.


3. Ingwall JS. Transgenesis and cardiac energetics: new insights into cardiac metabolism // J Mol Cell Cardiol, 2004;37:613-623.


4. Stanley W.C., Recchia F.A., Lopashuk G.D. Myocardial substrate metabolism in the normal and failing heart // Phisiol Rev, 2005;85:1093-1129.


5. Murray A.J., Anderson R.E., Watson G.C., Radda G.K.,Clarke K. Uncoupling proteins in human heart // Lancet, 2004;364:1786-1788.


6. Marfella R., Di Filippo C., Portoghese M., Berbieri M., Ferraraccio F., Siniscalchi M., Cacciapuoti F., Rossi F., D´Amico M. Myocardial lipid accumulation in patients with pressure-overloaded heart and metabolic syndrome // Journal of Lipid Research, 2009;50:2314-2323.


7. Lommi J, Koskinen P, Naveri H, Harkonen M, and Kupari M. Heart failure ketosis //J Intern Med, 1997;242:231–238.


8. Lommi J, Kupari M, Koskinen P, Naveri H, Leinonen H, Pulkki K, and Harkonen M. Blood ketone bodies in congestive heart failure //J Am Coll Cardiol, 1996;28:665-672.


9. Lommi J, Kupari M, and Yki-Jarvinen H. Free fatty acid kinetics and oxidation in congestive heart failure. //Am J Cardiol, 1998;81:45-50.


10. van Bilsen M., van Nieuwenhoven F.A., van der Vusse G.J. Metabolic remodeling of the failing heart: beneficial or detrimental? // Cardiovascular Research, 2009;81:420-428.


11. Sack MN, Rader TA, Park S, Bastin J, McCune SA, and Kelly DP. Fatty acid oxidation enzyme gene expression is downregulated in the failing heart //Circulation, 1996;94:2837–2842.


12. Karbowska J, Kochan Z, and Smolenski RT. Peroxisome proliferator-activated receptor alpha is downregulated in the failing human heart //Cell Mol Biol Lett, 2003;8:49-53.


13. Hausenloy D.J., Yellon D.M. “Conditional conditioning”in cardiac bypass surgery //Basic Res Cardiol, 2012;107:258.


14. Lang R.M., Bierig M., Devereux R.B., Flachskampf F.A., Foster E., Pellikka P.A., Picard M.H., Roman M.J., Seward J., SShanewise J., Solomon S., Spencer K.T., St. John Sutton M., Stewart W. Recommendation for chamber quantification // Eur J Echocardiogrphy, 2006;7:79-108.


15. Falholf K., Falholf W., Lund B. An easy colorimetric method for routine determination of free fatty acid in plasma //Clin Chim Acta, 1973;46:105-111.


16. Халафян А.А. Статистика 6. Статистический анализ данных. 3-е изд. Учебник. - М.: ООО «Бином-Пресс», 2008. – 512 с.: ил.


17. Azekoshi Y, Yasu T, Watanabe S, Tagawa T, Abe S, Yamakawa K, Uehara Y, Momomura S, Urata H, Ueda S. Free fatty acid causes leukocyte activation and resultant endothelial dysfunction through enhanced angiotensin II production in mononuclear and polymorphonuclear cells //Hypertension, 2010;56:136-142.


18. Mathew M, Tay E, Cusi K (2010) Elevated plasma free fatty acids increase cardiovascular risk by inducing plasma biomarkers of endothelial activation, myeloperoxidase and PAI-1 in healthy subjects //Cardiovasc Diabetol, 2010;9:9.


19. Nappo F, Esposito K, Cioffi M, Giugliano G, Molinari A, Paolisso G, Marfella R, Giugliano D: Postprandial endothelial activation in healthy subjects and in type 2 diabetic patients: Role of fat and carbohydrate meals //J Am Coll Cardiol, 2002, 39;7:1145-1150.


20. Van der Vusse GJ, van Bilsen M, and Glatz JF. Cardiac fatty acid uptake and transport in health and disease //Cardiovasc Res, 2000;45:279-293.


21. Glatz JF, Luiken JJ, and Bonen A. Involvement of membraneassociated proteins in the acute regulation of cellular fatty acid uptake //J Mol Neurosci, 2001;16:123-132.


22. Schaffer JE. Fatty acid transport: the roads taken //Am J Physiol Endocrinol Metab, 2002;282:E239–E246.


23. Paolisso G, Gambardella A, Galzerano D, D’Amore A, Rubino P, Verza M, Teasuro P, Varricchio M, and D’Onofrio F. Totalbody and myocardial substrate oxidation in congestive heart failure //Metabolism, 1994;43:174-179.


24. Yazaki Y, Isobe M, Takahashi W, Kitabayashi H, Nishiyama O, Sekiguchi M, and Takemura T. Assessment of myocardial fatty acid metabolic abnormlities in patients with idiopathic dilated cardiomyopathy using 123I BMIPP SPECT: correlation with clinicopathological findings and clinical course //Heart,1999;81:153-159.


25. Sack MN, Rader TA, Park S, Bastin J, McCune SA, and Kelly DP. Fatty acid oxidation enzyme gene expression is downregulated in the failing heart //Circulation, 1996;94: 2837-2842.


26. Eichhorn EJ, Bedotto JB, Malloy CR, Hatfield BA, Deitchman D, Brown M, Willard JE, and Grayburn PA. Effect of betaadrenergic blockade on myocardial function andenergetics in congestive heart failure. Improvements in hemodynamic, contractile, and diastolic performance with bucindolol //Circulation, 1990;82:473- 483.


27. Eichhorn EJ, Heesch CM, Barnett JH, Alvarez LG, Fass SM, Grayburn PA, Hatfield BA, Marcoux LG, and Malloy CR. Effect of metoprolol on myocardial function and energetics in patients with nonischemic dilated cardiomyopathy: a randomized, doubleblind, placebo-controlled study// J Am Coll Cardiol, 1994;24:1310-1320.


28. Wallhaus TR, Taylor M, DeGrado TR, Russell DC, Stanko P, Nickles RJ, and Stone CK. Myocardial free fatty acid and glucose use after carvedilol treatment in patients with congestive heart failure // Circulation, 2001;103:2441–2446.


29. Andersson B, Blomstrom-Lundqvist C, Hedner T, and Waagstein F. Exercise hemodynamics and myocardial metabolism during long-term beta-adrenergic blockade in severe heart failure //J Am Coll Cardiol, 1991;18:1059-1066.


30. Kuum M., Kaasik A., Joubert F., Ventura-Clapier R., Veksler V. Energetic state is a strong regulator of sarcoplasmic reticulum Ca2+ loss in cardiac muscle: different efficiencies of different energy sources //Cardiovasc Res, 2009;83;1: 89-96.